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Abstract
This study investigates prediction of TC intensity in the west-

ern North Pacific basin using a statistical-dynamical model called 
the Statistical Hurricane Intensity Prediction Scheme (SHIPS), 
with data sources in operations at the Japan Meteorological 
Agency (JMA) such as the JMA/Global Spectral Model forecast 
fields. In addition to predicting the change in the maximum wind 
(Vmax) as in the original SHIPS technique, another version 
of SHIPS for predicting the change in the minimum sea-level 
pressure (Pmin) has been developed. With 13 years of training 
samples, a total of 26 predictors were selected from among 52  
through stepwise regression. Based on three years of independent 
samples, the root mean square errors of both Vmax and Pmin by 
the 26-predictor SHIPS model were found to be much smaller 
than those of the JMA/GSM and a simple climatology and per-
sistence intensity model, which JMA official intensity forecasts 
are currently mainly based on. The prediction accuracy was not 
sensitive to the number of predictors as long as the leading predic-
tors were included. Benefits of operationalizing SHIPS include a 
reduction in the errors of the JMA official intensity forecasts and 
an extension of their forecast length beyond the current 3 days 
(e.g., 5 days). 

(Citation: Yamaguchi, M., H. Owada, U. Shimada, M. Sawada,  
T. Iriguchi, K. D. Musgrave, and M. DeMaria, 2018: Tropical cy-
clone intensity prediction in the western North Pacific basin using 
SHIPS and JMA/GSM. SOLA, 14, 138−143, doi:10.2151/sola. 
2018-023.)

1. Introduction

A tropical cyclone (TC) is one of the most intense and feared 
storms in the world and it is of great importance to elucidate 
mechanisms by which it generates, moves, intensifies, and chang-
es in structure. Improving the accuracy of TC forecasts is also 
important as they are directly linked to disaster risk reduction, 
mitigation, and preparedness. The accuracy of track forecasts has 
significantly improved over the last few decades (e.g., Yamaguchi 
et al. 2017). However, forecasting TC intensity such as the max-
imum sustained surface wind speed (Vmax) and the minimum 
sea-level pressure (Pmin) still has many challenges. Ito (2016) 
verified the Japan Meteorological Agency (JMA) official intensity 
forecasts since 1992 and showed that the errors have not been 
decreased. As recommended at the Eighth World Meteorological  
Organization (WMO) International Workshop on Tropical Cy-
clones (ITWC-8) in 2014, improving the prediction of TC intensi-
ty is a common challenge for both the TC research and operational 
communities1.

Various initiatives have been undertaken to improve intensity 
forecasts. The Hurricane Forecast Improvement Project (HFIP, 
Gall et al. 2013) is an example of a successful initiative as the 
errors of TC intensity prediction by the Hurricane Weather Re-
search and Forecasting (HWRF) model have been reduced under 
HFIP. Thanks to powerful supercomputers, advances in numerical 
weather prediction (NWP) models and data assimilation schemes, 
and the increased number of observations including satellites and 
aircraft, a dynamical approach (i.e., use of direct outputs from re-
gional NWP models) has shown promising results (e.g., Cangialosi  
2018).

Another methodology to improve intensity forecasts has been 
the continued development of statistical-dynamical models such 
as the Statistical Hurricane Intensity Prediction Scheme (SHIPS, 
DeMaria and Kaplan 1994, DeMaria et al. 2014). SHIPS uses mul-
tiple linear regression with TC intensity change as the predictand 
and environmental predictors related to it (e.g., vertical wind 
shear and ocean heat content). SHIPS has proven to be useful for 
Atlantic and eastern and central North Pacific TCs in terms of not 
only being one of the best-performing intensity products (DeMaria 
et al. 2014), but also providing information about what variables 
are contributing to TC intensity change. Such information is of 
importance for the forecasters to gain insight into the processes 
involved in TC intensity changes, which is useful for explaining 
their forecasts to users, including the media and the public. Thus, 
SHIPS and other similar statistical-dynamical models are used 
worldwide at operational centers including the Regional Special-
ized Meteorological Center (RSMC) in Miami (Sampson and 
Knaff 2014).

The JMA official intensity forecasts are currently based mainly 
on the JMA Global Spectral Model (JMA/GSM, JMA 2013), with 
a horizontal resolution of about 20 km, and a climatology and 
persistence intensity guidance product called the Statistical Hurri-
cane Intensity FORecast (SHIFOR, Jarvinen and Neumann 1979). 
However, no statistical-dynamical model is available at the RSMC 
Tokyo – Typhoon Center (RSMC Tokyo – Typhoon Center 2016). 
Thus, this study investigates the feasibility of applying a SHIPS 
product for TCs in the western North Pacific basin with the aim of 
operationalizing SHIPS at JMA in the future. Knaff et al. (2005) 
demonstrated the effectiveness of a statistical-dynamical intensity 
model in the western North Pacific basin, but that study was based 
on the Navy Operational Global Atmospheric Prediction System 
(NOGAPS) environmental predictors and the Joint Typhoon 
Warning Center (JTWC) best track dataset. Thus, this study will 
examine the accuracy of SHIPS with database available at JMA. 
In the original SHIPS, the predictand was the change in Vmax. 
Because JMA forecasters usually look first at intensity change in 
terms of Pmin, another version of SHIPS is developed in which 
the predictand is the change in Pmin.

Section 2 describes methodology and data used in this study. 
The verifications are given in Section 3 and a summary is provid-
ed in Section 4.
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significant predictors;
4)  Compute regression coefficients for the selected predictors; 

and
5)  Evaluate SHIPS performance with independent samples.

As indicated above, Pmin will be a predictand as well as 
Vmax. The list of 52 potential predictors is given in Table 1. Most 
of these predictors are calculated along a TC track and are re-
trieved using a model diagnostic code from McNoldy et al. (2012). 
Stepwise regression with both forward selection and backward 
elimination are performed with training samples to find the pre-
dictors that best explain the predictands. Based on the results of 

2. Methodology and data

2.1 General methodology
SHIPS is a statistical-dynamical model to predict intensity 

change of TCs based on multiple linear regression. The procedure 
to construct and evaluate the SHIPS in this study is as follows: 
1)  Define variables to be considered as potential predictors of 

intensity change;
2)  Prepare database of the variables;
3)  Applying stepwise regression to select the most statistically 

Table 1. List of predictors. Column 1 shows the names of predictors and Column 2 describes the meaning of them. The number in Column 3 means the 
order in which the predictor is selected in the forward selection of stepwise regression for Vmax (labeled as V) and Pmin (labeled as P), respectively (zero 
means that the predictor is not selected), at 24, 48, 72, 96, and 120 hours. The check marks in Column 4 indicates that the predictor is selected as one of the 
26 predictors for Vmax and Pmin, respectively.

Column 1 Column 2 Column 3 Column 4

Description
24 48 72 96 120

Vmax Pmin
V P V P V P V P V P

1 PERV 12-hour change of the maximum sustained wind speed to the initial time of a prediction 13 2 0 14 0 0 0 0 0 0 
2 PERP 12-hour change of the minimum sea level pressure to the initial time of a prediction 2 16 0 0 0 35 0 0 0 0 
3 VMPE VMAX times PERV 14 18 23 0 33 0 0 0 0 0 
4 PMPE (MSLP minus 880) times PERP 12 17 22 10 34 36 0 0 0 38 
5 POT Maximum potential intensity minus VMAX 1 1 1 1 1 0 1 0 1 31  
6 POT2 Square of POT 10 14 12 19 0 1 0 1 0 1  
7 MSLP Minimum sea level pressure at the initial time of a prediction 15 13 0 6 0 6 0 3 30 3  
8 VMAX Maximum sustained wind speed at the initial time of a prediction 0 19 0 0 5 34 5 32 5 27
9 VMA2 Square of VMAX 6 20 5 0 13 32 0 0 0 0 
10 VMSH VMAX times SHDC 22 4 0 5 0 5 0 0 0 16 
11 SHVM SHDC divided by VMAX 16 0 26 15 0 10 0 31 29 26  
12 PMSH (MSLP minus 880) times SHDC 18 0 27 26 0 20 0 0 10 5 
13 SHRS 850−500 hPa vertical wind shear magnitude (r = 0−500 km) 0 0 18 0 20 26 0 0 9 32
14 SHLT SHDC times the sine of latitude 20 7 29 13 3 15 3 13 15 20  
15 SHDC Same as SHRD, but round to the nearest 10 0 0 0 0 28 0 0 0 0 0  
16 SHSH Square of SHDC 0 15 0 8 11 11 8 6 3 15  
17 SHRD 850−200 hPa vertical wind shear magnitude (r = 0−500 km) 0 0 0 0 27 0 12 5 0 39
18 SHGC Generalized vertical shear parameter (DeMaria 2010) 3 9 3 9 6 16 0 0 19 0  
19 T150 150 hPa temperature (r = 200−800 km) 23 8 7 16 0 29 0 0 0 13
20 T200 200 hPa temperature (r = 200−800 km) 24 0 0 29 0 30 0 0 0 28  
21 T250 250 hPa temperature (r = 200−800 km) 19 0 0 30 8 31 11 0 7 24  
22 EPOS Difference of equivalent potential temperature between lifted surface parcel and environment 0 0 0 17 9 12 0 9 0 35  
23 EPSS Same as EPOS except that saturation equivalent potential temperature is used for environment 0 24 21 0 0 8 0 7 0 6
24 ENEG Same as EPOS except that negative values of the difference are only considered 0 0 0 23 18 21 13 15 8 36
25 ENSS Same as ENEG except that saturation equivalent potential temperature is used for environment 0 0 0 0 19 24 0 28 0 17
26 TGRD The magnitude of the temperature gradient between 850 and 700 hPa (r = 0−500 km) 0 0 0 0 35 28 0 0 11 37  
27 T000 1000 hPa temperature (r = 200−800 km) 0 0 19 0 0 9 0 8 0 7
28 E000 1000 hPa equivalent potential temperature (r = 200−800 km) 0 0 20 25 0 0 0 30 0 29
29 R000 1000 hPa relative humidity (r = 200−800 km) 9 11 9 11 14 0 7 0 0 0
30 RHHI 500−300 hPa relative humidity (r = 200−800 km) 0 0 0 0 30 0 23 26 17 23
31 RHMD 700−500 hPa relative humidity (r = 200−800 km) 0 0 14 0 16 33 6 27 0 30  
32 RHLO 850−700 hPa relative humidity (r = 200−800 km) 0 0 0 24 0 23 0 29 0 11
33 D200 200 hPa divergence (r = 0−1000 km) 0 0 25 18 24 14 15 12 16 14  
34 COHC Ocean heat content (OHC) 7 6 6 7 7 7 10 4 2 4  
35 OHC2 Square of OHC2 5 12 4 4 4 4 4 14 13 8  
36 PHCN Climatology of OHC 21 21 0 0 0 0 9 0 6 0
37 CSST Climatology of sea surface temperature 0 0 0 0 0 0 0 0 0 0
38 SDDC Direction of SHDC 25 0 24 0 32 0 0 17 14 12
39 SHTD Direction of SHRD 28 22 17 21 23 19 21 23 22 21
40 SHTS Direction of SHRS 27 23 15 22 22 18 18 21 23 25
41 U200 200 hPa zonal wind (r = 200−800 km) 0 0 0 0 21 0 22 24 26 34
42 ZNAL Zonal storm motion 0 0 0 0 26 0 17 22 25 33  
43 V20C 200 hPa zonal wind (r = 0−500 km) 30 0 16 27 29 17 20 20 12 19
44 V300 300 hPa tangential wind (r = 0−500 km) 0 0 0 0 17 27 0 11 0 9
45 V500 500 hPa tangential wind (r = 0−500 km) 29 25 11 28 12 25 19 25 21 0
46 Z850 850 hPa vorticity 11 0 10 0 0 0 0 10 27 10  
47 TADV Temperature advection between 850 and 700 hPa (r = 0−500 km) 0 26 0 20 25 22 14 16 24 18  
48 PC30 Percent area of IR Tb < -30°C (r = 50−200 km) 31 0 0 0 31 0 24 0 20 22  
49 SDIR Standard deviation of IR Tb (r = 0−200 km) 8 10 8 12 10 13 0 18 0 0  
50 OSLP Absolute of (MSLP minus 970) 17 5 28 3 0 3 0 0 28 0 
51 TWAT Tendency of 850 hPa tangential wind (r = 0−500 km) 4 3 2 2 2 2 2 2 4 2  
52 DTL Distance to land at the initial time of a prediction 26 0 13 0 15 0 16 19 18 0
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the stepwise regression, as well as an investigation on the practical 
number of predictors (see Section 2.3), a total of 26 predictors 
is selected. The regression coefficients for these predictors are 
calculated from the training samples. Finally, the bias and the root 
mean square errors (RMSEs) of the Vmax and Pmin predictions 
up to 5 days are evaluated with independent samples.

2.2 Data sources
The training period includes years 2000 to 2012 and data 

sources to create the regression coefficients are as follows:
1) Vmax (10-min average wind) and Pmin in the JMA best track2 

are used as verification of the predictands and for predictors 
such as PERV, VMPE, PERP and PMPE (see Table 1);

2) Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015) 
for predictors related to the atmospheric environment in Table 
1;

3) TC central position in the JMA best track for predictors such 
as the vertical wind shear of TCs and Ocean Heat Content 
(OHC) along the TC track;

4) Infrared (IR) brightness temperature (Tb) of geostationary 
satellites (e.g., Bessho et al. 2016) for PC30 and SDIR;

5) Centennial Observation-Based Estimates of Sea-Surface 
Temperature (COBE-SST, Ishii et al. 2005), which is used in 
JRA-55, to compute an empirical maximum potential intensity 
(MPI, DeMaria and Kaplan 1994) for POT and POT2; and

6) OHC calculated with daily oceanic reanalysis data (MOVE/
MRI.com, Usui et al. 2006) for COHC and OHC2.
For the 2013-2015 independent evaluation period, the best 

track values are replaced by real-time analysis data from forecast-
ers on duty at JMA. For the atmospheric environment predictors, 
the JMA/GSM forecast fields are used instead of JRA-55 re- 
analysis. The atmospheric environment predictors are time-mean 
values and are calculated along a TC track predicted by the JMA/
GSM for the independent samples instead of along the best track 
TC locations that are used for the training samples. The JMA/
GSM predictions are available four times a day (00, 06, 12, and 
18 UTC). The forecast periods are 84 hours at 00, 06, and 18 UTC 
initial times, but are extended to 264 hours for the 12 UTC initial 
time. For the sea-surface temperature, the Merged satellite and 
in-situ data Global Daily Sea-Surface Temperature (MGDSST, 
Kurihara et al. 2006) are used as it is the JMA/GSM ocean bound-
ary condition.

2.3 Selection of predictors
The selected or eliminated predictors with the stepwise regres-

sion differ from one prediction time to another. As an example, 
Table 1 shows the predictors selected in the forward selection at 
prediction times of 24, 48, 72, 96, and 120 hours, respectively. 
The numbers in Column 3 of the table indicate the order in which 
the predictor is selected (zero means that the predictor is not 
selected). The smaller the number is, the more useful the predictor 
is considered to explain TC intensity change from the initial time 
to the target prediction time. For example, the persistence of the 
TC intensity change over the previous 12 hours from the initial 
time of the prediction (labelled as PERV and PERP) is one of the 
leading predictors at a prediction time of 24 hours, while they are 
not selected at 120 hours.

From an operational forecasting point of view, not only the 
forecast accuracy but also the simplicity of the forecast system 
is of great importance. For example, understanding the factors 
contributing to the intensity change would be difficult and com-
plex if the number of predictors and/or predictors themselves are 
different at each prediction time. DeMaria and Kaplan (1994) 
also mentioned that “For consistency of the prediction, the same 
predictors are used at all forecast intervals, even if the coefficients 
are not significantly different from zero at all intervals. In general, 
when a predictor is not significant for a particular forecast inter-
val, the regression coefficient becomes fairly small”. Therefore, 
26 predictors from among the 52 predictors are selected for Vmax 

and Pmin, respectively (see check mark in Column 4 of Table 1), 
based on verifications as will be shown in Section 3. In the selec-
tion, we consider the relative importance of each predictor shown 
in Column 3 of Table 1. Also we select only one predictor from 
among a group of similar predictors in order for the forecasters 
to easily understand the impact of the predictor on the predicted 
intensity change. For example, EPOS, EPSS, ENEG and ENSS 
are similar with each other, so we select only EPOS.

The regression coefficients of the 26 predictors, which indi-
cate the relative importance of each predictor to the predictands, 
are shown in Fig. 1. The positive (negative) values indicate con-
tributions to intensifying (weakening) TCs. The leading predictors 
(predictors with large amplitudes of regression coefficients) 
include those related to the current TC intensity such as MSLP, 
ocean heat content (COHC), and 850−200 hPa vertical wind shear 
magnitude (SHDC). These are similar to the leading predictors 
for the Atlantic and eastern North Pacific versions of SHIPS. The 
time variations of the regression coefficients tend to be larger for 
predictors that are related to initial TC intensity such as MSLP 
and POT with larger contributions for the shorter forecast ranges. 
The time variations seen in COHC and SHDC might be attributed 
to the average TC life cycle. The time variations of SHDC are also 
probably due to the interaction with other measures of vertical 
shear such as SHGC.

2.4 Target TCs
All TCs in the RSMC Tokyo – Typhoon Center’s area of 

responsibility (i.e., western North Pacific basin between 0°N− 
60°N and 100°E−180°E) that reached an intensity classification 
of tropical storm or stronger during their lifetime are considered 
in this study. When storms are classified as a tropical depression 
or an extratropical cyclone, however, these times are not included 
in the training samples except 6 hours before they are classified 
as tropical storm and at the time when the storms have declined in 
intensity to tropical depression or transitioned to an extratropical 
cyclone. As Vmax is not archived in the JMA best track when the 
storms are classified as a tropical depression or an extratropical 
cyclone, Vmax is set at 30 kt during such classifications. Further-
more, times after the TC centers are over land are excluded from 
the training samples.

The predictions for the independent samples are performed for 
initial times when the JMA/GSM TC tracking data are available. 
The TC tracking is initiated when forecasters on duty at JMA 

2 JMA best tracks are available at http://www.jma.go.jp/jma/jma-eng/jma- 
center/rsmc-hp-pub-eg/trackarchives.html

Fig. 1. Regression coefficients of the selected 26 predictors for (a) Pmin 
and (b) Vmax. Note that the regression coefficients for Pmin are shown 
with the opposite sign for easier comparison to Vmax. For each predictor, 
the regression coefficients are shown as a function of forecast times (ft) 
from 6 to 120 hours at the left margin of each abscissa box to 120 h at the 
right margin. 
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analyze TCs including those with tropical depression intensity in 
the western North Pacific basin. The predictions are stopped after 
the TCs make landfall in the TC track by JMA/GSM. 

The SHIPS predictions are verified against Vmax and Pmin 
in the JMA best track. All prediction times when the JMA/GSM 
tracks the target storms are verified. As mentioned above, howev-
er, Vmax is not archived in the JMA best track when the storms 
are classified as a tropical depression or an extratropical cyclone. 
Thus such prediction times are excluded in the verification of 
Vmax in the independent sample. Also note that the prediction 
times when the verifying TC still exists in the prediction but not 
in the best track, or vice versa, are not included in the verification 
(e.g., the samples are homogenous). 

3. Verification results

Verifications are shown in Figs. 2 and 3 for the independent 
sample predictions of Vmax and Pmin, respectively. The pre-
dictions with all 52 predictors and with predictors kept after the 
forward selection and backward elimination (see Table 1 for the 
predictors remained) result in a similar trend in both the RMSEs 
and bias, which indicates that the predictions with the limited 
number of the predictors can provide the same accuracy as those 
with all predictors. The bias is due to both the application of the 
regression equations to independent cases and to the difference 
in data sets used for calculating the atmospheric environmental 
predictors (i.e., the JMA-Reanalysis for the training samples and 
JMA/GSM forecast data for the independent samples). Using the 
JMA/GSM analyses for computation of regression coefficients 
instead of the JRA-55 reanalysis would be expected to reduce 
the bias. However, that would have required a large sample (e.g., 

more than 10 years) of JMA/GSM analysis fields, which would be 
expensive to obtain. As the model used for JRA-55 is based on the 
JMA/GSM with a horizontal resolution of 60 km as of December 
2009 (JMA 2007, 2013), the use of JRA-55 is a reasonable choice 
for computation of regression coefficients.

As described above, for simplicity of interpretation by fore-
casters, it is preferable to use fewer predictors. The RMSEs of the 
predictions of Pmin with 1 to 30 predictors are shown in Fig. 4, 
which indicates the RMSE sensitivity to the number of predictors. 
The prediction time is 48 hours and the predictors are added one 
by one in the order of the forward selection shown in Table 1. For 
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Fig. 2. Independent sample RMSE (top) and bias (bottom) of Vmax (kt) 
predictions, in which red, green and blue lines are for predictions with all 
52 predictors and with predictors kept in the forward selection and back-
ward elimination, respectively. Black open circles show the number of 
samples, corresponding to y-axis on the right. 

Fig. 3. As in Fig. 2, except for Pmin (hPa).
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example, POT, TWAT, OSLP, OHC2 and VMSH are used for the 
predictions with five predictors. Note that the RMSE decreases 
with the increasing number of the predictors up to about 11, 
but becomes saturated as more predictors are added. This result 
indicates that the RMSE is not sensitive to the number of the pre-
dictors as long as the leading predictors are included.

The benefit of operationalizing SHIPS at JMA is demonstrated 
by comparing the RMSEs of SHIPS to those of JMA/GSM and 
SHIFOR. Figure 5 shows the RMSEs of SHIPS predictions, Pmin 
and Vmax, with 52 (All) and the selected 26 (Test) predictors, 
the JMA/GSM, and SHIFOR (only for Pmin). The verification 
samples are the same as those for Fig. 3. While the RMSEs of 
Pmin SHIPS with the 26 predictors are slightly larger than those 
with the 52 predictors, they are much smaller than those of JMA/
GSM and SHIFOR, which are the techniques that the JMA official 
intensity forecasts are currently based on. For Vmax, the RMSEs 
with the 26 predictors are much smaller than those of JMA/GSM 
and almost the same as those with the 52 predictors, except for 
120 hours. The percentage improvement rates of Pmin SHIPS 
against SHIFOR at 24, 48, 72, 96, and 120 hours are 17, 21, 23, 
22, and 16%, respectively. This result indicates great potential for 
significant improvements to the JMA official intensity forecasts 
through operationalizing SHIPS. As Sampson and Knaff (2014) 
show, the length of official TC intensity forecasts at major opera-
tional centers is 5 days while it is only 3 days at JMA as of August 
2018. SHIPS would also allow an extension of the intensity fore-
cast length to 5 days.

As described in Section 2.3, a total of 26 predictors from 
among the 52 predictors are selected for Vmax and Pmin, respec-
tively. Although this reduction in the number of predictors results 
in a small increase in error, especially for Pmin (Fig. 5), the use 
of 26 predictors is a compromise between forecast accuracy and 

manageability of forecast operations.
Time series of annual-average errors of the RSMC Tokyo –  

Typhoon Center official forecasts of TC intensity, Pmin and 
Vmax, are shown in Fig. 6. The error statistics data were provided 
by the RSMC Tokyo – Typhoon Center. During both the difficult 
(large SHIFOR values) 2016 season and the relatively easier (small 
SHIFOR values) 2017 season, the RSMC’s official intensity fore-
cast errors were considerably below the SHIFOR values, which 
is an indication of skill. Since the SHIPS was first introduced for 
experimental use at the JMA Forecast Division during 2016, we 
conclude that this error reduction relative to SHIFOR indicates 
the benefit of using the SHIPS product. This improvement is most 
evident in 2016, which is significant due to the relatively large 
number of TCs that experienced rapid intensification during that 
season. Even during the easier 2017 season, the error reduction is 
considerable.

4. Summary

This study investigated tropical cyclone (TC) intensity 
prediction in the western North Pacific basin using a statistical-dy-
namical model called the Statistical Hurricane Intensity Prediction 
Scheme (SHIPS, e.g., DeMaria and Kaplan 1994), with input data 
available in operations at the Japan Meteorological Agency (JMA) 
such as the JMA Global Spectral Model (JMA/GSM) forecast 
fields. The predictands of SHIPS in this study are the maximum 
sustained surface wind speed (Vmax, 10-min average) and the 
minimum sea-level pressure (Pmin). Starting from 52 predictors, 
this study demonstrated through stepwise regression that the pre-
dictions with the limited number of the predictors can provide the 
same accuracy in the root mean squared errors (RMSEs) and bias 
as those with all predictors (Figs. 2 and 3). That is, the prediction 
accuracy is not so sensitive to the number of the predictors as long 
as the leading predictors are included (Fig. 4). 

Fig. 5. Independent sample RMSE of predictions of (top) Pmin (hPa) and 
(bottom) Vmax (kt). SHIPS with the selected 26 and with all 52 predictors, 
JMA/GSM, and SHIFOR (Pmin only) are black, red, blue, and green lines, 
respectively. Black open circles show the number of samples correspond-
ing to y-axis on the right. 

Fig. 6. Annual-average errors of JMA’s operational forecasts of TC inten-
sity in terms of (top) Pmin and (bottom) Vmax. Green, blue and red lines 
are for 1, 2, and 3 day forecasts, respectively. Dashed lines in the top panel 
shows the errors of SHIFOR.

0

5

10

15

20

25

30

0 12 24 36 48 60 72 84 96 108 120
0

500

1000

1500

2000
R

M
S

E
 (h

P
a)

N
um

be
r o

f s
am

pl
es

FT (h)

Pmin RMSE

Test
All

JMA/GSM
SHIFOR

# of samples

0

5

10

15

20

25

30

0 12 24 36 48 60 72 84 96 108 120
0

500

1000

1500

2000

R
M

S
E

 (k
t)

N
um

be
r o

f s
am

pl
es

FT (h)

Vmax RMSE

Test
All

JMA/GSM
# of samples



143Yamaguchi et al., SHIPS with JMA/GSM

From the perspective of possible future operations of SHIPS 
at JMA, we selected 26 predictors for both Vmax and Pmin based 
on the verification results shown in Figs. 2 to 4 and Table 1, and 
used these 26 predictors at every forecast time. That consistency 
simplifies interpretation of the predictions by the forecasters. 
The SHIPS forecasts with the 26 predictors were then compared 
to those from the JMA/GSM forecasts and a climatology and 
persistence approach called SHIFOR, which the JMA official 
intensity forecasts are currently based on. The RMSEs of SHIPS 
with the 26 predictors were found to be much smaller than those 
of the JMA/GSM and SHIFOR (Fig. 5), which indicates that the 
JMA official TC intensity forecasts can be significantly improved 
through operationalizing SHIPS. Moreover, SHIPS would allow 
an extension of a forecast length of the JMA official intensity 
forecasts from the current 3 days to 5 days.

Future studies will include adding new predictors to further 
improve the prediction accuracy of SHIPS. For example, Shimada 
et al. (2018) demonstrated improved accuracy by using a micro-
wave satellite-derived rainfall dataset from the Global Satellite 
Mapping of Precipitation (GSMaP, Kubota et al. 2007; Aonashi 
et al. 2009). Another future study will include the use of the JMA 
official TC track forecasts instead of JMA/GSM track predictions 
when calculating environmental predictors such as the ocean heat 
content and/or vertical wind shear. The impact is expected to be 
significant when the difference between the official track forecasts 
and the JMA/GSM track predictions is large. Such a change may 
require a new method to remove the GSM representation of the 
vortex to avoid errors in the vertical wind shear and other atmo-
spheric predictors, as shown by DeMaria (2010). 
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