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ABSTRACT

Geostationary infrared (IR) satellite data are used to provide estimates of the symmetric and total
low-level wind fields in tropical cyclones, constructed from estimations of an azimuthally averaged radius
of maximum wind (RMAX), a symmetric tangential wind speed at a radius of 182 km (V182), a storm
motion vector, and the maximum intensity (VMAX). The algorithm is derived using geostationary IR data
from 405 cases from 87 tropical systems in the Atlantic and east Pacific Ocean basins during the 1995-2003
hurricane seasons that had corresponding aircraft data available. The algorithm is tested on 50 cases from
seven tropical storms and hurricanes during the 2004 season. Aircraft-reconnaissance-measured RMAX
and V182 are used as dependent variables in a multiple linear regression technique, and VMAX and the
storm motion vector are estimated using conventional methods. Estimates of RMAX and V182 exhibit
mean absolute errors (MAEs) of 27.3 km and 6.5 kt, respectively, for the dependent samples. A modified
combined Rankine vortex model is used to estimate the one-dimensional symmetric tangential wind field
from VMAX, RMAX, and V182. Next, the storm motion vector is added to the symmetric wind to produce
estimates of the total wind field. The MAE of the IR total wind retrievals is 10.4 kt, and the variance
explained is 53%, when compared with the two-dimensional wind fields from the aircraft data for the
independent cases.

1. Introduction

Aircraft reconnaissance is perhaps the best method
of estimating hurricane winds. U.S. Air Force Reserve
and National Oceanic and Atmospheric Administration
(NOAA) aircraft provide in situ measurements of
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wind, pressure, temperature, and storm position, which
are transmitted via satellite to the National Hurricane
Center (NHC). Because of cost constraints, most tropi-
cal cyclones (TCs) are only flown when they become a
threat to U.S. land, and are rarely flown outside of the
Atlantic basin. Obviously there is a need for an equally
reliable observation platform that is available at all
times at all locations.

Without aircraft reconnaissance, forecasters rely
more heavily on a method developed by Dvorak (1975,
1984). The goal of Dvorak was to provide estimates of
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the current and future intensity of TCs, by identifying
cloud characteristics from visible and infrared (IR) sat-
ellite imagery. While the methods are augmented by a
series of empirical rules, pattern interpretations are in-
herently subjective and can result in varying estima-
tions of intensity.

More recently, Velden et al. (1998) developed an au-
tomated method called the objective Dvorak technique
(ODT). A computer-based algorithm within the Man-
computer Interactive Data Access System (McIDAS)
system utilizes several functions to read and analyze
Geostationary Operational Environmental Satellite
(GOES) IR satellite data to compute an intensity esti-
mate for a targeted TC.

While Dvorak methods provide vital information
about TC maximum winds, it is more difficult to esti-
mate a TC’s wind structure from IR satellite imagery.
At operational forecast centers, TC wind structure is
primarily described by such parameters as the radius of
maximum wind (RMAX), and the radii of 34-, 50-, and
64-kt winds (1 kt =~ 0.5144 m s~ ). These values provide
information on how far damaging winds extend from
the center of the TC. Because of the high temporal
resolution of geostationary satellite data, it would be
valuable if these observations could provide informa-
tion on TC structure via connections between the ex-
tent and strength of deep convection, and the extent of
damaging winds.

One method for estimating winds from satellites is to
track low-level clouds in sequential, high-resolution
GOES visible channel imagery (Dunion and Velden
2002). Cloud drift winds provide coverage in the outer
radii of the hurricane, where conventional observations
like those from buoys and ships are sparse. While im-
portant for periphery estimations, they provide little to
no information about winds near the eye of the hurri-
cane, because cirrus tends to block tracers at close radii.

Another source of TC wind information is from sat-
ellite measurements in the microwave portion of the
electromagnetic spectrum. Since NOAA launched the
Advanced Microwave Sounding Unit (AMSU) aboard
their polar-orbiting satellite series in May 1998, passive
microwave warm-core measurements of TCs have been
made. The science behind the measurement is that ver-
tical temperature soundings yield information about
the mean sea level pressure and wind fields within a TC
through thermodynamic and dynamic constraints
(Spencer and Braswell 2001; Brueske and Velden
2003).

Demuth et al. (2004) derived a method for estimating
TC wind radii via a statistical procedure utilizing
AMSU-derived parameters. While AMSU is capable of
providing this information, the instruments aboard
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NOAA polar-orbiting satellites pass over a given point
in the Tropics no more than twice a day. Because of the
AMSU data gaps in the Tropics there is a chance a TC
will remain unobserved over a 24-h period. A missed
pass is detrimental to forecasters, as a rapidly deepen-
ing TC will exhibit dramatic changes between passes.
Another disadvantage of the microwave instrument is
that its horizontal resolution is 48 km at nadir, and
closer to 100 km near the limbs. Upper-tropospheric
warm anomalies can have scales smaller than 50 km
and, thus, are not resolvable by the instrument.

While aircraft reconnaissance, visible, and micro-
wave satellite data provide information about TC wind
structure, observations may not be continuously avail-
able, temporally or spatially. A major advantage of us-
ing IR satellite data to observe TCs is that coverage is
continuous over the global Tropics and is, therefore,
available where ship, aircraft, and microwave data are
not. The aim of this investigation is to extend the use of
IR data to estimate a storm’s structure.

The outline of this research is as follows. Given digi-
tal IR information, and a past and current storm posi-
tion [including latitude, longitude, and an estimate of
the maximum wind (VMAX)], it is hypothesized that
an accurate estimate of the low-level wind field can be
made. To construct a two-dimensional (2D) wind field
from a few input parameters, the wind structure will be
highly constrained. A modified Rankine vortex model
is used to represent the symmetric tangential wind field.
The asymmetric part of the wind field can be estimated
via the storm motion, and added to the symmetric part
to create the entire 2D wind field. With these assump-
tions the wind field depends on the three parameters of
the Rankine vortex, and the motion vector. One pa-
rameter of the Rankine vortex is VMAX, which is as-
sumed to be known. The other two Rankine vortex
parameters are estimated statistically from the IR data
and other basic storm information such as latitude.

The database used to develop this algorithm is de-
scribed in section 2. Section 3 describes the IR wind
algorithm development, which is evaluated on depen-
dent and independent cases in sections 4 and 5. A no-
satellite method that includes only latitude and VMAX
input is used as a baseline for performance, and the
results from the simpler method are compared with the
IR method for the dependent and independent cases.

2. Data sources

a. Aircraft reconnaissance data

NOAA and the U.S. Air Force Reserve at Keesler
Air Force Base (AFB) have responsibility for aerial
hurricane reconnaissance. The U.S. Air Force Reserve
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flies a fleet of WC-130 aircraft along a path known as an
alpha pattern and collects a flight-level (5000 or 10 000
ft is customary) observation every 10 s. Starting in the
northwest quadrant, the aircraft fly a diagonal route
across the storm to the southeast quadrant, 105 n mi on
either side of the eye. The aircraft then makes a left
turn and heads toward the northeast quadrant where it
begins a radial leg that ends in the southwest quadrant.
After two passes through the eye (fixes), the winds in
all four quadrants have been measured. The plane
would typically continue the alpha pattern, making two
more fixes before heading home.

The aircraft data for the dependent sample used in
this research comes from the U.S. Air Force Reserve
reconnaissance archive, and encompasses a large sam-
pling of Atlantic basin TCs (77) during the 1995-2003
seasons, as well as a smaller sampling of eastern Pacific
TCs (10) over the same time period, for a total of 87
tropical storms and hurricanes in the dependent
dataset. There are seven Atlantic basin tropical storms
and hurricanes contained in the independent 2004 vali-
dation dataset.

It should be pointed out that operational forecast
centers are primarily interested in surface winds. There
are a number of methods for reducing the flight-level
winds to the surface (Powell et al. 1998). However, in
this study we did not reduce the data to the surface to
eliminate this additional source of uncertainty. The
goal of this study is to first determine how well the
flight-level observations can be reproduced from IR
satellite imagery. Later applications could include a
surface reduction procedure, which should take into
account the flight level of the original data used to de-
velop the IR algorithm. Typically, the U.S. Air Force
Reserve flies at 5000 ft for tropical storms and 10 000 ft
for hurricanes. For the data sample used here, the air-
craft data were centered near 5000 ft in about 60% of
the cases (most of which were tropical storms) and near
10 000 ft in about 40% of the cases (most of which were
hurricanes).

b. Objective analysis of aircraft data

The raw aircraft data cannot be used directly to es-
timate the 2D wind field because of storm motion dur-
ing the flight pattern, and because they contain some
erroneous values. Therefore, a portion of this study was
devoted to the development of a comprehensive air-
craft dataset, objectively analyzed and meticulously
checked for errors.

The first step in data preparation was to perform a
gross error check that removed any raw data points that
were in error prior to the analysis being done. Gross
errors include wind speed less than zero, wind direction
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greater than 360°, altitude greater than 5000 m, and
speed greater than 175 kt.

In preparation for the objective analysis, the lifetime
storm files were organized into smaller time periods
representative of the wind structure of the system at a
given time. The interval chosen must be large enough
to encompass a sufficient number of observations,
while it must also be small enough that the character of
the storm has not changed to such a degree that it is no
longer representative of the storm at a given time. The
interval chosen was 12 h.

Because a 12-h time interval is used, several flights
may have been made during this interval, and several
separate center fixes may have been made due to storm
motion. For example, in earth-relative coordinates,
there were three distinct circulation centers in the mea-
sured wind field of TC Lili in 2002 between 1200 UTC
on 2 October and 0000 UTC on 3 October (see Fig. 1).
The center location at the time of each individual wind
observation was determined using cubic interpolation
of the 6-hourly best-track data, and the distance east
and north of center was adjusted to the best-track cen-
ter at the end of the 12-h interval. An example of storm-
relative winds is shown for Lili in Fig. 1. The storm-
relative analysis procedure is similar to that used by the
Hurricane Research Division H*wind analysis (Powell
et al. 1998). The final step in data preparation was to
convert winds from an x- and y-coordinate system to a
radial and azimuthal coordinate system, where tangen-
tial and radial components of the wind were calculated.

Sufficient data must be available to perform the ob-
jective analysis. If there was a data gap of more than
180° in azimuth and 16 km in radius anywhere in the
analysis domain (2-202-km radius), then there was in-
sufficient data to proceed. This frequently occurred
when only one flight leg was available during a 12-h
interval, or when the storm was partially over land.

The next step is to perform a preliminary objective
wind analysis. The objective analysis is based upon the
model-fitting approach with smoothness constraints de-
scribed by Thacker (1988). In this approach, the differ-
ence between the data and the model counterpart of
the data is minimized, where the model is simply the
wind components on an evenly spaced grid. The model
counterpart of the observations is a bilinear interpola-
tion of the wind components. The smoothness con-
straints help to fill in the data-void areas of the analysis
domain.

As an example, suppose there are K observations of
a wind component u, denoted by u,, at arbitrary loca-
tions within a domain x € [0, L,], y € [0, L,]. For the
objective analysis, the values of u on an evenly spaced
x, y grid with grid spacings of Ax, Ay (denoted by U,)
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Fi1G. 1. Hurricane Lili (top left) earth-relative and (top right) storm-relative winds as measured by U.S. Air Force
Reserve reconnaissance over the 12-h time period from 1200 UTC 2 Oct to 0000 UTC 3 Oct 2002, and (bottom)

the objective analysis of the storm-relative winds.

are determined by minimizing the cost function C de-
fined by

1 K 1 J
C=5 2 wiltty = U + 2 X [a(8,U,)
k=1 i=1 j=1
+ B(Syinj)z]? (1)

where &, is the discretized second derivative operator
given by

80Uy = Wiy ; + Uiy — 2Uij)/Ax2 2)

and similarly for §,,. In (1), U, are the wind values
bilinearly interpolated from the analysis grid to the ob-
servation point k, w, are data weights, @ and B are
smoothness parameters, and / and J are the numbers of
analysis points in the x and y directions, respectively.
The first term on the right-hand side of (1) measures
the misfit between the analysis and the observations
and the second term is a constraint that acts as a low-
pass filter. As shown by DeMaria and Jones (1993) for
the one-dimensional case, the filter response function
F(k) for the constraint term in (1) can be written as

F(k) = 1/{1 + 8a[1 — cos(kAx)T?}, (3)
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where F(k) is the amplitude reduction factor of a pure
cosine wave with wavenumber k. Because « is in the
denominator in (3), it controls the amount of smooth-
ing. For example, for the 2Ax wave on the analysis grid
(k = 2m/2Ax), the amplitude will be reduced by a factor
of (1 + 32a) % Thus, o and B can be chosen to be
consistent with the data coverage relative to the analy-
sis grid spacing. In the analysis code, the field Uj;
that minimized C is found using a simple steepest de-
scent algorithm, which requires the calculation of the
gradient of C with respect to U;;. Given the simple form
of (1), the gradient is calculated using an analytic for-
mula.

For the aircraft data, the objective analysis is formu-
lated in cylindrical coordinates with 51 radial points (Ar
= 4 km) from r = 2 to 202 km and 16 azimuthal points
(A6 = 22.5°), and the wind components are input as
radial and tangential values. The radial grid points were
chosen to match those of the azimuthally averaged
GOES data that will be described below in section 2c.
An advantage of the cylindrical system is that different
smoothness constraints can be applied in the radial and
tangential directions. Because the aircraft typically fly
an alpha pattern as described previously, the radial and
azimuthal spacings of the data are fairly uniform in
most cases and the filter functions can be chosen ac-
cordingly. For the analysis, « and B were chose so that
the half-power wavelengths of the filter were 90 km in
radius and 80° in azimuth. All of the data were
weighted equally, so w, = 1 in (1).

Aircraft have trouble measuring winds while the air-
craft is turning sharply, which happens more often in
small storms. However, these errors are not usually
large enough to be detected by the gross error checks.
Therefore, a method was developed to check for addi-
tional bad data by removing observations where the
magnitude of the difference between the observed wind
vector and that from the preliminary analysis is greater
than 75 kt. If the analyzed value is drastically different
than the observed value at a given grid point, it indi-
cates that the observed value was very different than
the surrounding observed values that contributed to the
analysis. If the percentage of bad points in a 12-h in-
terval was greater than 10%, the objective analysis was
halted.

After the removal of the bad data, a final objec-
tive analysis was performed. An example of an
analyzed wind field for the Lili case is shown in Fig. 1,
with every fourth radial point plotted. There are 535
wind analyses in the aircraft dataset, composing 94 At-
lantic and eastern Pacific storms from the 1995-2004
seasons.
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c¢. CIRA GOES IR archive

The geostationary IR data for this study come from
the Cooperative Institute for Research in the Atmo-
sphere (CIRA) tropical cyclone IR (10.7 wm) archive
(Zehr 2000). There are normally five geostationary sat-
ellites positioned along the equator, giving nearly glob-
al coverage. Geostationary satellites have the necessary
time resolution and the unique capability of pinpointing
the exact locations of intense updrafts by monitoring
overshooting cold cloud tops.

The CIRA IR archive includes GOES, Meteosat, and
Geostationary Meteorological Satellite (GMS) and
uses the satellite that provides the best coverage for a
particular TC. In this study, all the imagery is from
GOES. All digital images are 4-km-resolution Merca-
tor remaps in McIDAS format with 1-byte pixels. The
standard time interval between images is 30 min (Zehr
2000). The location of the sector is changed as neces-
sary to keep the center of the TC no more than 4°
latitude from the edge of the image. The time period of
coverage begins with the first assignment as a tropical
depression and ends with the last advisory time.

The objectively analyzed aircraft files were matched
to CIRA IR archive files that covered the same 12-h
interval of the storm’s lifetime. As part of the objective
analysis procedure, the actual time of all the data in-
cluded in the analysis is averaged (the mean analysis
time). The mean analysis time provides a measure of
when during the 12-h interval the analysis is actually
valid. The IR images nearest the mean analysis time are
then extracted from the IR archive. Statistical sensitiv-
ity tests showed that better fits to the recon analyses
were obtained when three IR images were averaged.
Thus, in all of the following discussion, the IR input
includes the average of the three images closest to the
mean analysis time of the recon data. If three images
were not available, cases with one or two images were
still included in the sample. While there are 535 com-
plete members of the aircraft dataset, the IR matching
and maximum wind restrictions (VMAX > 35 kt)
brought the dependent dataset to 405 cases, and the
validation dataset to 50 cases. If this procedure were
applied in real time, the three most recent images could
be used. For example, the operational Dvorak esti-
mates use the IR image closest to the synoptic time of
interest. For IR winds, the three most recent images
before the synoptic time could be used.

Hurricanes Floyd and Iris in Fig. 2 both had maxi-
mum sustained winds of 120-125 kt. However, the area
coverage of cold clouds in Hurricane Floyd was much
larger than that for Iris. This means that convection was
occurring on a much broader scale in Hurricane Floyd,
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FI1G. 2. Color-enhanced GOES IR images of (top) Hurricane
Floyd at 1515 UTC 14 Sep 1999 and (bottom) Hurricane Iris at
0015 UTC 9 Oct 2001.

but producing the same intensity as a storm with more
confined areas of convection. Importantly, however,
the 34-kt wind radii for Floyd were on the order of
190-250 n mi for each quadrant, in contrast to the 60—
100 n mi 34-kt wind radii in the much smaller, but
equally intense, Iris (see Table 1). This is an illustration
of an apparent relationship between cold cloud shield
and wind radii. This paper will determine whether
quantitative relationships between the geostationary IR
parameters and the wind structure parameters from the
aircraft data exist.

d. Positions and maximum intensity

As will be described below, the algorithm assumes
that the storm position and maximum winds are known.
For the both the dependent and independent samples,
these were obtained from the NHC working best track,
rather than the postseason final best track. The working
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TABLE 1. A comparison of the 34-kt wind radii for Hurricanes
Floyd and Iris. The wind radii were obtained from the NHC op-
erational forecast/advisory.

R34 R34 R34 R34

Max sustained (nmi) (nmi) (nmi) (nmi)
Hurricane wind (kt) NE SE NwW
Floyd 125 250 190 150 190
Iris 120 125 50 40 60

best track represents the positions and intensity esti-
mates that are available in real time.

3. Methods

As Holland (1980) suggests, a valid method of using
sparse observations to provide objective estimates of
wind extent in a TC is with an analytical model of hur-
ricane wind profiles. For the geostationary IR wind al-
gorithm, the symmetric part of the storm circulation is
assumed to be represented as the modified Rankine
vortex given by

Vi(r) = Vm(RL> r<R,,

n

n

R x
V(r) = V’"(T) r>R,, (4)

where V = tangential wind speed, V,, = maximum tan-
gential wind speed, r = radial coordinate and R,, =
radius of maximum wind (referred to as RMAX in the
text), and x is a unitless, positive number that deter-
mines a storm’s size. An important thing to note when
using a Rankine vortex is that the entire symmetric
wind field is represented by only tangential wind; the
radial symmetric wind field is neglected. This assump-
tion is valid according to calculations performed on air-
craft data. The symmetric radial wind calculated at each
radius is approximately zero (mean of —0.7 kt), and is
negligible compared to the symmetric tangential wind
at each radius (mean of 40.4 kt). If aircraft were mea-
suring wind speeds near the surface, rather than at the
850- or 700-hPa flight level, the radial wind would have
a larger negative component due to friction.

Once the symmetric tangential wind field is con-
structed, the next step is to consider storm wind asym-
metries. For the purpose of this analysis, storm motion
was assumed to be the only contributor to TC asym-
metry. In reality, there are several factors that cause
wind asymmetries, such as horizontal wind shear across
the storm domain and convective asymmetries. The
storm motion vector was calculated using the working
best-track latitude and longitude at the beginning and
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end of each 12-h interval in the complementary aircraft
wind analyses. A thorough study of the amplitude and
phase of the storm motion contribution to the wind
asymmetry was performed using aircraft data. The fit of
the vortex model to the aircraft data varied from case to
case, but in the sample mean, the best fit was obtained
by using an asymmetry that was 100% of the storm
motion vector, with no phase lead or lag relative to the
case where the maximum speed is 90° to the right of the
storm motion.

The vortex model described above requires a center
position, a motion vector, and the three parameters of
the Rankine vortex (R,,, V,,,, and x). It will be assumed
that the position, motion vector, and maximum winds
will be known from other sources (typically from satel-
lite observations in basins without aircraft data and, in
our case, from the working best track). The specified
maximum wind will include the symmetric and asym-
metric parts, so that the maximum wind of the Rankine
vortex is given by V,, = VMAX — C, where C is the
storm translational speed.

The next step in the analysis is to use the infrared
brightness temperature (Tb) to estimate RMAX and x.
Instead of estimating x directly, the wind speed near the
outer edge of the analysis domain will be estimated (the
wind speed at r = 182 km, V182), which can then be
used to calculate x. Although the analysis domain ex-
tended to 202 km, the profiles in the last 20 km ap-
peared noisier (probably due to more limited data cov-
erage), so a radius of 182 was chosen for the indirect
estimate of x. A set of possible predictors for RMAX
and V182 was derived using the GOES Tb data, as well
as storm latitude and VMAX. Because the aircraft data
were gathered over a 12-h time period, the best-track
intensity at the end of the 12-h period was not neces-
sarily representative of storm intensity at the time in
which the majority of the wind measurements were
gathered. Therefore, VMAX was estimated by linearly
interpolating the working best-track intensity to the av-
erage time of the aircraft observations.

The Tb data are reported as a percentage of pixels
colder than a particular threshold at each radius from 2
to 202 km, at 4-km intervals. The threshold values are
0°, —10°, ..., —70°C. An azimuthally averaged Tb is
also reported for each radius above. From this infor-
mation, several relevant predictors were derived. First,
a storm total percentage of pixels colder than each of
the above thresholds was calculated, and weighted by
radius. This yields an overall estimation of the amount
of convective activity in the TC. Next, a radius of cold-
est temperature, as well as a coldest temperature value,
were calculated for each storm case.

An alternate method for finding common patterns in
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FIG. 3. Leading three EOFs of the IR brightness temperature.

datasets was derived through the use of matrix methods
from linear algebra. Empirical orthogonal function
(EOF) analysis seeks structures that explain the maxi-
mum amount of variance in datasets (Hillger and Ell-
rod 2003). For the purposes of this research, one di-
mension in the dataset (in this case, the azimuthally
averaged Tb as a function of radius) represents charac-
teristic spatial structures that vary with time, which is
what we seek, and the sampling dimension is time. The
EOF analysis produces a set of structures in the first
dimension, called the EOFs, which can be thought of as
being the structures in the spatial dimension. The am-
plitude of the set of structures in the sampling dimen-
sion (time) are called the principal components (PCs),
and they are related one to one to the EOFs.

The leading three EOFs of Tb are plotted in Fig. 3.
EOF1 of Tb appears to be a manifestation of the mean
cold cloud shield. EOF2 likely represents the eye in
strong storms, which is warm in the center, surrounded
by a cold cloud shield. This EOF is important because
it provides information about a storm’s size, via the
extent of the cold cloud shield. Finally, EOF3 appears
to represent a cold Tb maximum near a radius of 55 km,
possibly capturing cold cloud tops associated with con-
vection in large eyewalls or spiral bands of the TC.
Because the first three EOFs explain 99% of the struc-
tural variance in the Tb data, they alone were retained
for further analysis.

Although not shown here, the EOFs of aircraft tan-
gential wind fields were also calculated, and are quite
similar to the EOFs of Tb, in that EOF1 in both cases
picks up the mean radial structure, EOF2 seems to pick
up features associated with the eye, and EOF3 illus-
trates features apparently associated with spiral band-



DECEMBER 2006

MUELLER ET AL.

997

TABLE 2. Potential predictors of TC RMAX and wind speed at V182.

Potential predictors

Description

Azimuthally averaged maximum wind speed from working best track, interpolated to time of average aircraft

SMAX
observation
LAT Latitude from NHC working best track, for analysis time
PCTO00 Storm total percentage of pixels colder than 0°C
PCT 10 Storm total percentage of pixels colder than —10°C
PCT 20 Storm total percentage of pixels colder than —20°C
PCT 30 Storm total percentage of pixels colder than —30°C
PCT 40 Storm total percentage of pixels colder than —40°C
PCT 50 Storm total percentage of pixels colder than —50°C
PCT 60 Storm total percentage of pixels colder than —60°C
PCT 70 Storm total percentage of pixels colder than —70°C
CLDTB Temperature of azimuthally averaged coldest radius
RDCLD Radius of coldest azimuthally averaged temperature
CLDS52 Azimuthally averaged temperature at r = 52 km
CLD102 Azimuthally averaged temperature at r = 102 km
CLD152 Azimuthally averaged temperature at r = 152 km
CLD182 Azimuthally averaged temperature at r = 182 km
SDEV Storm total standard deviation of brightness temperature
EOFTB1 Leading EOF of brightness temperature, regressed onto Tb profile
EOFTB2 Second-leading EOF of brightness temperature, regressed onto Tb profile
EOFTB3 Third-leading EOF of brightness temperature, regressed onto Tb profile

ing convection. Thus, it is reasonable that the EOFs of
Tb can be used to effectively predict structures in the
tangential wind field.

Table 2 lists all possible predictors for the RMAX
and V182 regressions, described above. All of the pa-
rameters are probably relevant to the TC wind struc-
ture; however, the actual significance of each one is not
explicit. Furthermore, it is not prudent to include every
possible predictor in the regression equation, because
some may be mutually correlated, providing redundant
information. Therefore, the relationship between the
predictors and predictands (RMAX and V182 sepa-
rately) was analyzed with multiple linear regression,
using a 1% significance level to select a set of predictors
from the list of potential predictors.

4. Dependent results
a. RMAX

The first parameter predicted using multiple linear
regression techniques was RMAX. This value is impor-
tant because it anchors the location of V,, in the Rank-
ine vortex model. There have been relatively few at-
tempts to empirically predict RMAX from infrared sat-
ellite data alone.

A regression equation using the natural log of
RMAX as the dependent variable, rather than RMAX
itself, was derived in an attempt to reduce scatter, es-
pecially at smaller RMAX. Thus, LN(RMAX) was pre-
dicted for each case, and the exponential subsequently

calculated to produce estimates of RMAX. All statistics
discussed are based on estimates of RMAX; however,
the regression coefficients are based on LN(RMAX) as
a dependent variable.

The regression equation for LN(RMAX) retained
seven IR-derived predictors, plus SMAX and LAT, ex-
plaining 28.8% of the variance in RMAX for the
sample of 405 cases. To compare the coefficients for
each predictor, normalized coefficients were calculated
from nondimensional dependent and independent vari-
ables. Table 3 lists the comparable significance of each
predictor for LN(RMAX). The normalized coefficients
indicate that the most influential predictor was
EOFTBI, followed by VMAX. Latitude was of compa-
rable importance to the other IR predictors. The nega-
tive coefficient associated with the VMAX predictor
suggests that as wind speed increases in a system,
RMAX shrinks, as expected physically. The inverse re-
lationship with EOFTBI is also physically realistic. A
Tb profile with colder cloud tops will exhibit a larger
positive correlation with PC1, and RMAX will shrink.

Figure 4 is a scatterplot of IR-predicted values versus
actual values of RMAX. The regression explains 28.8%
of the variance in RMAX, and the MAE is 27.3 km (see
Table 4 for all statistical comparisons). The median er-
ror is a smaller 16.1 km, indicating that several cases
with large errors tend to dominate the mean. Note from
the plot that the regression works better for smaller
RMAX and tends to underestimate at large RMAX.
Not coincidently, a subset of 87 category three hurri-
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TABLE 3. Regression variables and their corresponding coefficients, and normalized coefficients used to estimate RMAX and V182.

RMAX (km) R? = 28.8%

V182 (kt) R* = 75.0%

Independent variable Coefficient Normalized coefficient Coefficient Normalized coefficient
SMAX —0.008 249 47 —0.366 928 1.071 55 1.773 17
LAT 0.0138752 0.150 036 0.744 353 0.299 458
EOFTB1 —0.050 654 8 —0.519 028 5.674 45 2.161 62
CLDTB —0.000 317 505 —0.011 014 4
CLD52? —3.08012 x 10°° —0.093 799 5
CLD102? —0.000 101 828 —0.276 910
CLD152? —0.000 112 919 —0.259 006
CLD52 —0.009 264 47 —0.368 116
PCTS50 0.003 805 14 0.173 606
EOFTB2 1.071 55 2.745 26
EOFTB3 0.744 353 1.273 99
SMAX? 5.674 45 —1.11588
CLD182 20.4021 —0.133 511
CLD182? 7.571 13 0.541 551
CLD152° —0.004 131 94 —0.633193

cane or greater cases (VMAX > 96.0 kt) performed
significantly better than the dataset as a whole, exhib-
iting a variance explained of 42.1% and a MAE of only
13.8 km. Conversely, a subset of 166 tropical storm
strength cases (VMAX < 64.0 kt) represented the
poorer performers, exhibiting a variance explained of
only 19.7% and an MAE of 36.5 km. However, Fig. 4
also shows that the statistical prediction has difficulty
with the smallest storms, and did not produce any
RMAX estimates smaller than about 20 km, even
though several were observed.

To quantify the improvement over a baseline
method, a separate RMAX was predicted by removing
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FI1G. 4. Scatterplot of IR-predicted RMAX (pRMW) vs
aircraft-measured RMAX (RMW).

all IR-derived predictors in the regression equation de-
scribed above. This method, which will be called no-sat,
produces less significant results. The variance explained
using the no-sat method is 18.4%, and the MAE
worsens to 32.5 km. Thus, the geostationary IR-
predicted RMAX represents a 56.5% improvement in
terms of variance explained, and a 19.0% improvement
in terms of MAE.

b. V182

The second parameter predicted using multiple lin-
ear regression is V182. This parameter is chosen to rep-
resent the storm size and is used to calculate x in the
Rankine vortex model.

Six IR-derived predictors are retained in the regres-
sion, together with an estimate of SMAX, SMAX?, and
LAT, explaining 75.0% of the variance in V182. The
MAE for the prediction of V182 is 6.48 kt. A scatterplot
of predicted versus actual values of V182 is illustrated
in Fig. 5. All of the IR-derived predictors have the ef-
fect of strengthening the wind at r = 182 km as the Tb
field gets colder. The importance of the relationship
between V182 and EOFTBI1 physically represents the
storm size increasing as the mean cold cloud shield be-
comes colder. The relationship between V182 and
EOFTB?2 physically represents that the warmer the eye
compared to the surrounding cold cloud shield, the
larger the storm size, and consequently the greater the
winds at a radius of 182 km. This result is similar to
the qualitative relationship between cold cloud area
and storm size, illustrated in Fig. 1. Both of these EOF
predictors are extremely important in the regression
equation, as shown in Table 3.

While the scatterplot suggests impressive results, it is
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TABLE 4. Variance explained, MAE, and percent improvement statistics.

Dependent Independent

R? (%) MAE RrR? MAE
V182 IR 75.0% 6.48 kt 68.2% 7.98 kt
No-sat 67.7% 7.41 kt 64.9% 8.46 kt

Improvement (%) 10.8% 14.4% 51% 6.0%
RMAX IR 28.8% 27.3 km 43.3% 20.0 km
No-sat 18.4% 32.5 km 18.4% 26.9 km

Improvement (%) 56.5% 19.0% 135% 34.5%
1D symmetric tangential wind field IR 78.3% 4.86 kt 79.0% 8.49 kt
No-sat 72.3% 5.40 kt 76.7% 10.53 kt

Improvement (%) 8.3% 9.0% 3.0% 24.0%
2D total wind field IR 43.1% 9.85 kt 532% 10.41 kt
No-sat 36.8% 10.82 kt 46.0% 10.93 kt

Improvement (%) 17.1% 9.8% 15.7% 5.0%

important to note that the regression equation is also
highly dependent on SMAX, as is also shown in Table
3. It is therefore prudent to determine quantitatively
the contribution of the IR data to the regression. To do
this, the IR-derived V182 estimates were compared to
no-sat-derived V182 estimates. A no-sat version of the
regression equation produces an R? of 67.7%, as com-
pared to the IR-derived R? of 75.0%. The MAE for the
no-sat-derived V182 degrades from 6.58 to 7.41 kt. A
t-statistic significance test, with 405 degrees of freedom
(representing each independent case), was performed
on the case by case MAE for the no-sat versus IR-
derived V182 values, to determine if the samples have
significantly different means. The results indicate that
the difference in the means of the MAE is significant at
the 99% level. Thus, the error improvement in the es-
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FI1G. 5. Scatterplot of IR-predicted V182 (pV182) and
aircraft-measured V182 (V182).

timate of V182 that occurs as a result of including geo-
stationary IR data is not only quantifiable, but also
significant.

¢. Symmetric tangential wind field

Once estimates of V182 and RMAX are produced
from the multiple linear regression techniques, the en-
tire symmetric tangential wind field can be re-created
using the Rankine vortex model (described in section
3). See Fig. 6 for an illustration of the geostationary IR
constructed wind profiles and their counterpart ground
truth aircraft measured wind profiles. Qualitatively, the
Rankine vortex model does a sufficient job of repro-
ducing the symmetric wind profile, particularly for hur-
ricane strength cases. It is necessary, however, to quan-
tify the improvement over the no-sat method, and to
determine whether the improvement is indeed signifi-
cant.

The MAE for the no-sat dataset is 5.4 kt, while the
MAE for the IR dataset is 4.86 kt; an improvement of
9.0%. Again, the significance of the improvement was
determined using a ¢ test on the difference in storm
total MAE for each of 405 IR-derived wind profiles,
and each of their complementary 405 no-sat-derived
wind profiles. A ¢ test proves significantly different
means at the 99.9% level. Therefore, the improvement
in the error of the symmetric tangential wind field es-
timation by adding geostationary IR information is
both quantifiable and significant. In addition to im-
provement in MAE, the variance of the observed sym-
metric winds explained by the IR-derived symmetric
tangential wind profiles is 78.3%, compared to 72.3%
explained by the no-sat method alone.

d. Total wind field

Finally, once a symmetric tangential wind is esti-
mated, the motion vector is added and the total 2D
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wind field is calculated at all of the points on the air-
craft analysis grid (51 radial points and 16 azimuths).
There are two questions to answer after looking at
this total derived wind field. First, does the addition of
the storm motion vector asymmetry to the IR-derived
symmetric wind field more closely approximate the ac-
tual aircraft total wind field? Second, does the IR-
derived total wind field provide better results than a
similar no-sat-based re-creation? Fig. 7 illustrates how
the addition of the motion vector affects the wind field.
The top two panels represent the aircraft-measured
symmetric (right panel) and total (left panel) wind
fields. The bottom two panels are the corresponding
IR-derived symmetric and total wind fields for Hurri-
cane Hortense on 14 September 1996 at 0000 UTC. The
right-hand panels illustrate an IR-derived symmetric
wind field that is a slight overestimation of the actual
symmetric wind field. Also, the actual symmetric wind
field has weak inner and outer wind maximums, while
the derived wind field is only capable of resolving one
wind maximum, and places it between the two actual
maximums. Because the high asymmetry of the storm at
this time, the correlation coefficient (CC) between the
actual total wind field (Fig. 7, top-left panel) and the
derived symmetric wind field (Fig. 7, bottom-right
panel) is only 0.273. The lower left-hand panel in Fig. 7
takes into account storm motion, and in fact places the
maximum wind 90° to the right of the motion, and now
very closely approximates the actual wind field. Given
that the algorithm is not capable of resolving the inner
and outer wind maximums that were present at the

time, the orientation and extent of the high winds is
quite accurate once a motion vector derived asymmetry
is incorporated. The CC between the actual and de-
rived total wind fields improves dramatically in this
case, to 0.788. Of course, this is only one example, of
405 cases, and due to the highly asymmetric nature of
the system, the improvement from adding storm mo-
tion is going to be more dramatic for Hortense than for
more symmetric cases.

To examine the improvement in the entire dataset,
Fig. 8 shows a histogram of the CC for the IR-derived
symmetric wind field (light gray), the no-sat total wind
field (gray), and the IR-derived total wind field (black).
There is a definite qualitative improvement due to the
addition of a motion vector. At lower bins (at and be-
low 0.4-0.5), the frequency of occurrence of the IR-
derived symmetric wind field CC is much higher than
the IR-derived total wind field CC. However, above a
CC bin of 0.4-0.5, the IR-derived total wind field oc-
currence is far more frequent. In fact, the mean IR-
derived total wind field CC for the 405-case dataset is
0.656 (the IR-derived total wind field explains 43.1% of
the variance in the total wind field), while the IR-
derived symmetric wind field exhibits a mean CC of
0.509, or an R? of 26%. This improvement in CC, which
occurs as a result of incorporating storm motion, thus
proves the method successful.

Additionally, compared to a baseline no-sat method,
the geostationary IR-derived total wind field performs
significantly better. Again, refer to Fig. 8 for a histo-
gram of CC. The middle bars, gray in color, represent
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FIG. 7. Four-panel plot of the aircraft-observed vs IR-derived symmetric and total wind fields for Hurricane
Hortense at 0000 UTC 14 Sep 1996.

the frequency of occurrence of the no-sat-derived ver-
sus aircraft total wind field CC. There is an obvious
shift toward lower CC compared to the black bars rep-
resenting the IR-derived versus aircraft total wind field
CC. In fact, only 17 of the no-sat-derived cases are
correlated at or higher than 0.90, compared to 32 of the
IR-derived cases. The mean CC for the no-sat cases is
0.606, while it improves to 0.656 when the IR informa-
tion is added to produce a total wind field, an improve-
ment of 8.3%.

An alternate method of quantifying the improvement
is to look at the improvement in MAE. An MAE was
determined by calculating the difference between IR-
derived total wind speed and the aircraft-measured to-
tal wind speed at each grid point, and averaged by case.
Notice in Fig. 9 the shift toward higher MAE in the
no-sat dataset compared to the IR dataset. The average
MAE is 9.85 kt for the IR-derived wind field, and 10.82
kt for the no-sat-derived wind field. This is an improve-
ment of 1.0 kt, or 9.8%. A ¢ test was performed and the
difference in means is significant at the 99.9% level.
Refer to Table 4 for a summary of statistics.

S. Independent results

To evaluate further the geostationary IR wind field
estimation, the algorithm developed from the 1995-
2003 cases was run on 50 cases from the 2004 hurricane
season, and results were compared to aircraft-measured
winds. In these cases, the working best-track interpo-
lated intensities were used to estimate VMAX, and the
2004 real-time aircraft data have a temporal resolution
of only 30 s (compared with 10-s resolution for the
postprocessed aircraft data developmental dataset).
Because the algorithm is run on cases that were not
members of the developmental dataset, the results are
indicative of what can be expected when this algorithm
is implemented in real time.

a. Statistical comparison

As shown in Table 4, the algorithm is robust, with
only a slight increase in error relative to the develop-
mental dataset in most cases, and even a slight decrease
in error in estimating RMAX. The algorithm explains
43.3% of the variance in RMAX, compared to a devel-
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opmental dataset variance explained of 28.8%. Further-
more, the MAE is 20.0 km for estimating RMAX. The
improvements over the no-sat independent estimates
are well within the range of the developmental dataset.
See Table 4 for statistics.

The hypothesized reason for the improved results is
that the 2004 sample has a disproportionately high per-
centage of category three or greater cases. In fact, 23 of

50 cases exhibit a VMAX of 96.0 kt or greater. As was
noted in the previous section, the RMAX algorithm
performed better for the >96.0 kt cases in the devel-
opmental dataset. Thus, it is not surprising to see robust
results in the independent dataset.

The algorithms explain 68.2% of the variance in
V182, and the MAE in V182 for the independent cases
is 7.98 kt. This is only slightly less robust than the de-
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velopmental dataset. Again, improvements over the no-
sat method alone are on the order of 6.0% in terms of
both error and variance explained.

The Rankine vortex model is utilized to reconstruct
the symmetric tangential wind field for each of the 50
independent cases, resulting in an R? value of 79.0%,
again an improvement over the developmental dataset,
and an MAE of 8.49 kt. The increase in MAE error is
likely a result of the high wind speeds present in the
majority of the 2004 cases. The mean VMAX for the
2004 cases is 90 kt, compared to a mean VMAX of only
72 kt for the developmental cases; thus, errors are
bound to be larger. This does not necessarily mean the
algorithm is less robust. In fact, the independent error
represents 9.4% of the average VMAX, an only slighter
larger ratio than the 6.8% for the dependent dataset.

Finally, the addition of a motion vector results in a
total wind field variance explained of 53.2%, and an
MAE of 10.41 kt. Again, taking into account the
greater average strength of the 2004 cases, the slightly
larger MAE is not highly significant. It seems likely that
the variance-explained increase from 46.1% for the de-
velopmental dataset to 54.0% for the independent
dataset is partly due to the greater overall intensity of
the 2004 cases, since more intense storms tend to have
a more predictable structure. In fact, if only VMAX >
96.0 kt systems are considered for the dependent
dataset, the total wind field variance explained im-
proves to 56.8%. It is thus clear that stronger systems
tend to have a more predictable RMAX using this
method and are better represented by the Rankine vor-
tex model and, thus, are better estimated.

For the independent cases, the no-sat method alone
explains 46.0% of the variance in the total wind field
(compared to 53.2% with the addition of IR predic-
tors). Of note, this 15.7% improvement in the total
wind field variance explained in the 2004 dataset when
IR information is added is comparable to the 17.1%
improvement in the developmental dataset. An overall
improvement of 15%-17% for the final product is a
significant result for this study.

b. Case study of Ivan 2004

To visualize how this algorithm might be put to use in
real time, a time series of IR-derived wind fields for
Hurricane Ivan is presented in Fig. 10. Ivan was a clas-
sic, long-lived Cape Verde hurricane that reached cat-
egory 5 strength three times on the Saffir-Simpson hur-
ricane scale. Ivan caused considerable damage as it
passed through the Caribbean Sea. Figure 10 is a plot of
IR-derived and observed wind fields for Hurricane Ivan
between 1200 UTC 13 September and 0000 UTC 15
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September. At 1200 UTC 13 September, Ivan was at its
strongest, exhibiting a minimum sea level pressure of
915 hPa, an observed VMAX of 140 kt, and was passing
north through the Yucatan Channel between the
Yucatan Peninsula and Cuba. By 0000 UTC 15 Septem-
ber Ivan had weakened slightly to 120 kt, and the winds
had become more asymmetric as the storm picked up
speed and headed on a more northerly track.

The left-hand panels in Fig. 10 illustrate the IR-
derived wind fields, and as is visibly noticeable, they are
very close estimations of the actual aircraft-measured
wind fields. In fact, at the first and second time periods,
the algorithm accurately predicted RMAX within 2 km
(actual 34.0 km). It appears as though Ivan was going
through an eyewall cycle at 1200 UTC 14 September,
and the algorithm could not accurately predict the lo-
cation of the new outer eyewall. However, by the fourth
time period, the algorithm was able to reposition
RMAX accurately at 55 km (aircraft-measured RMAX
of 54 km). The no-sat version of this algorithm was off
on RMAX estimates by at least 10 km at each time
period, and was not able to correctly estimate the new
outer eyewall at 1200 UTC 14 September. Thus, the IR
information appears to be bringing the solution closer
to the truth. The algorithm slightly underpredicted
V182 (by 2-6 kt) at the first three time periods, but was
accurate at 60 kt by the fourth time period. The no-sat
method was correct within 4 kt for each time period as
well, and as noted before, the IR contribution to V182
estimates is not as important as the contribution to
RMAX estimates; however, statistically it is significant
when acting on the dataset as a whole. Finally, the ad-
dition of a motion vector asymmetry brings the estima-
tion to the final phase. The algorithm accurately por-
trays the increasingly asymmetric nature of the storm
through the 36-h time period, as it sped up. The loca-
tion, extent, and magnitude of the wind maximum are
quite good for each of the four time periods.

6. Summary and conclusions

This study used geostationary IR data to estimate the
wind structure of a TC through estimates of RMAX
and V182. The estimative algorithms were developed
with 405 cases from the 1995-2003 Atlantic and eastern
Pacific hurricanes seasons, with a multiple linear re-
gression analysis technique, and independent tests were
performed on 50 cases from the 2004 hurricane season.
The RMAX and V182 estimates were subsequently
used in conjunction with a modified Rankine vortex
wind model to estimate the symmetric tangential wind
profile out to 202 km from the storm’s center. Finally,
storm motion derived wind asymmetry was added to
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the symmetric wind profile to provide a reconstruction
of the entire 2D wind field, at each of 51 radial and 16
azimuthal grid points.

In general, because there are no methods prior to this
study that provide wind structure estimates from geo-

stationary IR data, the results compared with the no-sat
method alone are very promising. In terms of predic-
tion of RMAX, a significantly larger portion of the vari-
ance is explained when IR predictors are retained.
There are less dramatic, but still significant, improve-
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ments in error associated with estimates of V182. Im-
provements on the order of 16.0% are exhibited for the
entire wind field, with 41%-54% of the variance of the
total wind field explained by the IR method.

The results of this study suggest that the IR-derived
wind field would have application to operational fore-
casting, especially in regions that do not have routine
aircraft data (most of the world except the western At-
lantic). In addition, these wind field estimations might
also be used to better initialize forecast models in areas
where aircraft do not routinely fly (Velden et al. 1992).

Future work includes the extension of the algorithm
globally to other tropical basins. Furthermore, the
storm motion vector is not capturing the entire asym-
metric flow field for each case, especially for those cases
that are slow moving. Therefore, it would be interesting
to research the relationship between wind asymmetry
and other parameters, including convective asymme-
tries, relative flow field, and wind shear over the do-
main. By adding other factors into the asymmetric wind
analysis, a closer approximation of the actual wind field
should be possible. It would be instructive to examine
cases where a concentric eyewall is present, and to be
able to model these cases using a separate vortex
model. Intense tropical cyclones will often have two
eyewalls nearly concentric about the center of the
storm, the outer eyewall surrounding the inner one. A
local wind maximum is generally present in each eye-
wall. Also, intense systems often undergo eyewall
cycles, in which an inner eyewall is replaced by a sec-
ondary eyewall at a larger radius. Sometimes more than
two eyewalls occur. It will be a challenge to incorporate
these effects into a vortex model, and to identify cases
in which there is a concentric eyewall structure. Micro-
wave satellite imagery would likely be helpful in this
case because it can penetrate the cirrus at the storm top
(Hawkins et al. 2001).

A more immediate plan is to combine these analyses
with other satellite estimates of the winds around TCs
to create an estimate of the flight-level wind field asso-
ciated with TCs. Such analyses will be of particular use
in the majority of the world’s TC basins where aircraft
reconnaissance is unavailable.

Finally, it should be pointed out that the IR algo-
rithm is estimating flight-level winds, since aircraft ob-
servations were used as ground truth. It would be nec-
essary to reduce the winds to the surface for opera-
tional forecasting purposes (Franklin et al. 2003; Powell
et al. 1998).
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