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ABSTRACT

The method of model fitting, or adjoint method, is applied to a barotropic hurricane track forecast model
described by DeMaria and Jones using a large sample of forecast cases. The sample includes all Atlantic tropical
cyclones that reached hurricane intensity during the 1989-93 hurricane seasons (141 72-h forecasts of 17 storms).
The cases considered by DeMaria and Jones are a subset of the present sample. Model-fitting calculations using
strong, wesak, strong followed by weak, or weak followed by strong model constraints are discussed for data
assimilation periods varying from 6 to 72 h. Generally, the best track forecasts occur for shorter assimilation
periods and for weak constraints, although only the 12-h assimilation with the weak constraint has less track
error than the control forecast without assimilation, and only for the 12-h forecast. The principle reason for this
lack of improvement is that the fit of the model to the observed track is good at the middle of the assimilation
period, but not very good at the end where the forecast begins. When a future track position at 6 h is included
in the assimilation, in order to improve the track fit at the synoptic data time, the resulting track errors average
about 10% smaller than the control forecast. The control forecast may also be improved in the same way. In

that case, the best assimilation forecasts have 2.5% smaller track errors than the modified control forecasts.

1. Introduction

Accurate numerical hurricane track forecasts are very
difficult, because of the lack of data over the tropical
oceans. Four-dimensional data assimilation techniques
can partially compensate for the lack of spatial data
coverage by including observations over an extended
time interval. Two recent hurricane tracking studies
have adopted this approach for a model based upon the
barotropic vorticity equation. Bennett et al. (1993) used
a generalized inverse method for tracking 10 cases of
Pacific typhoons from the 1990 season. For the 1989
Atlantic hurricane season, DeMaria and Jones (1993,
hereafter DJ93) applied the method of model fitting
(also known as the adjoint method) to track 69 cases
from five hurricanes (Dean, Erin, Felix, Gabrielle, and
Hugo). Both studies include a means for inserting a
vortex by use of synthetic observations. Bennett et al.
(1993) reported improvement through the end of their
48-h experiments compared with forecasts made without
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data assimilation. For DJ93, improved track forecasts
were obtained through 60 h for their best assimilation
strategy for Hurricane Hugo (18 cases), through 48 h
for Hurricane Dean (12 cases), and through 72 h for
Hurricane Felix (9 cases). However, track forecasts for
Hurricane Erin (8 cases) were not improved and fore-
casts for Hurricane Gabrielle (22 cases) showed im-
provement only at 12 h. The Erin forecasts were ad-
versely affected by large initial position errors. The Ga-
brielle forecasts were adversely affected by failure to
completely remove incorrectly positioned vortices from
first guessfields before the synthetic vorticeswere added
to the analysis fields. These studies indicate that hur-
ricane track prediction can be improved by implement-
ing four-dimensional data assimilation. However, there-
sults are not conclusive, because there are only 10 cases
in Bennett et al. (1993) and difficulties with some of
the initial analyses in DJ93.

In this study the method of model fitting of DJ93 is
applied to 226 cases from 1989 to 1993. The analyses
described in DJ93 have been modified to mitigate the
problem of incorrectly positioned vortices. With this
large data sample, various assimilation strategies can be
meaningfully compared. Both the length of the assim-
ilation period and the number of datasets in the period
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will be tested. The strong constraint for assimilations,
where the prediction model is exactly satisfied will be
compared with the weak constraint where the prediction
model is approximately satisfied. As a means of im-
proving the fit of the model track to the observed track
at the last synoptic time (usual end of the assimilation),
use of future track positions is explored.

The barotropic prediction model and the data assim-
ilation procedures are described in section 2. In section
3, the new datasets are described. In section 4, results
from Hurricane Hugo 1989 are presented that contrast
the track forecasts made with the old and present da-
tasets. Section 5 summarizes the track forecasts for the
entire dataset and for various assimilation strategies.
Section 6 discusses the inclusion of track data from the
future into either the assimilation or the control fore-
casts. The use of future track positions has application
to track modelsthat obtain initial analysesfrom previous
global model forecasts but include current storm posi-
tions for generation of synthetic vortex observations.

2. Data assimilation model

The tropical cyclone track forecast model used in
this study is governed by the balanced barotropic vor-
ticity equation on a Mercator projection, which can be
written as

P P P
— + m(u— + v—) + Bv = Am?V2P + &, (2.1
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m = % (2.5)
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In (2.1)—(2.5), P is the potential vorticity, ¢ is the
streamfunction, mis the map factor, 6 is the latitude, 6,
is the reference or true latitude of the Mercator projec-
tion, a is the earth’s radius, () is the earth’s angular
speed, A is the horizontal diffusion coefficient, vy is the
inverse of the Rosshy radius of deformation (assumed
constant), and ®(x, v, t) is a specified forcing term. The
other variables have their usual meaning. Further details
of the model are given in DJ93, although aspects rel-
evant to the current study are described below.

The two parameters in the model are the horizontal
diffusion coefficient A (10* m? s~t) and the Rossby ra-
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dius of deformation 1/ (800 km). The track forecasts
are not sensitive to A, but are very sensitive to the Ross-
by radius. The latter is due to the sensitivity of the long
Rosshy wave phase speeds to this radius in our baro-
tropic model (Cressman 1958). This sensitivity is man-
ifest by excessive retrogression of the subtropical ridge
for large Rossby radii (nondivergent) for some hurricane
situations. For example, the landfall point in a 72-h
forecast of Hurricane Hugo was near Charleston, South
Carolina, with a Rossby radius of 800 km, compared
with alandfall point near Miami, Florida, when y = 0.

To accomodate the larger dataset, the model grid was
expanded from 96 X 80 to 256 X 160 intervals with
an accompanying change of mesh size from 100 to 50
km. The mesh interval change overcomes computational
dispersion that appears in the average track speed for
the first 12 h of the control experiment, which are 4.8
and 4.4 m s * for the 50- and 100-km meshes, respec-
tively. The time step is also adjusted to 300 s from 600
s. Thereferencelatitude wasincreased from 20° to 30°N.

The integration domain is 3200 km larger in the x
direction than in DJ93 and is centered about 20° west
of the initial center of each storm, but no farther west
than 75°W. With the expanded domain, the west bound-
ary is nearly aways west of the Rocky Mountains,
which overcomes a Courant—Friedrichs-Levy (CFL) nu-
merical instability that occasionally occurred along the
northern grid boundary, when the streamfunction and
inflow vorticity are held fixed (as they are for control
forecasts without data assimilation and the forecast por-
tion of a data assimilation experiment). The CFL prob-
lem is triggered when the domain boundary is close to
the relatively large amplitude disturbances in the west-
erlies over the mountains, which leads to unrealistically
large streamfunction gradients. The increased reference
latitude also mitigates the CFL problem by slightly re-
ducing the maximum value of the map factor m.

The forecast tracks are determined by following the
centroid of the vorticity maximum associated with the
storm circulation. The domain for the centroid calcu-
lation isacircular areaof three mesh intervals (150 km)
radius, centered at the storm location. About 27 grid
points fall within the centroid domain. Centroids are
computed at each time step. This procedure differsfrom
our previous procedure where only nine grid pointswere
used at 6-h intervals to locate the vorticity maximum.
Themodel track positionsvary more smoothly withtime
using the new algorithm.

The data assimilation procedure determines the least
squares fit of the solution of the prediction model to
atmospheric data over a specified time interval. Then,
this solution is extrapolated forward in time to make a
meteorological forecast. When the numerical model is
exactly satisfied over the assimilation period, it is a
strong constraint. For this case, ® in (2.1) isidentically
zero. Derber (1989) introduced a method where the
model equations are only approximately satisfied over
the assimilation interval. Thisisthe weak constraint and
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is accomplished by adding the forcing term & to (2.1).
The forcing term may be a function of space and time,
but for simplicity, ® will only vary in space for the
present study. In this study, assimilation with strong,
weak, and combined strong followed by weak or weak
followed by strong constraints will be tested over as-
similation periods ranging from 6 to 72 h. The input
data are winds from objective analyses into which a
properly positioned vortex has been inserted. The anal-
yses are available at 6- or 12-h intervals.

The quality of the fit between the atmospheric model
and the data is measured by a cost function, which is
the sum of squared differences between the atmospheric
data and their model counterpart. The cost function can
be modified by adding a penalty term that suppresses
smaller spatial scales in the solution. This may be de-
sirable when an intense vortex of the scale of a few
mesh lengths is present in the data. With this modifi-
cation the cost function C is given by

|

C= 2 > > WiP; - P)?

—N i=0 j=0

+ ZB 2; {a[APN — PiV)]2 + p[AD,]3, (2.6)

where P_;' is the potential vorticity from the objective
analyses at the model grid points, P} is the potential
vorticity from the model, W; are arbitrary weights, o
and p are specified constants, and A is a discretized
Laplacian operator defined by

A(fij) = fi+1,j + fi—l,j + fi,j+1 + fi,j—l - 4fi,j- (2.7)

The subscriptsi and j in (2.6) represent x and y indices,
n represents the time level, N is the number of time
steps in the assimilation period, and | and J are the
number of mesh intervals in the x and y directions,
respectively. The summation over n in the first term on
the right side of (2.6) includes only those time levels
for which data exist. The spatial summations in (2.6)
include the model grid boundaries. Equation (2.7) is
valid for the interior of the model domain. The differ-
ence formula for the operator is applied only in the
direction paralel to the boundary at the boundary
points.

The first term on the right side of (2.6) measures the
lack of fit between the potential vorticity of the model
and the analyses. The second term is applied only at
the initial time (n = —N) and penalizes small-scale
roughness of the potential vorticity (strong constraints,
p = 0), or the forcing function (weak constraints, o =
0). The strength of the filtering is controlled by the
parameters o and p. Additional details concerning the
cost function and the penalty term are given in DJO93.

The model potential vorticity solution that minimizes
the cost function (2.6) is found by systematically vary-
ing the initial state potential vorticity P;™ for the strong
constraint. For the weak constraint, the forcing term &
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is varied to fit the model potential vorticity to the data
over the assimilation period, while the initial state is
held fixed. When there are data at the beginning and
end of the assimilation period, and nowhere else, and
the penalty term is suppressed, ® depends only on the
data at the end of the assimilation period and has the
same number of degrees of freedom as these data. In
that case, the potential vorticity solution should equal
the data at the end of the assimilation period and the
subsequent forecast will be the same as the control run
with no assimilation. Numerical experiments have con-
firmed this. The track forecast errors are within a few
kilometers of those for the control run. This result also
holds when the assimilation begins with the strong con-
straint and the weak constraint is used to complete the
minimization of the cost function.

For the strong constraint, the cost function can be
minimized by computing the gradient of the cost func-
tion with respect to the initial state potential vorticity
and using this gradient to iteratively improve the initial
state vorticity with the conjugate gradient algorithm
(e.g., Fletcher 1987). The cost function gradient is com-
puted by the method of Lagrange multipliers. The mul-
tipliers satisfy the adjoint equations for the discrete ver-
sion of the forecast model. The forecast model is in-
tegrated forward for the assimilation period and the ad-
joint equations are integrated backward for the same
period, at which point the cost function gradient is cal-
culated. The gradient is used to define a descent direc-
tion for the conjugate gradient algorithm, which, along
with a descent step, determines the correction to the
initial state potential vorticity. An optimum step length
for the conjugate gradient algorithm is determined by
assuming that the cost function is a quadratic function
of the step length. To do this, one assumes a trial step
and uses the current descent direction to estimate a new
cost function. This, together with the past cost function
and the descent direction, determine the optimum step
with the quadratic assumption. One complete improve-
ment cycle of theinitial state potential vorticity requires
abackward integration of the adjoint equationsfollowed
by two forward integrations of the forecast model. The
iteration process is started with one forward model in-
tegration and continues until a preset convergence cri-
terion is satisfied. The weak constraint minimization
proceeds in a similar manner except that the cost func-
tion gradient is with respect to the forcing function ®
and that gradient is a different function of the Lagrange
multipliers (Derber 1989). The details for these calcu-
|ations are more fully discussed in DJ93.

Convergence for the minimization of the cost function
in (2.6) depends very much upon the choice of trial step
lengths. Based upon experimentation with our 226 da-
tasets, the initial trial steps were set to 0.035 for assim-
ilation periods of 6 and 12 h; 0.01 for 24 h; 0.005 for
36, 48, and 60 h; and 0.002 for 72 h. The step length
is nondimensional because the cost function (2.6) has
units of potential vorticity squared and the step length



JuLy 1999

220

218T

216

e— o 125 226 CASES

214

2124

2104

E-SUM (KM*10)

208

206

WM T T T T
0 2 4 6 8 10 12 14 16 18 20

CONVERGENCE CRITERIA (%)

Fic. 1. E-Sum (sum of track forecast errors from 12 to 72 h) for
226 cases and various values of the convergence criteria for the 12-h
assimilation with strong constraint (12S) experiment.

isthe proportionality constant between the derivative of
the cost function with respect to potential vorticity and
the potential vorticity adjustment.

A singularity may occur in the equation for the op-
timum step (see DJ93) due to a poor quadratic fit when
both the past cost function and the new cost function
from the trial step occur before the minimum in the cost
function step length curve. To mitigate this problem,
the trial steps are set to 2.0 times the optimum step at
the previousiteration. Thisisachangefrom DJ93 where
0.8 was used. Sometimes poor choice of the step length
results in failure of the conjugate gradient algorithm.
This problem becomes worse as the length of the as-
similation period increases. Trial and error adjustment
of the initial step and the ratio of trial step and past
optimum step is used to redefine the step size. These
calculations also require about an order of magnitude
smaller convergence criteria for the solution of the
Helmholtz operators than is necessary for the forward
model with no assimilation.

The minimization procedure converges when the cost
function decreases by less than 1.0% relative to the
previous iteration. Tests were run for 12-h assimilations
with the strong constraint (12S) and 12-h data. The re-
sults are shown by Fig. 1, where the sum of the mean
forecast track errorsfrom 12 to 72 h (E-Sum) are shown
for all 226 cases. The value of E-Sum is minimized
when the convergence criterion is 1%, athough the
E-Sum scarcely changes from 0.1% to 1.0%. Other as-
similation strategies were also tested with similar re-
sults, indicating that the 1% criteriais a reasonable in-
dicator of convergence.

3. Initial data

Datasets for this study consist of 226 individual cases
from 17 storms selected from the Atlantic hurricane
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TABLE 1. Forecast cases for each storm.

Forecast period (h)

Storms Year 12 24 36 48 60 72
Dean 1989 14 13 12 11 10 9
Erin 1989 13 12 11 10 9 8
Felix 1989 11 10 9 8 7 6
Gabrielle 1989 22 21 20 19 18 17
Hugo 1989 20 19 18 17 16 15
Total 1989 80 75 70 65 60 55
Bertha 1990 8 7 6 5 4 3
Gustav 1990 17 16 15 14 13 12
Isidore 1990 22 21 20 19 18 17
Josephine 1990 10 9 8 7 6 5
Klaus 1990 6 5 4 3 2 1
Nana 1990 6 5 4 3 2 1
Total 1990 69 63 57 51 45 39
Bob 1991 6 5 4 3 2 1
Claudette 1991 12 11 10 9 8 7
Total 1991 18 16 14 12 10 8
Andrew 1992 17 16 15 14 13 12
Bonnie 1992 13 12 11 10 9 8
Charley 1992 9 8 7 6 5 4
Total 1992 39 36 33 30 27 24
Emily 1993 20 19 18 17 16 15
Grand total 1989-93 226 209 192 175 158 141

seasons for 1989-93 (Table 1). In order to qualify for
the dataset, the storm must have been classified as a
hurricane sometime during its life, had tropical (warm
core) characteristics, and there must be enough data for
a 24-h assimilation and at least one 72-h forecast.

Our model requires winds at each grid point. These
data are obtained from analyses that are prepared for an
experimental operational barotropic hurricane track
model VICBAR (DeMaria et al. 1992; Aberson and
DeMaria 1994, hereafter AD94). The analysislevelsare
850, 700, 500, 400, 300, and 200 mb. Three domains
are analyzed. The synoptic scales are analyzed over an
area between 27.5°S and 67.5°N and 140°W and 10°E.
The storm environment domain covers a 50° latitude—
longitude sgquare area, and the vortex domain extends
outward to a radius of 7.2° (800 km), both centered on
the current storm location. These analyses are averaged
by mass weighting to form a deep layer-mean analysis.
This differs from the four-level average used by DJ93.
Two upper-tropospheric levels at 300 and 400 mb are
added to the mean. These changes, aong with modifi-
cations to the vortex domain described later, resulted in
improved forecasts for the VICBAR hurricane tracking
system.

Because there are not enough data to define the hur-
ricane circulation, synthetic data, a symmetric vortex
plus straight flow corresponding to the past 12-h motion
of the storm, areintroduced on the vortex domain. These
data are combined with the storm environment and syn-
optic datain a deep layer-mean spline analysis with four
nested grids. In DJ93 the radius of the vortex domain
for the synthetic data was only 600 km. This was in-
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creased to 800 km to mitigate the problem of misplaced
vortices in the background analyses. Several Hurricane
Gabrielle (1989) cases (DJ93) showed false currents
through the storm center due to the presence of vortex
vorticity outside of the old 600-km radius, which is
corrected by the new radius. Previously, only the vortex
for the storm being tracked was inserted into the anal-
ysis. In the new analysis, synthetic vortices are added
for each tropical cyclonethat ispresent over theanalysis
region. The strength and areal distribution of vortex
winds are estimated from parameters furnished by the
National Hurricane Center (NHC) at the time of the
ocurrance of these storms.

In summary, the new data are derived from six anal-
ysis levels and have synthetic data inserted over a do-
main of 800-km radius for each storm that is present,
while the old data are from four analysislevelsand have
synthetic data inserted over a 600-km domain for just
one storm.

The mesh structure for the VICBAR analysisis given
by AD94. The nodal spacing and filter wavelengths in-
crease outward by a factor of 2 between the four grids.
Thefiltersare part of the cubic-spline analysisalgorithm
described by Lord and Franklin (1987). The filter wave-
lengths give an estimate of the smallest horizontal scales
that are resolved by the analysis. For the present study,
only the outer three nested grids are used to provide
initial datato the assimilation model. The finest analysis
mesh used here has nodal spacing of 1.2° latitude and
filter wavelength of 4.8° latitude, consistent with the
original model mesh interval of 100 km (0.9° latitude).
The 100-km mesh was sufficient to prevent aliasing at
azimuthal wavenumber four in the vorticity on the oth-
erwise symmetric vortex that occurs, if the inner VIC-
BAR mesh is used. However, recent studies showed that
the vortex track speeds were slowed by computational
dispersion on the 100-km mesh so that the mesh length
is now 50 km.

Datafrom the VICBAR analyses are avail able at 0000
and 1200 UTC. VICBAR forecasts are also produced
at 0600 and 1800 UTC. The initial conditions for these
additional VICBAR runs are prepared by combining
flow fields from a 6-h VICBAR forecast with a new
synthetic vortex that is positioned at the observed storm
location as given by NHC (AD94). Because no new
data are used in the storm environment, 72-h control
forecasts beginning at 0600 and 1800 UTC are not as
good as those from 0000 and 1200 UTC. The 0600 and
1800 UTC analyses were intended to provide a 6-h data
interval for assimilation experiments. However, when it
became apparent that model-fitting forecast tracks could
be improved by having the track fit centered at the latest
synoptic time, these data became end points for the as-
similations at 0000 and 1200 UTC that are discussed in
section 6.

4. Hurricane Hugo

DJO93 showed that a 12-h assimilation with the strong
constraint (12S) reduced the average Hugo forecast
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track errors out to 48 h compared to the control fore-
casts. To relate the current resultsto DJ93, control fore-
casts and 12S assimilations were run for Hugo with the
current model with both the old and new data. The
strong constraint followed by weak (12SW) was also
run. Table 2 summarizes the track errors together with
direction and speed errors. All are averages that apply
to 12-h intervals. The direction errors are the average
absolute values of the direction differences between the
forecast and the best track directions. The speed bias
for individual cases is the ratio of the forecast track
speed to the best track speed. The average speed bias
isfound by weighting each case by the best track speed,
in order to avoid a fast bias.

Table 2 shows that, just like DJ93, the 12S 4L track
forecasts have smaller errorsthan the control (CON 4L),
but this time extending to 60 h. The forecasts for 12SW
4L are the best for Hugo and show that two time level
weak constraint forecasts can be far better than the con-
trol, in some cases. The control forecast for the new
data (CON 6L), on the other hand, has smaller track
errors everywhere than either the 12S 6L or 12SW 6L
experiments. Also, note that the control forecasts with
the new data have smaller track errors than those with
the old data, while the model-fitting forecasts have larg-
er errors.

These results (Table 2) can be understood by refer-
ence to the track speed biases. The direction errors give
little understanding, because they are fairly small and
because they sometimes favor the wrong experiment
(note the control experiments).

The track speed biases, on the other hand, give aclear
picture of the best experiments. The track speed biases
for the CON 4L experiment average about 90%, while
the average for the CON 6L experiment is 100%. Clearly
CON 6L has smaller track errors, because the speeds
are nearest the best track, while the direction error dif-
ferences are small enough to ignore. Theimproved track
speeds may be due to the inclusion in the wind analysis
of two more upper-troposphere levels, where the wind
speed is greater, or due to making the initial motion
vector more effective by nearly doubling the domain
over which it is applied.

Before and after comparison of the assimilation pe-
riod track speeds for the 12S 4L experiment shows that
slow track speed biases are corrected from 85% to 97%.
This results in forecast track speeds that are near the
best track speeds, which explainsthe smaller track errors
compared with the control. The 12SW 4L experiment
is similar, but here slighly smaller direction errors com-
pared with the 12S 4L experiment give track errors that
are smaller than both the control and the 12S 4L runs.
For the new data, on the other hand, both the 12S 6L
and 12SW 6L experiments show track speed biases that
are corrected from 94% to 98%. But, due to about 10%
acceleration of these speeds during the first 24 h of the
forecast, the resulting track speeds become too large
and the track errors are greater than the control. This
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TABLE 2. Mean forecast track errors (km) for Hurricane Hugo with the old (4L) data and the new (6L) data for the control experiments
(CON) and the 12-h assimilations with strong (12S) and strong and weak (12SW) constraints. The average speed bias (%) and the average
absolute value of the direction error (°) are given, both measured in 12-h segments with regard to the best track. E-Sum is the sum of the
track errors from 12 through 72 h. The BT speed is the average best track speed (m s1).

Forecast period (h)

Experiment 0 12 24 36 48 60 72 E-Sum

1) CON 4L 16 57 98 138 186 245 291 1015
Speed bias 84 91 92 91 87 85
Dir. error 6 7 8 11 13 15

2) 12S 4L 14 41 78 104 152 215 298 888
Speed bias 97 98 100 100 98 93 87
Dir. error 2 4 7 8 11 13 15

3) 12Sw 4L 15 43 77 102 144 190 255 811
Speed bias 97 95 98 97 95 90 85
Dir. error 2 5 6 6 9 12 14

4) CON 6L 16 50 88 121 157 204 261 881
Speed bias 94 101 103 102 101 929
Dir. error 6 8 9 10 13 16

5) 12S 6L 14 51 97 135 184 227 285 978
Speed bias 98 104 108 109 108 106 101
Dir. error 2 6 7 9 11 13 14

6) 12SW 6L 14 53 104 142 178 215 247 939
Speed bias 98 103 108 109 108 105 101
Dir. error 2 6 8 8 10 11 14

BT speed 6.6 6.8 6.7 6.6 6.6 6.6 6.5

Cases 19 19 18 17 16 15 14

acceleration is present in both control forecasts, but cu-
riously reduced in the 12S 4L or 12SW 4L forecasts.
It isalso present in the VICBAR forecasts for these data
(S. Aberson 1998, personal communication) where the
12-h average track speed increases by 0.7 m s~ between
12 and 24 h. The acceleration seems characteristic of
the deep layer-mean analyses for Hurricane Hugo. It
may be noted that the track directions are corrected from
6° to 2° during assimilation for both old and new data.

The change of the model mesh from 100 to 50 km
revealed a spurious track speed acceleration on the 100-
km mesh. This is noted by the control forecasts where
the initial track speeds are about 10% slower on the
100-km mesh, due to computational dispersion, while
the track speeds are about the same on both meshes
from 36 to 72 h. Thus, the correction of the computa-
tional dispersion not only improved the initial track
speeds, but also corrected a spurious accel eration (being
in addition to the accel eration observed for the VICBAR
model results) that is present in the first 36 h of the
100-km forecasts.

The results given here show that, even though com-
putational dispersion was present, the good forecastsfor
Hugo that were reported by DJO3 are correct. For the
old data, slow speed biases throughout the control fore-
cast creates the opportunity to improve track forecasts
by model fitting. For the new data, however, the model-
fitting forecasts for Hugo are worse than the control,
due to the correction of slow speed biases for the old
data by inclusion of additional wind data from the upper

troposphere and by increasing the influence of theinitial
motion vector.

5. Results: 1989-93

A number of model-fitting issues are examined below
by means of our large dataset. They are 1) the length
of the assimilation period, 2) testing of various assim-
ilation strategies, 3) role of speed biases and direction
errors in understanding track errors, 4) stratification of
track errors by storm strength as in hurricanes versus
tropical storms, and 5) role of domain size in improving
model-fitting forecasts.

The effect of the length of the assimilation period
upon track forecast errorsis shown by Fig. 2. Here mean
track errors are displayed for strong constraints for as-
similation periodsfrom 12 to 72 h along with the control
experiment errors. There are 157 72-h assimilations for
this dataset and these cases are shown with decreasing
numbers of cases for forecast times after 12 h. One case
(Hurricane Isidore at 1200 UTC on 8 September 1990)
failed to converge for the 72-h assimilation (the only
uncorrectable optimization failure in the entire set of
calculations given in this paper). Track errors increase
as the assimilation period increases. This is probably
due to greater difficulty fitting a single solution for the
barotropic model to increasing numbers of track points.
The mean track errors are aminimum about 12 h before
the end of the assimilation period, and increase notice-
ably at the end of this period, but remain less than 100
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FiG. 2. The average track errors for assimilation periods from 12
to 72 h (157 cases for 12-h forecasts to 82 cases for 72-h forecasts)
with the strong constraint and 12-h data plus the control experiment.

km during al of the assimilation periods. Poorer track
fit at the end points is characteristic of a least squares
fit and may lead to significant track errors later in an
assimilation forecast, in spite of a good fit to data over
the assimilation period.

The cost function curves corresponding to Fig. 2 are
shown by Fig. 3. Like thetrack errors, the cost functions
increase for all of the forecasts, as the length of the
assimilation period increases. The cost function curves
fit the data in the middle of the assimilation periods
better than at either end, but less well at the end of the
period than at the beginning. The results above were
created before the change to a 50-km mesh, but would
not materially change for that mesh and are the only
100-km calculations reported here. It is shown below
that the shortest assimilation period is also favored for
a 50-km mesh.

To test various assimilation strategies with the new
dataset, 19 experiments were conducted using assimi-
lation periods of 6, 12, and 24 h for the 226 cases of
Atlantic tropical cyclones given in Table 1. Tests were
run with the strong constraint (S) where the model so-
lution must be exactly satisfied over the assimilation
interval and with the weak constraint (W) where the
model equations are only approximately satisfied over
the assimilation period because of imposed forcing.
Mixed constraints consisting of strong followed by weak
(SW) or weak followed by strong (WS) were aso run.
For SW, the strong constraint is applied to convergence
(1%) or to 10 assimilation cycles, whichever occursfirst,
and then the weak constraint is applied to convergence.
For WS, 10 assimilation cycles are used for the weak
constraint and then strong to convergence. Here con-
vergence for the weak constraint occurs only when three
or more datasets are used. When the constraints are
switched, the original trial step isrestored and a steepest
descent step is used to restart the conjugate gradient
algorithm. The data intervals for these experiments are
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Fic. 3. The average cost functions for assimilation periods from
12to 72 h (157 cases for 12-h forecasts to 82 cases for 72-h forecasts)
with the strong constraint and 12-h data plus the control experiment.

6 or 12 h and the forecasts always begin at 0000 or
1200 UTC.

The experiments are summarized in Table 3 by the
mean forecast track errors. The sum of the forecast er-
rors, E-Sum, is used to rank the experiments. These data
are homogeneous except for 2456, 24W6, and 24SW6
where the first Hurricane Isidore case is missing due to
the storm having been downgraded to a tropical de-
pression for the first 6-h dataset. Only the 24WS ex-
periment was done to complete the ranking of the con-
straints, while 24WS6 was omitted, due to excessive
optimization failures that occur for the 24-h assimila-
tions with the weak constraint. The 24W and 24W6
experiments have 48 and 63 optimization failures, re-
spectively, that were corrected by trial and error. There
are only 15 optimization failures for all of the 6- and
12-h assimilations (about 12 000 cases) that are noted
in this paper. These failures are limited to 12-h assim-
ilations beginning with the strong constraint and occur
in pairs with one failure occurring nine times due to
sensitivity tests for the 12S runs.

Several conclusions may be drawn from the track
error summary of Table 3. First, there is no assimilation
strategy that gives smaller track errors than the control
experiment, except 12W for the 12-h forecast. The best
assimilation strategy (smallest E-Sum) is 6W6. Short
assimilation periods are favored for each constraint cat-
egory (S, W, SW, or WS); in fact, for each assimilation
strategy the order is 6 h as the best, followed by 12 h,
and by the 24-h assimilation period. The order of the
constraints for 6- and 12-h assimilation periods is W,
WS, SW, and then S. For the 24-h assimilations, the
order is SW, W, WS, and S. Only the 24-h assimilations
have the same order as DJ93, except for the new WS
constraint. Recent results by Zupanski (1997) also show
the superiority of the weak constraint with respect to
the strong constraint. Apparently the W experiments are
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TABLE 3. Summary of mean forecast track errors (km) for 19 assimilation strategies for strong S, weak W, strong followed by weak SW,
or weak followed by strong constraints WS. Assimilation periods are 6, 12, or 24 h. Experiment 12S is a 12-h assimilation with strong
constraint and 12-h data while 12S6 has 6-h data. The control experiment is CON. E-Sum is the sum of the track errors from 12 through

72 h and ranks these experiments.

Forecast period (h)

Experiment 0 12 24 48 60 72 E-Sum
CON 26 7 147 230 339 465 616 1874
6W6 25 78 148 233 342 469 621 1892
6WS6 22 79 150 235 344 472 623 1901
6SW6 26 80 151 235 347 473 624 1910
12w 25 76 148 236 348 477 628 1913
12wWe 26 79 153 240 349 477 632 1928
12Ws6 26 80 154 240 350 478 635 1937
12WSs 25 78 152 242 355 484 633 1945
12SW6 25 83 158 247 355 481 634 1957
12SwW 26 80 154 247 359 486 635 1961
6S6 25 82 162 253 360 489 645 1992
24SW 28 86 164 258 374 505 649 2037
24SW6 28 88 167 261 373 511 666 2066
12S 26 84 164 261 380 513 664 2066
24W 29 85 166 258 377 513 675 2074
12S6 27 87 168 265 381 513 666 2079
24WS 29 86 167 260 381 519 680 2092
24W6 29 88 168 264 381 521 679 2101
24S 29 93 179 282 404 536 687 2180
2456 34 99 185 286 401 536 690 2197
Cases 226 226 209 192 175 158 141

degraded by the strong constraint for the WS experi-
ments. The emergence of W as superior to the SW con-
straint for 6- and 12-h assimilation periods suggests that
problems associated with the vortex scale being near
the track displacement during assimilation, which were
described in DJ93, may be mitigated by having better
grid resolution. The structure of the forcing term ® for
Hurricane Hugo at 1200 UTC on 18 September 1989
is similar to that shown by DJ93 for the 100-km mesh.
The mixed SW constraint has about half the amplitude
of weak. However, in the present experiments, the am-
plitudes are all a few percent greater than before, due
to faster phase propagation of the vorticity patterns that
comes from reducing computational dispersion.

Comparison of experiments with 6- and 12-h dataand
the same assimilation strategy in Table 3 shows that
track forecast errors are usually less for the 12-h data
with the 12SW and 12WS experiments being the ex-
ceptions. Part of the reason for this may be that the track
fit at the beginning of the forecast is always poorer for
the 6-h data compared with the corresponding 12-h data
assimilation.

The average cost functions for the assimilation fore-
casts of Table 3 have been compared (not shown) with
those of the control forecasts. Only the three best as-
similations, 6W6, 6WS6, and 6SW6, have cost functions
that are less than the control. Two strategies (12W6 and
12WS6) have smaller cost functions after 12 h and two,
6S6 and 12SW6, are smaller after 24 h, while the re-
maining experiments are intermitantly better than the
control or not at all (24SW). The improved cost func-
tions are only about 1% smaller than the control, which

is not enough to ensure smaller forecast track errors for
these experiments.

Even though the data in Table 3 show that nearly all
of the assimilation forecast errors are greater than the
control errors, there are several storms in the sample
where the average track errors for some assimilation
strategies are smaller than the corresponding control
forecasts at al time levels to 72 h. There are 16 such
occurrences with Gustav having 9, Charley 3, Bob 2,
and Claudette and Klaus having one each. This is out
of atotal of 323 possibilities (17 storms times 19 strat-
egies). There are 33 cases, including the above, where
the first 48-h forecasts have smaller track errors than
the control. The nine Gustav forecasts, in order of as-
cending E-Sums, are 24WS, 12WS, 24W, 12S, 24W6,
6SW6, 24SW, 12W, and 12SW. The Gustav control fore-
casts have slow speed biases that are capped by 86%,
similar to the old Hugo data, but with direction errors
(not shown) that are two to three times greater than for
Hugo. The 24WS track forecast (not shown) has a 14%
smaller E-Sum than the control. Superior speed forecasts
account for the smaller track errors to 36 h, while re-
duced direction errors account for the remaining small
errors.

To compare track errors by means of direction error
and speed bhias, it is useful to consider the growth of
the track error of the assimilation forecast with respect
to the control over 12-h intervals. This relative track
error growth is given by the difference between the error
growth (current error minus the past 12-h error) of the
assimilation and the control experiment.

Comparing track errors is difficult, because there are
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TABLE 4. Mean forecast track errors (km) for the control (CON) and the 12-h assimilation with the strong constraint (12S) experiments.
Statistics are measured over 12-h intervals. They are the average speed bias (speed bias, %); the average absolute value of the direction
error (dir. error, °); the relative speed bias (rel. spd. bias, %), which is speed bias minus the optimum speed bias (i.e., cosine dir. error); and
rel. err. growth (km), which is the growth of the assimilation forecast error (current minus past 12-h error) minus the same quantity for the
control forecast. The BT speed is the average best track speed (m s*). E-Sum is the sum of the track errors from 12 through 72 h.

Forecast period (h)

Experiment 0 12 24 36 48 60 72 E-Sum

1) CON 26 e 147 230 339 465 616 1874
Speed bias 90 93 93 93 92 91
Dir. error 15 23 30 40 48 51
Rel. spd. bias -7 1 6 16 25 28

2) 128 26 84 164 261 380 513 664 2066
Speed bias 98 99 96 96 96 95 94
Dir. error 7 18 26 34 41 49 54
Rel. spd. bias -1 4 6 13 21 29 35
Rel. err. growth 0 7 10 14 10 7 0
BT speed 51 54 54 54 55 5.6 57
Cases 226 226 209 192 175 158 141

many forecast tracks with large direction errors.
DeMariaet a. (1990) show that if adirection biasexists,
track errors are minimized when the speed bias equals
the cosine of the direction error so that the projection
of the best track along the forecast motion is the same
as the forecast motion. Thus, if the direction isin error,
track errors are minimized when the forecast is slower
than the best track. By considering the difference be-
tween the forecast speed bias and the optimum speed
bias given by the cosine of the direction error, one may
compare experiments. Table 4 summarizes the 12S and
CON experiments by the track errors, the speed biases,
the optimum speed bias, the direction errors, and the
relative growth of the track error of 12S compared to
CON by 12-h increments. The idea is that the track
errors will grow in one experiment with respect to a
second, if the speed biases of the first are farther from
the optimum bias than for the second. This assumption
should be approximately true for large datasets where
initial position errors average out of the track error sta-
tistics. For the average of the absolute value of the track
direction errors, the contribution to the relative track
error growth of Table 4 is estimated from the difference
between the track direction errors for the two experi-
ments. Each degree of difference contributes alittle less
than 4 km of relative error growth per 12-h forecast for
a storm moving at 5.4 m s %, the average track speed
for our dataset.

The data of Table 4 show that for the first 12 h the
12S error growth is 7 km greater than the CON error
growth. The direction error difference of 3° accounts
for about 11 km of error growth of 12S with respect to
CON, while the speed biases favor 12S. Somewhat
crude estimates of the latter reduce the direction error
growth by 2 km giving a net 9-km error growth of 12S
over CON. Thisisin the right neighborhood and shows
that the direction errors are more important than the
speed errors. For the 12—24-h period and the 24-36-h
period, direction error differences of 3° and 4° also dom-

inatetherelativetrack error growth. After 36 h, direction
error differences are smaller, except at 72 h, and the
speed biases become important in expaining the relative
error growth. However, direction errors are dominant
through 36 h as the main source of relative track error
growth. This result is consistent with data to be given
in the next section that shows that model fitting fits the
track speed better than direction at the beginning of the
forecast. This discussion applies to the 12 worst assim-
ilation strategies of Table 3. However, for the four best
strategies, neither direction error nor speed bias account
for the larger E-Sums relative to the control. In fact, the
E-Sum for 6W6 should be less than the control accord-
ing to these statistics and this is due to the approximate
nature of these calculations that work best for large
relative track errors.

Slow average track speed biases are observed
throughout the old Hugo control experiment (Table 2).
This is also true for the whole dataset, but the relative
speed biases for this dataset are mostly fast (Table 4).
If one selects only those control cases where the speed
bias is slow relative to the best track at all time levels
(69 cases), one finds that these track speeds are also
slow relative to the optimum speed bias (similar to the
old Hugo data). Stratification of the whole dataset in
this manner shows that 12 of 16 (24-h assimilationswith
6-h data omitted) assimilation strategies have smaller
E-Sums (not shown) than the corresponding control
forecasts and, in fact, the four best strategies plus 12WS,
12SW, and 24WS of Table 3 have average track errors
that are less than the control from 12 through 72 h. The
greatest error reduction is about 6% for the 24W run,
although these errors are about 14% greater than those
for the 226-case dataset (control errorsare 34% greater).
The greater track errorsfor this subset of cases are prob-
ably related to an observed track speed acceleration
from4.9t0 7.7 m s-* for thefirst 60 h of these forecasts,
which contrasts with the whole dataset where the best
track speeds are nearly uniform (Table 4). In most of
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these cases the observed acceleration was not matched
by the barotropic forecasts for these data. Clearly, slow
relative speed bias for the entire control forecast is a
situation where variational assimilation can improve
hurricane track forecasts. Unfortunately, these biasesare
only known after the fact.

It isinteresting to note that nine Gustav cases belong
to the slow bias stratification and that the Gustav control
forecasts (17 cases) have slow average relative speed
biases with an observed track speed acceleration of just
0.6 m s * for 60 h. For Gustav, 16 of 19 assimilation
track forecast strategies have smaller E-Sums than the
control forecast tracks, including all eight experiments
with just 12-h data for the assimilation.

Hurricane—tropical storm stratification at t = 0 of our
data shows a tendency for tropical storms (65 cases) to
have larger control forecast errors than for hurricanes
(161 cases), but the assimilation strategies are more suc-
cessful for tropical storms. This result is based upon 10
of the best 12 assimilation strategies of Table 3 having
E-Sums (not shown) for tropical storms that are closer
to the corresponding control forecasts than is the case
for hurricanes. The 6SW6 and 6W6 experiments show
tropical storm E-Sums that are, respectively, 2 and 4
km greater than the control while hurricane E-Sums are
50 and 23 km greater, respectively. Tropical storm E-Sums
are about 100—200 km larger than hurricane E-Sums.
However, this is partly the result of one tropical storm,
Josephine, which executed a badly forecast 72-h track
loop in the middle of the Atlantic Ocean.

Better assimilation forecasts may be achievable by
improving the prediction of the environmental flow
fields. This is tested by solving our model on a 96 X
96 mesh interval grid in place of the usual 256 X 160
intervals. The boundaries are now imposed by time in-
terpolation of 12-h analyzed data to simulate improved
environmental flow fields. The grid is centered on the
storm longitude, but no farther west than 75° nor farther
east than 30° (the longitude had to be moved 10° east
for three Emily cases to keep the storm on the grid).
The center latitude is either 35° or 30°N for storms south
of 20°N. This grid system is applied to the control and
to 12 assimilation strategies with 6- or 12-h assimilation
periods.

The results of these experiments show about 100-km
reductions of E-Sums for each experiment (not shown)
with the control having the least reduction so that each
experiment is closer to the control than are the corre-
sponding results for the 256 X 160 grid. No experiment
has smaller E-Sums than the control. However, both the
6W6 and the 6SW6 experiments have E-Sums that are
only 2 km greater than the control. Thus, model-fitting
forecasts are improved by using a smaller domain with
time-dependent boundaries. In addition to saving com-
puter resources, this suggests that improved environ-
ment forecasts may improve model-fitting track fore-
casts.

With the notable exception of Gustav, which fits the
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TABLE 5. Model fit to best track speed and direction for the assim-
ilation period (t = —6 h) and the beginning of the forecast (t = 0
h) for 12-h assimilations with 6-h data. Statistics are average speed
bias (%), absolute value of direction error (°), and E-Sum (km). Ex-
periments like 12WS6 6H have the track positions from 6 h included
in an assimilation fromt = —6 htot = 6 h. Control experiment E-
Sums are 1874 and 1695 km for the usual model fit and the assim-
ilations with the 6-h future data, respectively.

Track error statistics

Time (h) -6 0 -6 0
Experiment Speed Bias Dir. Error E-Sum
12WS6 101 98 9.6 10.2 1937
12WS6 6H 98 7.3 1652
12W6 101 99 9.7 10.7 1928
12wWe6 6H 98 7.9 1669
12SW6 98 95 8.5 11.1 1957
12SW6 6H 96 7.1 1690
12S6 96 99 7.8 12.2 2079
1256 6H 96 7.5 1712

Cases 226 226 226 226

same mold as the old Hugo data, the present model-
fitting track forecasts are not very good. Examination
of the fit of the tracks during assimilation shows that
the tracks fit very well at the middle time of the assim-
ilation period, but that when the track fit at the beginning
of the forecast is examined, the track fits are not as
good. The variational approach generally fits data best
inthemiddle of theinterval, so that thisisafundamental
problem with the present approach. However, if one uses
track positions observed after the beginning of the fore-
cast, a better centered track fit for the track data at the
synoptic times (0000 and 1200 UTC) is possible. This
result is discussed in the next section.

6. Model fitting with future storm positions

The model-fitting experiments for the large dataset
discussed in section 5 always have larger E-Sums than
the control forecasts. However, it was speculated that
the use of future positions for model fitting would give
smaller track errors, due to having a centered fit of the
model to the observed track at the synoptic times of
0000 and 1200 UTC. At these times, the track fit has
already substantially departed from the observed track
asis shown by Table 5 where the average track direction
errors and speed hiases are given for the 12-h assimi-
lation period (t = —6 h) and the beginning of the fore-
cast (t = 0 h) for the four 12-h assimilations with 6-h
data from Table 3. The fit of the model track direction
to the best track is 1°—4° poorer at the beginning of the
forecast than at the middle of the assimilation period.
The track speeds, on the other hand, are often better fit
to the best track at t = Othan att = —6 h. The track
direction errors seem to control the E-Sums for these
experiments.

Track-fit data for the assimilation period and the end
of this period were also examined for the 24 assimila-
tions with 6-h data. These data show 4°-6° greater di-
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FiG. 4. The average track errors for the control experiment (CON),
for the control experiment with the vortex relocated at 6 h (CON
6H), for the 12-h assimilation with weak and strong constraints and
6-h data (12WS6), and for the 12-h assimilation with weak and strong
constraints and 6-h data that is centered at t = 0 h with initial data
from a 6-h forecast with the vortex repositioned (12WS6 6H).

rection errors at t = 0 h compared with the assimilation
period. For the 6-h assimilations, track-fit statistics for
the best track seem to show that the storm track is best
fit at the end of the assimilation period. This is mis-
|eading, because the model isfit to the operational track,
determined at the time of the storms occurrance, and
not to the best track. When the track-fit data are cal-
culated with respect to the operational track, the track
fit is, as before, best for the assimilation period com-
pared to the end of this period. For example, Hurricane
Josephine, which has the largest track errors for any
storm in this sample, has a best track fit of 24° error
for the assimilation and 14° at the end of this period,
while the operational track fit shows 6° and 11°, re-
spectively. These large differences are due to the dif-
ferences between the operational track and the best track
and the 6-h averaging period. The best track is the cor-
rect choice for the calculation of track errors, but track-
fit statistics may have to consider the operational track.

In order to have the track fit centered at synoptic
times, the 12-h assimilations are run with the assimi-
lation beginning att = —6 h and ending at t = 6 h.
Thisis done by using the 0600 and 1800 UTC analyses
from VICBAR for thet = 6 h data. These data are 6-h
forecasts with the vortex repositioned at 6 h by using
the observed position from NHC. The datafort = —6
h are obtained by making a model fit to the data from
t=—12h,t = —6 h, and t = 0 h with one of the 12a6
(arepresents the constraint) experiments and saving the
datafromt = —6 h for input for the centered track-fit
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Fic. 5. The average cost functions for the control experiment
(CON), for the control experiment with the vortex relocated at 6 h
(CON 6H), for the 12-h assimilation with weak and strong constraints
and 6-h data (12WS6), and for the 12-h assimilation with weak and
strong constraints and 6-h data that is centered at t = 0 h with initial
data from a 6-h forecast with the vortex repositioned (12WS6 6H).

experiments. When this is done, the track direction fit
att = 0 his greatly improved as shown by Table 5.
These results use the best combinations of t = —6 h
data and constraints, which are 12WS6, 12W6, 12W6,
and 12SW6 for the 12WS6 6H, 12W6 6H, 12SW6 6H,
and 12S6 6H experiments (6H refers to the 6-h future
data that end the assimilation), respectively. A signifi-
cant part of the improved track fit att = 0 h is due to
the use of assimilated data to begin the assimilation at
t = —6 hin place of the VICBAR data. The additional
improvement is 1° for the 12W6 experiments and occurs
because the t = 0 h track position is accounted for in
boththet = —6 andt = O h data

The forecast track errors for the 12WS6, 12WS6 6H,
and the control (CON) experiments are shown by Fig.
4. The large track error reduction for 122WS6 6H com-
pared to 12WS6 is clearly shown and now 12WS6 6H
has track errors that are 12% smaller than the control
experiment. Similar large changes in the cost functions
for these experiments are shown by Fig. 5. The time
coordinate for the 12WS6 6H experiment is the same
as 12WS6, even though the real forecast begins at 6 h
where the assimilation ends. This seems reasonable, be-
cause the only observations from 6 h are the vortex
center location and a strength estimate.

The control forecasts can also be stopped at t = 6 h
and the storm repositioned from NHC data. Again, the
0600 and 1800 UTC VICBAR data are used to continue
the control forecasts fromt = 6 h. The resulting control
forecasts now have an E-Sum of 1695 km. Figures 4
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and 5 also show the track error and cost function for
the control experiment (CON 6H) with the vortex re-
positioned at t = 6 h. The best model-fitting forecast
12WS6 6H now has 2.5% smaller track errorsthan CON
6H and the errors are smaller at each time level from
12 to 72 h. The cost functions for the 6H experiments
are both less than for the original control, but the 12WS6
6H cost function is smaller than that of the CON 6H
only at 12 and 24 h.

The E-Sumsfor the 12WS6 6H experimentsare 1652,
1653, 1654, and 1655 km for dataat t = —6 h that are
prepared by the 12WS6, 12S6, 12SW6, and 12W6 ex-
periments, respectively. The WS constraint is superior
to W when assimilated data and future data are used to
begin and end the assimilation, while the reverseistrue
when only past and current analyses are used (Table 3).
The W constraint modifies the barotropic model over
the assimilation period by fitting the model most closely
to the end of the dataset (see Fig. 5) without changing
the initial state vorticity. The WS constraint improves
the assimilation track fit by making small adjustments
to the initial vorticity, while using the modified baro-
tropic model.

In order to further see how preparation of the data
for the beginning of an assimilation by an earlier as-
similation changes track errors, the experiments with
6-h assimilation periods that are summarized by Table
3 were rerun, beginning the assimilation with the as-
similated data that are used to begin the 12W6 6H ex-
periment. The E-Sums for 6W6, 6WS6, 6SW6, and 6S6
are reduced by 6, 18, 22, and 56 km, respectively, but
none are less than the control. These track error reduc-
tions show error improvement at each time level from
12 to 72 h. This occurs because these assimilations start
with data that account for the dataatt = O h.

The 6H experiments described here use 6-h future
track positions. Thus, these results might appear to have
little operational utility. The operational hurricane track
models at NHC are run at about 1 h after synoptic time,
SO a current synoptic time analysis is not available.
However, center fixes from satellite and aircraft are typ-
ically available at the current synoptic time. Thus, the
information available to the track models are analyses
at 6-h intervals, the most current of which is 6 h old,
and track positions at 6-h intervals all the way up to
the current synoptic time. This information is the same
as that used in the 6H experiments. The results given
here certainly show that this proceedure warrants serious
consideration.

Because model fitting requires far greater use of com-
puter resources than is required to modify the control
experiment with a future track position, the present rec-
ommendation is to use the modified control experiment
to improve operational hurricane track forecasts. How-
ever, the 2.5% further track error reduction obtained
with the present variational model may be worth con-
sideration in the future. Leslie et al. (1998) have shown
that high quality satellite winds may be assimilated with
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the three-dimensional version of the generalized inverse
model of Bennett et al. (1993) and give improved hur-
ricane track forecasts. A combination of our strategy
and satellite winds may give even better track forecasts
than reported here.

7. Summary and conclusions

The customary approach of model fitting fits the mod-
el to past and present observations to make a forecast
into the future. When this approach is applied to the
hurricane tracking problem, the track fit to the observed
storm positions is best somewhere in the past and may
not be very good by the beginning of the forecast. With
the current barotropic model and the 226-case dataset,
this leads to assimilation track forecasts that on average
always have greater track errors than the control fore-
cast, which uses only the current data without assimi-
lation. If one introduces a track position a little way
into the future (here 6 h), a centered track fit for the
model to the observed track is obtained in which the
track direction difference from the observed track at the
beginning of the forecast (timet = 0 h) is reduced by
several degrees compared with the assimilation with
past and present data only. For the present experiments,
thet = 6 h data come from a 6-h VICBAR forecast,
with the storm repositioned at 6 h using the observed
position from NHC. Thet = —6 h data are obtained
from 12-h assimilations betweent = —12handt =0
h. The best model-fit forecast is 12WS6 6H, which has
an E-Sum of 1652 km compared with 1874 km for the
control forecast. If the control forecast is also modified
by repositioning the vortex at 6 h in the manner done
for the model-fitting experiment, then the modified con-
trol forecasts have an E-Sum of 1695 km. Thus, the
addition of the 6-h future track position into both the
assimilation and control forecasts results in model-fit-
ting forecasts that have 2.5% smaller E-Sums than the
comparable control forecasts. The assimilation track er-
rors are also smaller at all time levels from 12 to 72 h.
This method has application to operational forecasting,
since the most recent analysis availableis 6 h old at the
time the NHC track models are run, but current center
positions are available.

The model-fitting strategy that givesthe smallest fore-
cast track errors when only past and present data are
used is the weak constraint. However, when a future
track position is included in the assimilation by means
of ashort forecast and repositioning of the vortex to the
observed position, the best constraint is a combination
of weak followed by strong. Generally, short assimi-
lation periods are favored for all constraints. For 6- and
12-h assimilation periods with past and current data, the
order of the constraints by increasing track errors
(E-Sum) is W, WS, SW, and S. With the future track
positions, the first two strategies exchange places. The
24-h assimilations have too many optimization failures
to be practical (ranging from 6% to 28%), while these
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failures are extremely rare at the shorter periods (no
failures for assimilations that begin with the weak con-
straint or for 6-h assimilation periods).

This manuscript deals primarily with averagesfor the
226 cases. Smaller samples show considerable vari-
ability in the forecast track errors. This is shown here
for Hurricane Gustav and the stratification by slow track
speeds for 69 control cases where 24-h assimilations
have the smallest E-Sums, in spite of their low ranking
for the whole dataset.

Two conclusions are drawn from the experiments re-
ported here. First, hurricane track forecasting by the
present assimilation model improves forecasts beyond
the corresponding control forecast only when future
track positions are included in the assimilation. The use
of future track positions makes it possible to take ad-
vantage of the better variational track fit at the middle
of the assimilation period, by placing the center of the
assimilation period at t = 0 h. Second, because the
control forecast with vortex repositioning is nearly as
good as the corresponding model -fitting track forecasts,
one may choose to reposition the vortex during the con-
trol forecast, rather than implement the far more ex-
pensive model -fitting solution. A 10% average reduction
of track errors seems possible in this manner. Of course,
operational considerations of timeliness of the forecast
tracks may dictate the details for including future track
positions in operational models. A fringe benefit of us-
ing future observed positionsin aforecast isthat abetter
track point at t = 0 h may be included in the process.
This would be useful when small timescale oscillations
are observed in the track or when clouds interfere with
satellite fixes.
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