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ABSTRACT

The formation and maintenance of thunderstorms that produce large hail, strong winds, and tornadoes are

often difficult to forecast due to their rapid evolution and complex interactions with environmental features

that are challenging to observe. Given inherent uncertainties in storm development, it is intuitive to predict

severe storms in a probabilistic manner. This paper presents such an approach to forecasting severe thun-

derstorms and their associated hazards, fusing together data from several sources as input into a statistical

model. Mesoscale numerical weather prediction (NWP) models have been developed in part to forecast

environments favorable to severe storm development. Geostationary satellites, such as the Geostationary

Operational Environmental Satellite (GOES) series, maintain a frequently updating view of growing cumulus

clouds over the contiguous United States to provide temporal trends in developing convection to forecasters.

The Next Generation Weather Radar (NEXRAD) network delivers repeated scans of hydrometeors inside

storms, monitoring the intensification of hydrometeor size and extent, as well as hydrometeor motion.

Forecasters utilize NWPmodels, and GOES and NEXRAD data, at different stages of the forecast of severe

storms, and the model described in this paper exploits data from each in an attempt to predict severe hazards

in a more accurate and timely manner while providing uncertainty information to the forecaster. A pre-

liminary evaluation of the model demonstrates good skill in the forecast of storms, and also displays the

potential to increase lead time on severe hazards, as measured relative to the issuance times of National

Weather Service (NWS) severe thunderstorm and tornado warnings and occurrence times of severe events in

local storm reports.

1. Introduction

Severe thunderstorms are a relatively common oc-

currence in the United States, yet determining which

thunderstorms will be severe is sometimes complicated.

These storms produce hazards such as tornadoes, large

hail, high winds, and often flash flooding, which are a

serious threat to life and property (e.g., Lubber 2013).

The literature is extensive on the topic of severe thun-

derstorms, with authors contributing both to our theo-

retical (e.g., Lemon and Doswell 1979; Bluestein 1993;

Markowski and Richardson 2010b) and applied (e.g.,

Rasmussen 2003; Brooks et al. 2003; Doswell et al. 2005)

knowledge of severe convective storms. Severe thun-

derstorms need several ingredients in order to form

(Markowski and Richardson 2010a,b): 1) potential in-

stability in the atmosphere, manifested by generally at
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least 100 J kg21 of convective available potential energy

(CAPE) and often greater than 1000 J kg21 of CAPE;

2) adequate atmospheric moisture, whereby lifted air

becomes saturated and remains saturated when lifted to

great heights; 3) a lifting mechanism for parcels of air

to reach their level of free convection (LFC) (e.g., sur-

face synoptic fronts, drylines, outflow boundaries, sea-

breeze boundaries, or intense surface heating); and

4) vertical wind shear, to organize and sustain the

storm’s updraft (generally 0–6-km shear $18m s21, or

35 kt, 1 kt 5 0.5144m s21). There are complicating fac-

tors for forecasters to consider when predicting severe

thunderstorms, however. Convective initiation alone

is a complex function of vertical motions from the mi-

croscale (e.g., thermals) to the synoptic scale, as well as

mesoscale temperature and moisture gradients and

nonuniformities (Markowski and Richardson 2010a).

There are a myriad of other uncertainties, including if

the lifting will be adequate to reach the LFC of a storm

environment and persistent enough to support a storm;

if dry air will entrain into the updraft of the storm,

inhibiting vertical development; and if the environ-

mental shear will be too little to organize the storm, or

perhaps too great and destroy the updraft of the storm,

or be oriented such that a storm may merge with other

storms, possibly impacting the severity of the storm

(e.g., Markowski and Richardson 2010b, and refer-

ences therein).

Because of the danger such storms pose, and in re-

sponse to a great deal of research, observational net-

works have been installed, in part, to monitor severe

weather conditions in situ (e.g., rawinsonde launching

sites, surface observation stations) and remotely [e.g.,

Next Generation Weather Radar (NEXRAD), Crum

and Alberty (1993); Geostationary Operational Envi-

ronmental Satellite (GOES), Menzel and Purdom

(1994)]. Numerical weather prediction (NWP) models

are also used to forecast severe weather, largely to iden-

tify favorable environments for such storms. Rapidly

updating mesoscale numerical models, such as the Rapid

Refresh (RAP; Benjamin et al. 2006) can assimilate

observations and generate near-term (0–18 h) forecasts

useful for storm prediction in a timely manner, over a

continental domain.

A probabilistic approach to this forecasting prob-

lem is preferred because of complexities that can be

difficult to observe, features whose automated iden-

tification is challenging, or phenomena that are not

fully understood. For instance, outflow boundaries

from other storms can sometimes aid or detract from

storm development; warm-air intrusions aloft that are

unobserved in soundings or NWP data can create sig-

nificant convective inhibition (CIN); high spatial

variability of surface moisture may be difficult to re-

solve, impacting a parcel’s buoyancy; or orographic

features can greatly enhance or suppress convection.

Because of these and other complexities, a probabilis-

tic statistical model was chosen for severe hazard

prediction.

Despite these shortcomings, remote sensing of storms

has proved fruitful for decades. Adler and Fenn (1979a,

b), Adler et al. (1985), and Reynolds (1980) quantita-

tively used temporal trends in GOES infrared (IR)

brightness temperature (BT) to infer the intensity of

thunderstorms. Numerous satellite-derived convective

initiation and cloud-top cooling methodologies have

been developed in the last decade to forecast thunder-

storm initiation and intensification (e.g., Roberts and

Rutledge 2003; Mueller et al. 2003; Mecikalski and

Bedka 2006; Vila et al. 2008; Zinner et al. 2008; Bedka

et al. 2010; Sieglaff et al. 2011; Mecikalski et al. 2011).

Cintineo et al. (2013, hereafter C13) recently employed

temporal trends in GOES-derived cloud properties to

infer storm severity from developing convection.

NEXRAD, which provides three-dimensional in-

formation of the hydrometeor and kinematic properties

(via Doppler velocity) of convective clouds, has proven

to be the most important tool for storm surveillance and

nowcasting. Polger et al. (1994) quantifies the increase

in forecast skill using NEXRAD over legacy weather

radar; critical success index scores for severe thunder-

storm and tornado warnings almost doubled relative to

the pre-NEXRAD era, while tornado warning lead

time increased from 4.4min pre-NEXRAD to 8.8min

post-NEXRAD implementation. Algorithms derived

from radar data have also shown some skill for di-

agnosing severe weather potential (e.g., Greene and

Clark 1972; Witt et al. 1998a,b; Stumpf et al. 1998;

Wilson et al. 2009).

High spatial resolution NWP models have steadily

become more skillful, due to improved observations,

data assimilation techniques, physical understanding,

and computing power (e.g., Benjamin et al. 2004),

such that they are now used frequently in the short

term to identify regions with atmospheric environ-

ments conducive to severe weather (e.g., Bothwell

et al. 2002). This paper synthesizes derived data from

rapidly updating remotely sensed observation net-

works (GOES and NEXRAD) and NWP model out-

put (RAP) to automatically predict the probability

that a developing convective cloud or storm will

produce severe weather within 120min. The product

described in this paper is meant to link together

quantifiable information available to forecasters so

they may be able to quickly discern the potential se-

verity of storms of interest.
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2. Data and methods

a. Probabilistic model

A flexible and simple statistical model was chosen for

this forecast problem: the naı̈ve Bayesian classifier

(Kuncheva 2006; Domingos and Pazzani 1997), which

assumes that predictors are independent. Despite the

clear violation of this ‘‘naı̈ve’’ assumption, themodel has

demonstrated good performance in meteorological ap-

plications (e.g., Kossin and Sitkowski 2009). This model

computes a conditional probability of class membership

dependent on a set of quantifiable features. For this

problem, there are two classes: storms that will produce

severe hazards [a tornado, a wind gust of 58mi h21

(;26m s21) or greater, or a hailstone with diameter

25.4mm or greater] and storms that will not (Csev and

Cns, respectively). Using Bayes’s theorem, the proba-

bility of a storm producing severe hazards given a set of

observed predictors F is defined by

P(Csev jF)5
P(Csev)P(F jCsev)

P(F)
, (1)

where the pipe ( j ) represents a conditional probability

and P (Csev) is the probability that would be assigned if

there were no predictors. We refer to P (Csev) as the

prior probability, or a priori probability. In this study,

the a priori has been transformed into a function of

environmental data (see sections 2d and 2f), and serves

as a ‘‘first guess’’ of the probability of severe, or

P(Csev jF). Naturally, P(Cns jF) 5 1 2 P(Csev jF). The
assumption of predictor independence allows for prac-

tical implementation of Bayes’s theorem through re-

duction of dimensionality (see Kossin and Sitkowski

2009) and Eq. (1) can be rewritten as

P(Csev jF)5
P(Csev)P

N

i51

P(Fi jCsev)

P(F)
, (2)

with Fi denoting the value of the ith predictor, and N

the number of predictors. The P is the product opera-

tor, multiplying the probability of each ith predictor

conditional on the storm being a member of the severe

class. Thus, only the a priori and conditional proba-

bility distribution for each predictor is needed to

compute the final probability conditional on the ob-

served predictor set F.

b. Satellite data and algorithms

GOES-12 and GOES-13 imager data (variable tem-

poral resolution, from 5 to 60min) are used as input

into satellite algorithms that compute a cloud mask

(Heidinger and Straka 2013), cloud-top phase (Pavolonis

2010a,b), and 11-mm top-of-the-troposphere cloud emis-

sivity «tot (Pavolonis 2010b). The cloud-top phase and «tot
fields are remapped using a nearest-neighbor method

to a cylindrical equidistant projection with 0.048 lati-
tude 3 0.048 longitude spatial resolution, and are in-

terpolated to the radar resolution (see section 2c) when

the statistical model is executed. The remapping soft-

ware package used is Mapx from the National Snow and

Ice Data Center (NSIDC 2013). The «tot is the 11-mm

emissivity of the cloud when the effective cloud height

(Cox 1976) is taken to be the top of the troposphere [see

Eq. (2) in Pavolonis (2010b)]. For clouds with a large

infrared optical depth (e.g., growing cumulus clouds),

«tot is a measure of how close the cloud radiative center

is to the tropopause (on a scale from 0.0 to 1.0). Please

refer to Pavolonis (2010b) for a complete physical de-

scription of «tot. This derived product is used to compute

vertical growth rates in clouds as opposed to 11-mm BT,

since it is less sensitive to the thermodynamic state of the

cloud-free atmosphere and maintains the spatial gradi-

ents observed in the 11-mm BT field (see discussion in

C13 and their Fig. 1).

The GOES cloud-top phase algorithm also uses mul-

tispectral GOES imager observations as well as output

from a multispectral GOES cloud mask (Heidinger and

Straka 2013) to determine the phase of cloudy GOES

pixels. The GOES cloud-top phase output is used to

determine the rate at which the top of a developing

convective cloud glaciates (i.e., converts from liquid

water to ice). The temporal rates of change in «tot (D«tot)
and the ice cloud fraction (Dice, or glaciation rate) are

used as predictors in the probabilistic model, and both

use the same units (min21). These two temporal trends

depict vertical cloud growth, while only Dice captures

microphysical changes at the cloud top. C13 demon-

strated that both metrics discriminated between severe

and nonsevere convection skillfully. Thus, both are used

as predictors in the statistical model. The training for

these two predictors is described in C13, and summa-

rized in section 2f.

c. Radar data and algorithms

Level-II NEXRAD-derived products have been pro-

vided by the University of Oklahoma Cooperative Insti-

tute for Mesoscale Meteorological Studies (OU/CIMMS)

and the National Oceanic and Atmospheric Adminis-

tration National Severe Storms Laboratory (NOAA/

NSSL). NSSL quality controls (QCs) radar reflectivity

from throughout the contiguousUnited States (CONUS),

and creates a 3D composite reflectivity field (5-min

temporal resolution) using the Warning Decision

Support System-Integrated Information (WDSS-II;
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Lakshmanan et al. 2006; Lakshmanan et al. 2007a;

Lakshmanan et al. 2007b). Radar data are merged using

an exponential distance relationship, such that data

from closer radars are weighted more than data from

more distant radars, at any given point (Lakshmanan

et al. 2006). In this fashion, the radar fields are remapped

(with WDSS-II) using a cylindrical equidistant pro-

jection with 0.018 latitude 3 0.018 longitude spatial res-

olution. The remapped QCmerged reflectivity (REF) is

then input into the NSSL enhanced hail detection al-

gorithm (along with RAP environmental data) to com-

pute the maximum expected size of hail (MESH; Witt

et al. 1998a). MESH is empirically derived from the

severe hail index (SHI), which is a reflectivity-weighted

vertical integration from themelting level (08C) to storm
top that neglects reflectivities less than 40 dBZ, in an

effort to capture the ice content in a storm. It has been

used to diagnose hail potential in severe storms and

shown to have some skill (e.g., Witt et al. 1998b; Ortega

et al. 2009; Wilson et al. 2009; Cintineo et al. 2012). The

instantaneous maximumMESH in a storm (at any given

time) is another predictor in the probabilistic model.

Sources of error for the MESH product include errors in

the heights of temperature levels of RAP analysis data,

affecting the vertical integration of SHI, as well as single-

radar surveillance of storms, especially at ranges far from

the radar, when beam widening may be a problem, re-

sulting in an underestimation of the maximum MESH

(Cintineo et al. 2012, Bunkers and Smith 2013).

d. RAP data fields

The RAP was the NWP model of choice in this study

due to its superior update frequency (60min) and

spatial resolution (13.5 km) over any operational North

American model. The RAP assimilates data from ra-

winsondes, wind profilers, aircraft, surface stations, ship

reports, NEXRAD, satellite radiances, GOES, GPS,

and other sources using the community gridpoint sta-

tistical interpolation (GSI) system. Two NWP-derived

fields that help discern severe storm environments are

used to create the a priori probability of severe weather

(described in section 2f). They are the effective bulk

shear (EBS; Thompson et al. 2007) and the most-

unstable CAPE (MUCAPE). Bulk shear (0–6 km) has

shown good discrimination between environments that

produce severe storms and those that produce ordinary

storms (e.g., Thompson et al. 2003). The EBS normal-

izes the shear values for storms with shallow and deep

inflow layers, enabling a better comparison between

vertical wind profiles of storms in different environ-

ments. The use of MUCAPE as opposed to mixed layer

or surface-based CAPE is better for identifying envi-

ronments supportive of elevated convection that can

become severe. When a storm overcomes the environ-

mental CIN, the MUCAPE and EBS of the environ-

ment can help determine the intensity of the convective

updraft and storm mode (e.g., supercell, multicell, or

ordinary storm), to the first order. Because mesoscale

NWP forecast output often contains errors in the timing,

placement, and intensity of frontal features, the moisture

field, andwind speeds (e.g., Coniglio 2012), a conservative

approach is used to create blended environmental prod-

ucts. First, aWDSS-II algorithm (gribToNetcdf) is used to

remap RAP fields from their native Lambert conformal

projection onto a cylindrical equidistant projection. Next,

MUCAPE and EBS are calculated for every point in the

remapped RAP grid for a given forecast time. For both

MUCAPEandEBS, themaximumvalue at every point in

the forecast grid is taken over the span of five forecast

hours. The forecast hours used for this operation are the

current analysis (t0), the previous hour analysis (t21), and

the 1-, 2-, and 3-h forecasts (tF1, tF2, and tF3, respectively).

This ‘‘off centered’’ approach is used since the RAP

output valid at t0 is usually unavailable to a forecaster

until approximately 1h later. Thus, when new RAP data

become available, the derived output valid at tF1 is meant

to represent the current state of the atmosphere.

After this temporal compositing is complete, a 5 3 5

gridpoint (;67.5 km 3 67.5 km) spatial filter is applied

to each composite field (with a Gaussian kernel and

a smoothing radius equal to three standard deviations),

creating a smoothed estimate of the instability and shear

in the environment. This process is performed in the

hope that poor timing or location of features in the RAP

output will not be detrimental to the output probability

of severe weather determined by the statistical model.

Finally, a second WDSS-II algorithm (w2cropconv, us-

ing the default Cressman interpolation) converts the

grid to one with 0.048 latitude 3 0.048 longitude spatial

resolution (still cylindrical equidistant). These RAP-

derived fields are interpolated to the resolution of the

radar fields when the probabilistic model is run, in sim-

ilar fashion to the GOES-derived fields. Thus, the

GOES-derived, NEXRAD-derived, and RAP-derived

fields are all on the same cylindrical equidistant grid

(0.018 latitude3 0.018 longitude) during the execution of
the statistical model.

e. Storm identification and tracking

The satellite-object identification and tracking system

developed by Sieglaff et al. (2013, hereafter S13) is

employed to create satellite objects needed for the au-

tomated computation of temporal trends in the pre-

viously described metrics (D«tot and Dice). A satellite

object is defined as a collection of spatially connected

pixels that contain a local maximum of «tot. A unique
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identification number (ID) is assigned to the satellite

object, which is tracked through space and time in sub-

sequent GOES imager observations. The S13 frame-

work allows for the history of a variety of parameters

(satellite, radar, and NWP) to be maintained through

a satellite object’s lifetime. The reader is encouraged to

consult S13 for complete details. Hartung et al. (2013),

Sieglaff et al. (2014), and C13 also utilized the satellite-

object tracking described in S13. The tracking system

utilizes the WDSS-II identification and tracking algo-

rithm (Lakshmanan et al. 2003), applied to the «tot field.

In addition, a postprocessing algorithm, which uses three

different spatial scales of a satellite object to correct non-

continuous storm tracks (i.e., owing to misidentifications

by the WDSS-II algorithm) is employed.

Radar object identification and tracking is performed

on composite reflectivity (REFcomp) using the WDSS-II

algorithm (Lakshmanan et al. 2003) without the post-

processing scheme described in S13. The postprocessing

scheme is not needed given the finer spatial and tem-

poral resolutions of NEXRAD data. WDSS-II uses an

enhanced watershed algorithm to create objects. In

this case, the algorithm searches for local maxima of

REFcomp $ 35 dBZ. It then spatially grows the objects

in increments of 10 dBZ until a size of at least 20 pixels is

reached (approximately 20 km2). For example, if a

maximum of 42 dBZ is identified, the algorithm will

search for pixels spatially connected to the maximum

pixel greater than or equal to 32 dBZ. If this yields an

object of at least 20 pixels, the object will stop growing.

Please see Lakshmanan et al. (2003) for more details.

The maximum MESH is extracted at each scan time

during the life of a radar object.

The greatest source of error for both D«tot and Dice
occurs when there is a noncontinuous storm track. The

method of S13 works well to correct these tracks, but

begins to break down when the amount of time elapsed

between GOES scans becomes large (30min or more).

Thus, during times of GOES full-disk scans (30min

between scans, every 3 h), the accuracy in satellite-based

tracking and the computed D«tot and Dice may decline,

especially for spatially small storms (roughly five satel-

lite pixels). Tracking radar objects in REFcomp every

5min does not suffer from this decline in accuracy. The

storm ID of a radar object may change if the object

spatially changes greatly from one scan to the next (e.g.,

during splits or mergers). Since only the latest in-

stantaneous MESH is being used as a predictor, how-

ever, a change in storm ID is not cause for concern, since

no temporal trend is computed using radar data.

It is necessary to identify and track convective cloud/

storm objects in GOES and NEXRAD because of the

differing sensitivities to hydrometeor properties. More

specifically, rapid cloud growth (observable by GOES)

often occurs prior to the development of precipitation-

sized hydrometeors required for robust NEXRAD-

based remote sensing of cloud properties. Information

derived from GOES and NEXRAD is combined by

associating each parallax-corrected GOES cloud object

with one or more spatially overlapping NEXRAD ob-

jects (if a NEXRADobject or objects exists). In the case

of large cloud shields, when no satellite objects are dis-

cernable, the model will only utilize NEXRAD and

NWP information to compute a probability of severe

weather for identified radar objects.

f. Training dataset

The identification of satellite and radar objects was

also necessary to create datasets to train the statistical

model. C13 describes the criteria for the training in de-

tail, as well as the spatial and seasonal distributions of

selected storms (see S13 for details about the tracking

method of satellite objects). To summarize, the severe

storm class comprises 130 storms, while the nonsevere

storm class has 976 storms. Severe storms were selected

if they produced at least one tornado or hail report, since

those two hazards are more directly related to updraft

strength than wind reports, and wind reports often carry

larger ambiguity (Trapp et al. 2006). These training

storms may have produced wind reports in addition to

hail and tornado reports, however. Storms that only

resulted in reports of straight-line wind damage (no se-

vere hail or tornado reports) were completely excluded

from the classifier training. Conditional probability dis-

tributions for the two satellite-derived predictors, D«tot
and Dice, are shown in Figs. 1a and 1b, respectively for

both severe and nonsevere classes. The lifetime maxi-

mumD«tot andDice for eachmember storm compose the

distributions, which have also been smoothed via kernel

density estimation (KDE; see C13 for details) to ap-

proximate the true distribution of the population. The

maximum MESH at every scan time during the lifetime

of a storm object was also extracted, creating the con-

ditional probability distributions seen in Fig. 1c (also

smoothed via KDE). The conditional probability of se-

vere for each predictor, P(Fi jCsev), is drawn from these

distributions.

The creation of the a priori probability table required

a much larger dataset (since it is two-dimensional). All

vertically growing satellite objects (D«tot . 0) were ini-

tially used from 28 days in 2008–12, over the CONUS

GOES-East scan sector (see C13 for their seasonal dis-

tribution). Of these growing satellite objects, any of

which that achieved at least 35 dBZ at 2108C at some

point in their lifetime were defined as thunderstorms.

This criterion was selected based on simulations of
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convective initiation by Kain et al. (2013). These criteria

resulted in 5635 thunderstorms. Of these thunderstorms,

any storm that achieved a MESH of 25.4mm (1.0 in.) or

greater was characterized as severe, resulting in 324

storms. This threshold is arbitrary, but matches a crite-

rion established by the National Weather Service (NWS)

for severe thunderstorm warning verification (NWS

2013). All thunderstorms and severe thunderstorms

were plotted on a 2D phase space, defined by their life-

time maximum, spatial median EBS, and MUCAPE.

Each plot was smoothed with 2DKDE, with aGaussian

kernel and an optimally chosen bandwidth. The

smoothed thunderstorm distribution was finally di-

vided by the smoothed severe thunderstorm distribu-

tion to create a 2D conditional probability table

(Fig. 2). Thus, this table yields the probability that

a storm will produce severe weather, given only its

environmental EBS and MUCAPE, that is, a storm’s

a priori probability.

g. Verification dataset

The model (object-tracking and statistical classifier)

operated in real time at the University of Wisconsin’s

Cooperative Institute forMeteorological Satellite Studies

(UW-CIMSS) from April through November 2013,

providing numerous days with severe weather over the

CONUS. The model was scored against both preliminary

severe local storm reports (LSRs) from NOAA’s Storm

Prediction Center (SPC), and NWS-issued severe

FIG. 1. Conditional probability distributions of severe

and nonsevere storms for (a) storm lifetime maximum

D«tot, (b) storm lifetime maximum Dice, and (c) storm

instantaneous maximum MESH.

FIG. 2. Table of a priori probability of severe for identified

storms, given their median effective bulk shear and median

MUCAPE.
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thunderstorm and tornado warnings. Since one goal of

this model is to increase the lead time of NWS warnings,

only the first severe thunderstorm or tornado warning

issued on a storm was used to validate the model (as well

as the first LSR). LSRs have clear biases and in-

consistencies (e.g., Trapp et al. 2006, Doswell et al. 2005,

Witt et al. 1998b, Kelly et al. 1985, Morgan and Summers

1982), including reduced reporting in sparsely populated

regions and after sunset, and incomplete reporting (e.g.,

Ortega et al. 2009). Nevertheless, LSRs [a tornado, awind

gust of 58mih21 (;26ms21) or greater, or a hailstone

with diameter 25.4mm or greater] are used for verifi-

cation in addition to warnings since they are widely

regarded as the ‘‘ground truth’’ (though LSRs cer-

tainly do not convey the entire truth). While the pre-

dictors in this model do not specifically relate to

tornadogenesis, tornadoes can often occur in storms

with strong rotating updrafts (e.g., supercell thun-

derstorms), which may be inferred from the statistical

model. Thus, tornado LSRs are included as a verifi-

cation metric; only 2 out of 80 first LSRs for storms

were for tornadoes, however, making it difficult to

measure meaningful skill of the model for tornadoes

alone.

Scoring was performed subjectively because of nu-

merous challenges in automatically validating storms as

severe. These challenges include storms that form or

travel into or out of the CONUS, storms that merge or

split prior to being warned or producing severe weather

(thus changing ID), denoting the ‘‘first’’ severe weather

warning for a storm, and the presence of radar anoma-

lies owing to nonmeteorological scatterers, which occur

infrequently. Thus, because of the possibility of a scoring

algorithm introducing nontrivial bias, a manual evalua-

tion was performed at this time. Two independent days

(i.e., days that were not used to train the classifier) were

selected for the evaluation: 18 May and 17 June 2013.

These days were selected due to the fairly large geo-

graphic coverage of storms (Fig. 3), and since storms

initiated predominantly as discrete or small multicellu-

lar convection events before growing upscale. The SPC

issued a moderate risk for severe storms on 18 May and

several slight risk areas on 17 June. Despite only scoring

on two days, over 800 storms were evaluated (warned

and unwarned), providing an ample and representative

preliminary validation for the model.

3. Results

a. Real-time operation overview

There are three streams of real-time data essential

for the proper functioning of this model: 1) GOES-East

imagery, 2) NEXRAD-derived products, and 3) RAP

model data. GOES-derived cloud products and RAP-

derived fields are processed accordingly as the data

arrive (see sections 2b and 2d). Real-time tracking al-

gorithms identify and track storms using both «tot and

REFcomp once those data are computed or available.

The probabilistic model is run with the latest satellite

and RAP fields once tracking is completed on a

REFcomp field, providing probability of severe output

data every 5min for each identified storm in the east-

ern two-thirds of the CONUS. The model computes or

extracts the predictor information (D«tot, Dice, MESH,

MUCAPE, and EBS) and associates satellite-tracked

objects with radar objects, sharing information be-

tween the two. Each satellite object may share in-

formation with one or more overlapping radar objects

(or none if the storm is not sufficiently mature to be

identified on radar). Each radar object may only con-

tain information from at most one overlapping satellite

object. A parallax correction is also performed (using

a constant cloud-top height of 7 km) to allow satellite

objects to better match corresponding radar objects.

The P(CsevjF) is computed based on lookup tables

derived from the distributions in Figs. 1 and 2. The

predictor values and probability information for each

storm are then stored to a file, which is read when a new

radar scan is received and objects are identified and

tracked.

b. An example case: 3 July 2013

Once the model completes a time step, the severe

probability data can be visualized. Figure 4 demon-

strates the output from the model for severe storms over

western New York on 3 July 2013 between 1900 and

2130 UTC, annotated for clarity. The arrows are colored

by the calculated P(Csev jF) and point to storms identi-

fied by the model. On this day, the SPC only forecasted

a 5% chance of high wind [within 25mi (;40 km)

of a given point] for western New York in their

2000 UTC day 1 outlook, and never issued a severe

thunderstorm watch for the region. Thus, forecasted

severe weather potential was quite marginal for wes-

tern New York. Nevertheless, storm 1 is identified at

1904 UTC (Fig. 4a, depicted by the box labeled ‘‘1’’

and an attached larger arrow) with P(Csev jF) , 0.1

and contains REFcomp generally less than 35 dBZ. The

parent satellite object resided in a favorable environ-

ment, with approximately 3000 J kg21 of MUCAPE

and 20m s21 of EBS, and exhibited moderate D«tot and
Dice (see Fig. 1). Fifty minutes later (Fig. 4b), the storm

exhibited maximum REFcomp near 50dBZ, maximum

MESH of 2.54mm, and a probability of severe of 0.1. At

2014 UTC (Fig. 4c), the probability increases again to
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0.46, and again at 2019UTC (Fig. 4d) to 0.56, largely due

to slowly increasing maximum MESH. This storm pro-

duced a measured wind gust of 58 mi h21 (;26m s21) at

the Rochester International Airport at 2039 UTC [20min

after the first computed P(Csev jF) . 0.5], and would

go on to produce multiple severe wind reports in the

region. The NWS office in Buffalo, New York, issued

a severe thunderstorm warning at 2052 UTC (approx-

imately Fig. 4e), 33min after the model first produced

a severe probability greater than 0.5 for this storm, and

13min after the first severe wind report was recorded.

This storm obtained a maximum probability of severe

of 0.89 (Fig. 4f). The reader should note that even

though the model was not trained with storms produc-

ing only severe wind, it may still be useful for certain

storms that do produce severe wind, since severe wind is

often associated with storms that may produce severe

hail and tornadoes (e.g., storms with strong, persistent

updrafts).

Storm 2 (denoted in Figs. 4c–f) measures P(Csev jF)5
0.56 at 2124 UTC. The storm was warned 6min

later at 2130 UTC (not shown) by the NWS, and would

FIG. 3. SPC map of preliminary severe weather reports for (a) 18 May and (b) 17 Jun 2013.
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go on to produce 25.4-mm hail at 2143 UTC. The

maximum severe probability exhibited by this storm

was 0.93 at 2134 UTC. The first severe thunderstorm

warning issued for storm 2 did not measure as much

lead time as the warning issued on storm 1, since the

observed D«tot and Dice were smaller for storm 2, but

storm 2 still exhibited P(Csev jF) . 0.5 before the

warning was issued.

FIG. 4. An example from 3 Jul 2013 of GOES-East visible reflectance overlaid with shaded REFcomp. The arrows

point to storms identified by the model. Arrows are colored by the computed probability of severe. If an arrow does

not point to a REFcomp maximum, then that REFcomp maximum was not identified as a storm by the model at this

time. Storms 1 and 2 are indicated by larger arrows with attached labeled boxes, and are referenced in the text.
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c. Model performance

The model was scored against initial LSRs (2 tornado,

52 hail, 26 wind) and initial severe thunderstorm and

tornado warnings issued by the NWS. Additionally, the

skill of the model was compared to the skill of NWS

warnings. Probabilistic forecasts from the model were

divided into six bins: 1) 0.01 # x , 0.1, 2) 0.1 # x , 0.3,

3) 0.3 # x , 0.5, 4) 0.5 # x , 0.7, 5) 0.7 # x , 0.9, and

6) x$ 0.9. The midpoint probability for each bin is used

to represent the entire bin in several figures. To evaluate

the model against LSRs and NWS warnings, a trained

human analyst subjectively examined geospatial images

of the output probability (at 5-min resolution), geo-

spatial images of warning polygons (at 1-min resolu-

tion), the SPC’s preliminary severe LSR log, and Iowa

State University’s (ISU) valid time extent code (VTEC)

application, which aided in matching NWS warnings to

storms and often provides verification LSRs as well (ISU

2013). VTEC is an application that allows the user to

navigate archived NWS warnings, showing the full

warning text and maps with the warning polygon and

location of LSRs (if they occurred). The time a forecast

probability first exceeded a threshold was recorded for

each storm (using the six aforementioned bins), as well

as the time when the first warning was issued on a storm

(if it was ever warned), and the time of the first severe

hail, wind, or tornado report associated with the storm

(if a report ever occurred). Storms were evaluated in the

eastern two-thirds of the CONUS, approximately east of

the 1058W meridian. An attempt was made to evaluate

every storm that occurred, but some storms with low

lifetime maximum probability of severe (less than 0.1)

may have been excluded, simply because of their very

high frequency. Diligent effort was given to storms ex-

ceeding a probability of 0.1 at some point in their lifetime

(and storms that produced LSRs or became warned).

Traditional metrics of scoring were computed, in-

cluding the probability of detection (POD), false alarm

ratio (FAR), critical success index (CSI), and Peirce skill

score (PSS; Peirce 1884). These metrics were plotted as

a function of probability threshold (Fig. 5). A storm has

a ‘‘hit’’ at a certain probability threshold if it attained or

exceeded the probability prior to the occurrence of the

truth metric (an LSR or NWS warning). A ‘‘miss’’ de-

notes occurrence of the truth metric prior to when

a probability threshold was attained for a storm (if it

ever reached the threshold). A ‘‘false alarm’’ occurs

when the probability of a storm meets a certain thresh-

old, but the truth metric is never observed. A ‘‘correct

null’’ happens when no truth metric is observed, and the

probability threshold for a storm is never met. Thus,

a single stormmay have a combination of hits andmisses

or false alarms and correct nulls, corresponding to dif-

ferent probability thresholds. The skill metrics were

formulated following Wilks (2006). The CSI is useful in

this evaluation since the occurrence of severe weather is

much less frequent than its nonoccurrence, while the

PSS measures skill against the sample climatology of

occurrence. Figures 5a and 5b demonstrate the model

skill measured to severe LSRs and NWS warnings, re-

spectively. The vertical bars represent the 95% confi-

dence intervals for the CSI and PSS at each probability

threshold, which were computed empirically, from 5000

samples via bootstrapping [i.e., resampling with re-

placement; see Wilks (2006)]. The model exhibited

maximumCSI. 0.4 against both criteria (from 0.3 to 0.7

for NWS warnings, and at 0.7 for LSRs), while the POD

and FAR were lower versus NWS warnings. LSRs

FIG. 5. POD, FAR, CSI, and PSS as functions of forecast

probability threshold (from the statistical model) scored against

(a) LSRs and (b) NWS warnings. Error bars represent 95% con-

fidence intervals for the CSI and PSS.

648 WEATHER AND FORECAST ING VOLUME 29



typically occur after an NWS warning has been issued,

contributing to the higher POD for the LSR truth met-

ric. The higher FAR for the LSR criterion may be par-

tially due to some biases in reporting (e.g., a dearth of

reports in sparsely populated regions).

The lead time for each storm hit was measured for

each truth metric. Distributions of lead time are shown

in Fig. 6. The notches in each boxplot denote the 95%

confidence interval for the median lead time (indicated

by the horizontal red line), computed empirically via

bootstrapping the sample 5000 times. The top and bot-

tom edges of the boxes encompass the middle 50% of

lead times, or the interquartile range (IQR). Plus signs

indicate outlier lead times beyond 1.5 times the IQR.

Lead times are substantial when computed relative to

the LSR time (Fig. 6a), as evidenced by median lead

times of 25 and 15min, respectively, for the two highest

probability bins. Even when lead time was measured

relative to NWS warning issuance (Fig. 6b), 50% of the

storms had at least 12.5min of lead time in the 0.6 bin.

Median lead times for the 0.8 and 0.9 bins were ap-

proximately 10min. Thus, this modelmay be able to help

forecasters extend some severe stormwarnings from one

or two radar volume scans (approximately 5min each) to

perhaps 30min or more, even with the model’s current

latency of 5min (using modest hardware).

A reliability diagram (also called an attributes dia-

gram) can also elucidate the skill of the model. It ex-

presses the conditional probability of event occurrence,

as a function of probability forecast. Unique probabi-

listic forecasts (not thresholded) were used for each

probability bin. Figure 7 illustrates the reliability of the

model to both LSR (Fig. 7a) and NWS warning occur-

rence (Fig. 7b). The inset in Fig. 7a represents the

forecast frequency for each probability bin. A perfectly

reliable model corresponds to the blue 1:1 line. Points

that fall on or near this line signify that the probability of

the event occurring, given a forecast probability, is ap-

proximately equal to the probability of the forecast. The

horizontal no-resolution line represents the value of the

sample climatology (;0.09 for LSRs and ;0.12 for

warnings). A ‘‘no skill’’ line is drawn halfway between

the no-resolution line and the perfect reliability line, and

forms two regions: one area closer to the perfect re-

liability line and one area closer to the no-resolution or

climatology line. Points in the region closer to the per-

fect reliability line than to the no-resolution line add to

the model skill, which is equivalent to the Brier skill

score (Wilks 2006). Thus, the forecasts in a given prob-

ability bin contribute positively to model skill where any

red point resides in the green-shaded region. The skill is

measured relative to the climatology of the sample (i.e.,

the average forecast probability). The model is well

calibrated when measured against NWS warnings, since

the red line corresponds closely to the 1:1 line, with each

probability bin contributing to the forecast skill. The

model is less reliable when the truth metric is LSR oc-

currence. In fact, an overforecasting bias is evident at

probability bins 0.4 and greater. The sources of error

discussed in sections 2c and 2e may contribute to this, as

well as potential LSR shortcomings, similar to the dis-

cussion regarding Fig. 5. Despite this, each bin above

0.05 still contributes positively to the forecast skill.

Finally, model skill was compared against the skill of

NWS warnings, measured to LSR occurrence. The most

skillful (as measured to LSRs) probabilistic threshold is

used for the model (0.7). Figure 8 shows the POD, FAR,

FIG. 6. Distributions of lead time for model hits measured to

(a) LSRs and (b) NWS warnings, given the forecast probability.

Horizontal red lines are median lead times, boxes represent the

IQR of lead-time values, the bounds of notches are 95% confi-

dence intervals for the median lead time, and plus signs represent

lead-time outliers.
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CSI, and median lead time for the statistical model and

the NWS-issued severe weather warnings (the initial

warnings for storms). The NWS has overall higher skill

than the statistical model (0.51 versus 0.41 CSI), but

shorter median lead time than the model (15 versus

25min). This lead-time statistic is heavily weighted to-

ward large hail and high wind reports. Regardless, this

model may provide forecasters more confidence to issue

some severe weather warnings sooner than they other-

wise would have, which may be especially important for

users who require more lead time (e.g., hospitals, sta-

diums, concert venues).

4. Conclusions and future work

This paper describes the method and skill of the real-

time synthesis of data from GOES, NEXRAD, and the

RAP model to statistically forecast the probability that

a developing storm will produce severe weather. This

research leverages refined data and concepts from recent

work regarding cloud properties (Pavolonis 2010a,b),

convective cloud growth (C13, Sieglaff et al. 2011),

multiradarmultisensor products (e.g., Ortega et al. 2006;

Lakshmanan et al. 2007a), rapidly updating numerical

models (Benjamin et al. 2006), and object tracking (S13,

Lakshmanan et al. 2003). Object identification and

tracking from both satellite and radar imagery enables

the sharing of storm trends and information for data

derived from each sensor, and facilitates the association

of features on an object level instead of a pixel level, thus

reducing gigabytes of input to kilobytes of output.

The simple naı̈ve Bayesian model exhibited good

performance using traditional skill metrics during a

preliminary evaluation of over 800 storms for two days,

with maximum CSI . 0.4 and maximum PSS . 0.65

measured to both LSRs andNWS-issued severe weather

warnings. The model demonstrated sizeable lead times

relative to initial LSRs and NWS warnings for those

storms that were correctly identified, evidenced by

a median lead time of 12.5min for NWS warnings and

a median lead time of 31min for LSRs (for the 0.6

probability bin). The two days evaluated contained

a variety of storm types in geographically diverse re-

gions; skill was measured relative to initial NWS warn-

ings and LSRs when most storms were single-cell or

smaller multicell entities, however. Thus, the model’s

FIG. 7. Reliability diagrams for model skill measured against

(a) LSRs and (b) NWS warnings. The inset figure in (a) shows

counts of unique forecast probabilities. The blue line is the 1:1 line

and represents perfect reliability. The no-skill line delineates re-

gions where the model contributes positively to skill (green region)

and negatively to skill (asmeasured against the sample ‘‘climatology’’;

the horizontal line). A red point that resides in the green-shaded

region demonstrates a positive skill contribution for the associated

forecast probability bin.

FIG. 8. The POD, FAR, and CSI for the model presented in this

paper (orange) and the NWS warnings (blue), measured to severe

LSRs. The most skillful probabilistic threshold was used for the

statistical model. The bars on the right represent the median lead

time to severe weather occurrence for both the statistical model

and the NWS warnings (scale on right side).
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skill should be investigated further based on varying

storm type and morphology (e.g., supercell, ordinary

storm, multicell, convective line), which may indeed

have an impact on forecast skill (Guillot et al. 2008). It is

important to note that mesoscale convective systems

(MCSs) that tend to produce predominantly high winds

may not be handled well by this model, since there are

often processes driving these systems (e.g., large, deep

cold pools and rear-inflow jets) that are captured by few

if any of the predictors of this model. MCSs generally

form from upscale growth of single-cell or multicellular

convection, or when the deep-layer wind shear has a

large component parallel to the initiating boundary of

the convection. The model in this paper has been mainly

designed to predict the severity of storms where updraft

strength can be inferred.

Several measures have been identified to decrease

false alarms and improve the detection of severe weather.

The introduction of several additional NWP-derived

products could help sharpen the a priori probability,

including products that help capture the melting of

hailstones (e.g., height of the 08C isotherm), and torna-

dogenesis (e.g., lifted condensation level, low-level

shear). Percentile values of predictors (such as the

75th or 90th percentiles) may be less noisy than the

maximum value of predictors, enhancing the discrimi-

nation between severe and nonsevere storms. GOES

temporal resolution also varies from 5 to 30min, greatly

influencing theD«tot andDice for storms. Amore precise

training method based on temporal resolution could

help discern severe from nonsevere convection better.

One data source that is missing from this model is

lightning data. Total lightning flash rates, which have

been shown to be skillful when predicting severe

weather (Schultz et al. 2011), will be available on the

Geostationary Lightning Mapper instrument (GLM;

Goodman et al. 2006) aboard the next-generation

GOES (GOES-R; Schmit et al. 2005), which is antici-

pated to be operational in 2017. In the interim, cloud-to-

ground (CG) lightning flash rates or GLM-proxy total

lightning flash rates (from ground-based lightning

mapping arrays) may be investigated as potential pre-

dictors, but actual GLMdata will likely be utilized in this

model once GOES-R becomes operational. This real-

time model also readily lends itself to creating statistical

models for specific severe hazards, by adding or sub-

tracting certain predictors for each hazard. Models for

severe hail, severe wind (from single-cell convection and

MCSs), tornado, and flash-flooding probability may also

be pursued.

The end goal of this research is to provide skillful

guidance to forecasters to discriminate between severe

and nonsevere convection and increase warning lead

time for severe hazards. This fused approach may help

forecasters make better warning decisions by distilling

the pertinent information from an increasing amount

of data at the forecaster’s disposal into a focused prob-

abilistic product. With the advent of more numerous

and more capable satellites, radar networks, numerical

models, and in situ measurements, products that in-

corporate some or all of these data sources may provide

meteorologists a better answer to certain forecast

problems than any single product alone.
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