
Uncertainty in power outage prediction models and other decision-support 
systems that are run prior to hurricane landfall can be improved using 

ensembles from the Monte Carlo wind speed probability model.

INCORPORATING HURRICANE  
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INTO A DECISION-SUPPORT 
APPLICATION FOR POWER  
OUTAGE MODELING
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T he National Hurricane Center (NHC) is responsible for issuing official  
 track and intensity forecasts for all tropical cyclones1 (TC) in the Atlantic  
 and northeast Pacific basins. Official tropical cyclone forecasts have a 

variety of users from the public and private sectors and are often used to drive 
nonmeteorological models. These downstream models, called decision-support 
systems, provide useful information to stakeholders regarding tropical cyclone-
related impacts.

Despite decades of research and model development that have led to a steady 
reduction in tropical cyclone track forecast errors and, recently, a more modest 
reduction in intensity forecast errors (Fig. 1), tropical cyclone forecasts are not 
perfect. Although continued efforts will lead to better and better forecasts, 
forecast errors will always exist. This poses a particular challenge to those who 
use decision-support systems that depend on official TC forecasts, especially 
when it is unknown how forecast uncertainty combines with uncertainty of 
the models that are used in decision-support systems. For this reason, it is 
important not only to have ways of estimating and communicating uncertainty 
in TC track and intensity forecasts but also to understand how these errors 
affect decision-support system outputs.

In this paper, we look at the impacts TC track and forecast errors have on a 
hurricane outage prediction model (HOPM). Starting at 24 h prior to landfall, 
a set of plausible tracks and intensity forecast scenarios based on the official 
NHC forecast are generated using the  

1 In this paper, the term tropical cyclone is used to represent tropical storms, subtropical 
storms, and hurricanes.

Effects of Hurricane Ike on the Bolivar Peninsula, Texas. (Photo credit: Michael Potts.)



Monte Carlo wind speed probability (MCWSP) 
algorithm (DeMaria et al. 2009). Each of these TC 
forecast scenarios is then input into the HOPM, and 
the resulting outage predictions are analyzed.

OVERVIEW OF HOPM. Electric power utilities 
make many critical decisions in the days prior to 
hurricane landfall that are primarily based on the 
estimated impact to their service area. For example, 
utilities must determine how many repair crews to 
request from other utilities, the amount of mate-
rial and equipment they will need to make repairs, 
and where in their geographically expansive service 
area to station crews and materials (DeGaetano 
et al. 2008). Obtaining extra crews and materials is 
expensive, with preparedness costs often in the tens 
of millions of dollars for a single storm for a single 
utility (Zhu et al. 2007; Cerruti and Decker 2012). At 
the same time, having too few resources available 
can significantly delay power restoration. Accurate 
forecasts of the impact of an approaching hurricane 
within their service area are critical for utilities in 
balancing the costs and benefits of different levels 
of resources.

There have been a number of methods developed 
for estimating power outages caused by weather 
events such as hurricanes. Some of these studies have 
focused on modeling how weather events affect power 
system reliability. Brown et al. (1997) developed 
methods to assess the reliability of the power distribu-
tion system to momentary interruptions and storms. 
They modeled potential storms events (defined as a 
period of high winds) using Monte Carlo simula-
tion based on 20 years of historical wind data from 
Snohomish County, Washington. Brown et al. (1997) 
used both wind speed and duration of strong winds 

to determine power system reliability (i.e., average 
number of interruptions per year). Balijepalli et al. 
(2005) also used Monte Carlo simulation to evaluate 
the impact of lightning on power system reliability. 
They used data from 177 storms in Iowa and a boot-
strapping method to calculate the average annual 
lightning fault rates. Zhou et al. (2006) used a Poisson 
regression model and a Bayesian network model to 
predict annual weather-related failure rates based on 
6 years of data from Manhattan, Kansas. Although 
both models performed similarly, they identified the 
Bayesian approach as preferable because it is more 
informative, easier to implement, and can be updated 
more easily than the Poisson regression model. 
They considered 10 different weather conditions but 
determined that wind, ice, and lightning events had 
the largest influence on the power system. Like the 
previous studies, Zhou et al. (2006) used Monte Carlo 
simulation to quantify uncertainty in the predictions 
and determine confidence bands. These three studies 
focused on modeling how weather events influence 
power system reliability on an annual basis; they 
were not focused on forecasting outages for specific 
storms. In contrast, Reed (2008), focused on particu-
lar windstorms impacting the power system in the 
Seattle area, deriving empirical relationships between 
gust wind speeds and the likelihood of damage and 
duration of outages. Reed et al. (2010a) examined 
damage to energy infrastructure from Hurricane 
Rita (2005). While the focus was on understanding 
past damage, not predicting future damage, Reed 
et al. (2010a) did conclude that high gust wind speeds 
alone can lead directly to damage. In contrast, Reed 
et al. (2010b) investigated energy system performance 
during Hurricane Katrina (2005) and concluded that 
substantial damage can occur at lower wind speeds 
than wind-based models would predict because of 
the effects of storm surge and inland rainfall. Reed 
et al. (2010a,b) did not consider either predictive 
modeling or the uncertainty in hurricane forecasts, 
but their conclusions do indicate the complexity 
involved in predicting the impacts of hurricanes on 
power systems.

There has also been prior work on developing 
models to forecast power outages or damage resulting 
from weather events such as thunderstorms and ice 
storms. Zhu et al. (2007) developed models to predict 
outages for approaching storms. They trained their 
models using 10 years of historical data and identified 
six different types of storms. Their models are based 
on temperature, wind speed, and lightning. Zhu et al. 
(2007) found that lightning is the most important 
cause of outages (>50%).

AFFILIATIONS: Quiring—Department of Geography, 
Texas A&M University, College Station, Texas; SchuMAcher—
Cooperative Institute for Research in the Atmosphere, Colorado 
State University, Fort Collins, Colorado; guikeMA—Department 
of Geography and Environmental Engineering, The Johns Hopkins 
University, Baltimore, Maryland
CORRESPONDING AUTHOR: Steven M. Quiring, Department 
of Geography, Texas A&M University, College Station, TX 77843-
3147
E-mail: squiring@tamu.edu

The abstract for this article can be found in this issue, following the 
table of contents.
DOI:10.1175/BAMS-D-12-00012.1

In final form 24 May 2013
©2014 American Meteorological Society

48 January 2014|

mailto:squiring%40tamu.edu?subject=
http://dx.doi.org/10.1175/BAMS-D-12-00012.1


DeGaetano et al. (2008) developed an approach 
for forecasting ice accretion on electric distribution 
lines using the Weather Research and Forecasting 
model and an ice accretion model. The forecasts of 
ice accretion, made 6–12 h in advance, are then used 
to predict damage to the power system. DeGaetano 
et al. (2008) applied these models in two regions: 
one centered on the border of North Carolina and 
Virginia (23 ice storm events) and the second over 
central New York and northern Pennsylvania (15 ice 
storm events). Their approach provided relatively 
accurate short-term forecasts of ice accretion that are 
valuable for electric utilities.

Li et al. (2010) developed a Poisson regression 
model in a Bayesian hierarchical framework for 
predicting power outages with up to a 3-day lead 
time based on forecasts of severe weather events 
(e.g., hurricanes, tornados, and thunderstorms). 
The weather forecasts are based on the IBM Deep 
Thunder weather modeling system that provides 
forecasts at 1–2-km resolution. Their power outage 
model utilizes forecasts of wind gusts, gust frequency, 
rainfall, and temperature as well as rainfall in the two 
weeks preceding the storm event. They developed the 
power outage model based on data from a utility in 
southeastern New York for 19 storm events (2004–09). 
Unlike many of the other outage models, they explic-
itly incorporate uncertainties in the weather forecast 
and uncertainties in the damage model and provide 
estimates of confidence for their predictions of power 
outages.

Cerruti and Decker (2012) developed an infra-
structure damage model for predicting weather-
related damage to electric infrastructure using 

generalized linear models. They developed their 
models using damage data (2003–08) from the Public 
Service Electric and Gas Company service area in 
New Jersey. The models predicted weather-related 
damage using variables such as air temperature, dew-
point temperature, precipitation, and maximum wind 
gust. They found that model accuracy was improved 
when days were stratified into six weather types (e.g., 
thunderstorms, heat, wind).

Some studies have focused specifically on model-
ing power outages or damage resulting from hurri-
canes. Huang et al. (2001a) used event-based Monte 
Carlo hurricane simulation techniques to determine 
the 50-yr recurrence interval for hurricane winds in 
the southeastern United States. They used 112 years 
of historical hurricane data to characterize the cen-
tral pressure, radius of maximum winds, approach 
angle, translation velocity, and annual occurrence 
rate of hurricanes that had influenced this region. 
Hurricane winds were simulated with the gradi-
ent wind model developed by Georgiou (1985), and 
the wind field model was combined with a damage 
model, constructed using actual insurance loss data, 
to evaluate long-term risk (i.e., expected annual loss 
ratio). They found that the expected annual damage 
ratio drops very quickly with distance from the coast. 
They also concluded that the design load standard 
[American Society of Civil Engineers (ASCE) stan-
dard 7-95], may overestimate the design wind speeds 
in coastal areas. Huang et al. (2001b) applied the 
approach of Huang et al. (2001a) to estimate damage 
to residential structures and to estimate annualized 
losses due to hurricanes in North Carolina, South 
Carolina, and Florida. They found that estimated 

Fig. 1. NHC Verification Report Figs. 5.3 and 5.4 (www.nhc.noaa.gov/verification/). Annual average official (left) 
track (in n mi) and (right) intensity (kt) errors for Atlantic basin tropical cyclones for the period 1989–2009, 
with least-squares trend lines superimposed (National Hurricane Center 2010).
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annualized loses in Florida are much greater than in 
North Carolina or South Carolina. Davidson et al. 
(2003) analyzed power outages from five hurricanes 
that affected Duke Power and Carolina Power and 
Light (now Progress Energy). They found a statisti-
cally significant relationship between the maximum 
wind gust and the number of outages. They concluded 
that, while wind speed is an important predictor, it 
is not sufficient for explaining the pattern of outages 
and that other explanatory variables are necessary 
(Davidson et al. 2003). Liu et al. (2005) extended the 
work of Davidson et al. (2003) by developing Poisson 
and negative binomial generalized linear models 
(GLMs) for the same study region. They found that 
the most important variables for explaining varia-
tions in power outages were maximum wind gust, the 
number of transformers, the power company affected, 
and the hurricane indicator (Liu et al. 2005).

Liu et al. (2007) developed accelerated failure time 
(AFT) models for power restoration times from out-
ages caused by hurricanes and ice storms. Many of the 
same variables (e.g., maximum wind gust, hurricane 
indicator) found to be important in previous studies 
were also statistically significant for predicting 
restoration times. One of the primary limitations 
identified by Liu et al. (2007) was the lack of poten-
tially important tree-related explanatory variables 
(e.g., number, type, age of trees, and tree trimming 
frequency) and infrastructure variables (e.g., age and 
condition of the poles). Liu et al. (2008) developed 
spatial generalized linear mixed models (GLMMs) 
using the same study area and hurricanes as Liu et al. 
(2007) but at a higher spatial resolution. They found 
that the results from the spatial GLMMs are not sig-
nificantly better than the negative binomial GLM or 
simpler (nonspatial) GLMM. Consistent with their 
prior work, the best models considered maximum 
wind gust, the number of protective devices in each 
grid cell, and the hurricane and company indicator 
variables. Winkler et al. (2010) examined the effect 
of network topology on power system reliability 
during hurricanes. They estimated the probability of 
damage of each utility pole based solely on gust wind 
speed and then estimated power outages based on 
the topology of the power system. Their predictions 
power outages for Hurricane Ike had an error of ~16% 
for the overall service area.

A conceptually different approach from that 
of Winkler et al. (2010) is the HOPM of Han et al. 
(2009a,b), Guikema and Quiring (2012), and Nateghi 
et al. (2011). The HOPM are a family of statistical 
models that utilize predictions of tropical cyclone 
wind speed and duration of strong winds, along with 

power system and environmental variables (e.g., soil 
moisture, long-term precipitation), to forecast the 
number and location of power outages and, in the case 
of Nateghi et al. (2011), the duration of outages prior 
to hurricane landfall. An outage is defined as a non-
transitory activation of a protective device (e.g., fuses, 
circuit breakers, automatic circuit reclosers). Utility 
companies are often most interested in physical dam-
age to the electric power system since this directly 
affects restoration times and costs. However, much 
of the past modeling work has focused on predicting 
power outages because outage data are more readily 
available for model validation. The modeling frame-
work and variables used in the HOPM have evolved 
over time based on our conversations and meetings 
with utility company personnel and our experience 
with applying the HOPM in real time.

The first generation of the HOPM utilized negative 
binomial GLMs to predict power outages (Han et al. 
2009b). The predictions were based on maximum 
wind gust and duration of strong winds, the time 
since the last hurricane, radius of maximum winds, 
and central pressure deficit. Han et al. (2009b) also 
used soil moisture levels from three soil layers, mean 
annual precipitation, and antecedent precipitation 
conditions over time scales ranging from 1 month to 
2 years (e.g., standardized precipitation index). Soil 
moisture and antecedent precipitation data provide 
information about the stability of the soil, since 
saturated soils increase the likelihood of trees being 
uprooted or poles being blown over when subjected 
to strong winds.

Han et al. (2009a) improved upon the accuracy of 
Han et al. (2009b) by utilizing generalized additive 
models (GAMs) for predicting hurricane-related out-
ages. They found that GAMs more accurately predict 
the spatial distribution of power outages and GAMs 
overcome some of the overprediction problems 
associated with GLMs. Guikema et al. (2010) devel-
oped a set of models for predicting physical damage 
to the power system using both the regression-based 
models employed in previous studies and two data 
mining approaches [e.g., classification and regression 
trees (CART) and Bayesian regression trees (BART)]. 
The data mining approaches outperformed the 
regression-based approaches. One limitation of all 
of these statistical models is that they are not suf-
ficiently flexible and robust to capture the complexi-
ties of the infrastructure data. Specifically, they have 
difficulty with zero inflated data (i.e., datasets that 
contain many lots of zeros). Therefore, Guikema and 
Quiring (2012) developed a two-stage model that uses 
CART and a Poisson GAM to predict the number of 
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power outages. The CART is used to model whether 
a location will experience zero power outages or more 
than zero power outages and the Poisson GAM then 
estimates the number of power outages in all of the 
locations where CART predicts outages will occur. 
This approach has strong predictive accuracy and it 
provides predictions that are responsive to hurricane 
characteristics and local conditions (Guikema and 
Quiring 2012). This hybrid model is the HOPM used 
in this paper because it provides better out of sample 
predictive accuracy than the Han et al. (2009a,b) 
models. A detailed discussion of the modeling 
approach and an evaluation of model accuracy are 
provided in Guikema and Quiring (2012).

The occurrence of power outages during hurri-
canes depends on a number of factors that influence 
the vulnerability of electric power systems to outages 
including power system exposure to falling trees, 
windborne debris, and high winds. We use the length 
of distribution line, the number of poles, switches, 
transformers, and customers in different geographic 
areas as proxy measures for exposure of the power 
system. Other factors include spatially varying condi-
tions such as land use/land cover, long-term precipi-
tation patterns in the area, and soil moisture levels 
before a hurricane makes landfall. In our models, we 
utilize data from the service area of a major utility 
in the central Gulf Coast region. The service area is 
divided into 3.66 km (12,000 ft) by 2.44 km (8,000 ft) 
grid cells. These rectangular grid cells are defined by 
the utility company and used in their internal inven-
tory and monitoring systems. This is the resolution at 
which the outage data and data on the power system 
(e.g., poles, transformers) are available. The 6,681 
grid cells that cover the service area are the unit of 
analysis for our statistical modeling. The models are 
trained and validated using power outage data at the 
grid cell level from five past hurricanes [Danny (1997; 
627 outages), Dennis (2005; 4,840 outages), Georges 
(1998; 1,075 outages), Ivan (2004; 13,568 outages), 
and Katrina (2005; 10,105 outages)]. The data used 
in the HOPM are described in more detail in Han 
et al. (2009a,b).

Uncertainties in the hurricane track and intensity 
forecasts are believed to be the largest source of uncer-
tainty in the HOPM predictions. Shifts in the track or 
changes in intensity that are not accurately forecast by 
numerical weather prediction models can lead to large 
differences between the predicted and the observed 
power outages. This uncertainty can only be reduced 
through improved track and intensity forecasting. 
Other sources of uncertainty in modeling power 
outages include the accuracy of the input variables 

(e.g., wind speed, soil moisture) and the form (e.g., 
type of model used) and fit of the hurricane outage 
prediction models. Prior studies have assessed the 
accuracy of the hurricane wind field model used in 
this study (Willoughby and Rahn 2004; Willoughby 
et al. 2006) and quantified the uncertainty associated 
with the form of the HOPM (Guikema et al. 2010; 
Guikema and Quiring 2012). This paper focuses solely 
on quantifying how errors in the hurricane track and 
intensity forecasts influence the accuracy of power 
outage predictions.

OVERVIEW OF MCWSP ALGORITHM. The 
MCWSP model estimates the probabilities of wind 
speeds exceeding 17 m s–1 [39 miles per hour (mph); 
tropical storm–force winds], 26 m s–1 (58 mph), and 
33 m s–1 (74 mph; hurricane-force winds) at a given 
point within the next 12, 24, 36, …, 120 h (DeMaria 
et al. 2009). For each tropical cyclone, the MCWSP 
model generates 1,000 forecast realizations by sam-
pling from track and intensity forecast errors from 
the last 5 years and determines the wind radii of each 
realization using a simple climatology and persistence 
scheme. Because the realizations are based on track 
and intensity forecast errors, the MCWSP model 
accounts for the improvements in track and intensity 
forecasts that are shown in Fig. 1. An example of the 
1,000 track realizations for the 1200 UTC 25 August 
2011 forecast for Hurricane Irene is shown in Fig. 2 
(left). Wind speed probabilities are then derived at 
each point in the model domain by counting the 
number of realizations where the wind speed exceeds 
the threshold of interest relative to the total number 
of realizations (Fig. 2, right).

Forecasters at the National Hurricane Center use 
data from various sources, including statistical and 
dynamical models, to make tropical cyclone track and 
intensity forecasts (Rappaport et al. 2009). In addition 
to using individual model outputs, forecasters also 
typically consider the average of predictions made 
by groups of different models initialized at the same 
time, which is referred to as a consensus forecast. 
Strong agreement between models is one factor that 
may indicate that there is limited forecast uncertainty. 
Goerss (2007), for example, found consensus model 
spread to be one of the leading predictors of consensus 
track forecast errors in the Atlantic. Goerss (2007) 
examined whether errors in a track forecast con-
sensus (CONU) could be predicted ahead of time to 
provide forecasters with a measure of confidence in 
the forecast. It was found that consensus model spread 
(i.e., the average distance of each of the member 
forecasts from the consensus forecast) and tropical 
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cyclone intensity were important predictors of CONU 
forecast errors in the Atlantic. Using CONU tropical 
cyclone track forecasts data from 2001 to 2003 and a 
pool of potential predictors, a stepwise linear regres-
sion was used to develop models for predicting errors. 
The predicted CONU tropical cyclone track forecast 
errors are often referred to as the Goerss predicted 
consensus error (GPCE).

DeMaria et al. (2013) demonstrated that past track 
forecast errors can be separated into terciles based 
on their corresponding GPCE value and that track 
forecast errors in the low (high) terciles tend to cor-
respond to less (more) spread in forecast errors. As 
such, this methodology has been incorporated into 
the MCWSP model (DeMaria et al. 2013). Including 
GPCE modifies the wind speed probabilities such 
that they are more confined to the actual forecast 
track when the GPCE value is low: that is, when track 
forecast uncertainty is low. Conversely, when the 
GPCE value is high (e.g., track forecast uncertainty 
is high), the wind speed probabilities are modified 
such that they are less confined to the actual forecast 
track. Since the GPCE MCWSP model has shown 
progress in refining estimates of track forecast errors 
and represents the operational MCWSP, it is used in 
this paper.

INCORPORATING HURRICANE FORE-
CAST ERROR INFORMATION INTO THE 
HOPM. The MCWSP model is well suited for use 
in this paper because it can generate a large number 
of possible scenarios for any given tropical cyclone 
track and intensity forecast. Each of these scenarios 
can be used as input for the HOPM to estimate 

outages. Three cases were chosen to demonstrate 
how the MCWSP can be used to drive the HOPM: 
Hurricane Ivan (2004), Hurricane Dennis (2005), and 
Hurricane Katrina (2005). These cases were chosen 
because they fall within the domain of the HOPM. 
This study focused on running the HOPM when the 
hurricane was 24 h prior to landfall. Although most 
utility companies will begin to evaluate the potential 
impact of a tropical storm and run decision-support 
models starting 3–5 days prior to landfall, we chose 
to utilize forecasts 24 h prior to landfall since this is 
the minimum lead time that utility companies need 
to plan and prepare for a hurricane. Once there is 
less than 24 h until landfall, it becomes very difficult 
to prepare and position personnel and equipment. 
The amount of uncertainty in the forecast track and 
intensity is also much lower at 24 h than it is for 48, 72, 
or 96 h. Therefore, the errors reported in this paper 
likely represent the best-case scenario in terms of the 
accuracy of the power outage predictions. Official 
forecast tracks for each of these three cases at 24 h 
prior to landfall are shown in Fig. 3. For each case, 
the MCWSP model was run to generate 1,000 forecast 
realizations by sampling from track and intensity 
forecast errors from the last 5 years and adding these 
errors directly to the official forecast of track and 
intensity issued 24 h prior to landfall.

The track and intensity from each forecast real-
ization were used as input for the Willoughby et al. 
(2006) wind field model to simulate the maximum 
wind gust and the duration of strong winds [length 
of time that wind speeds are in excess of 20 m s–1 
(45 mph)] for each grid cell in the HOPM domain. The 
threshold used for calculating the duration of strong 

Fig. 2. (left) 1,000 track realizations for Hurricane Irene on 25 Aug 2011 and (right) the corresponding 34-kt 
0–120-h cumulative wind speed probabilities.
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winds was based on previous research (Huang et al. 
2001a,b). Finally, these data are used as input to the 
HOPM and the location and number of outages are 
computed for each forecast realization.

The resulting power outage distributions are 
shown in Fig. 4. In addition to the outage distribu-
tions, Fig. 5 also shows the tracks and intensities of 
the five forecast scenarios generated by the MCWSP 
model producing the smallest number of model-
predicted outages (i.e., best-case scenarios) and the 
five forecast scenarios producing the largest number 
of model-predicted outages (i.e., worst-case scenarios) 
at 24 h prior to landfall.

The HOPM predictions in Fig. 4 show considerable 
spread, confirming that errors in the official tropical 
cyclone forecast track and intensity have a signifi-
cant impact on the number of outages predicted by 
the HOPM. Hurricane Ivan appears to be the most 
extreme of the three cases tested, with HOPM power 

outages estimates ranging from 175 to almost 34,000 
(standard deviation of 8,241 outages). This is in 
agreement with the experiences of utility personnel 
in the area impacted by the storm who reported that 
Hurricane Ivan was a particularly difficult storm for 
them to estimate impacts for (C. Wallis, personal 
communication). Hurricane Dennis also was quite 
sensitive to hurricane track/intensity forecast errors, 
ranging from 1,330 to almost 30,000 predicted out-
ages (standard deviation of 6,348). The variation 
in the number of outages predicted for Hurricane 
Katrina was less sensitive to errors in the forecast 
track and intensity yet still range from 3,377 to almost 
34,000 outages (standard deviation of 3,682). Note 
that Hurricanes Ivan and Dennis had similar tracks, 
with landfall locations in less densely populated east-
ern Alabama and the Florida Panhandle, areas where 
population density is also more variable. In contrast, 
Hurricane Katrina made landfall over a more densely 

Fig. 3. Official National Hurricane Center forecast tracks for (left) Hurricane Ivan, (middle) Hurricane Dennis, 
and (right) Hurricane Katrina 24 h prior to landfall.

Fig. 4. Distribution of the HOPM-predicted power outages for (left) Hurricane Ivan, (middle) Hurricane Dennis, 
and (right) Hurricane Katrina made 24 h prior to landfall based on the 1,000 possible forecast track and intensity 
scenarios generated by the MCWSP. The bin corresponding to the number of outages based on the NHC official 
forecast is red, the bin corresponding to the mean of the 1,000 scenarios is green, and the bin corresponding 
to the actual number of outages has an asterisk above it.
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populated area with a more uniform population 
density. Because of this, power outage predictions 
for Hurricane Katrina should be less sensitive to 
relatively small track changes. Small track changes for 
the other two storms could bring the areas of highest 
impact more directly over the more scattered areas of 
higher population density, but for Hurricane Katrina 
shifts in the track would keep the areas of high impact 
over more uniformly—and densely—populated areas.

In addition, it is not surprising that the power 
outage predictions for Hurricane Katrina had less 
spread than for Ivan and Dennis because Katrina 
had the lowest GPCE value. That is, the track fore-
cast uncertainty for Katrina was relatively low (in 
the lowest tercile) and therefore the realizations 
produced by the GPCE MCWSP model were more 
constrained. The NHC track forecasts for Katrina 
that were issued up to 2½ days before landfall were 
very accurate. The official track forecast issued 24 h 
prior to 1200 UTC 29 August had an error of only 

24 n mi (1 n mi = 1.15 mi), less than half the corre-
sponding 10-yr average (1995–2004) calculated from 
all Atlantic basin forecasts (Knabb et al. 2005). On 
the other hand, the average NHC intensity forecast 
errors during Katrina were 17 kt (1 kt = 1.15 mph) 
for the 24-h forecasts, much larger than the cor-
responding Atlantic 10-yr average of 10 kt (Knabb 
et al. 2005).

The track and intensity of the hurricane scenarios 
that had the highest (i.e., worst case) and lowest (i.e., 
best case) number of predicted outages are shown 
in Fig. 5. Not surprisingly, the worst-case scenarios 
are associated with hurricanes that intensify during 
the 24 h prior to landfall and with storms that track 
directly over (or just to the west of) the utility com-
pany’s service area. In particular, the worst-case 
scenarios for Hurricane Ivan and Hurricane Katrina 
are associated with storms that remained major 
hurricanes as they moved through the service area 
(i.e., they weakened very slowly after landfall). The 

Fig. 5. (top) The five best-case scenarios (i.e., fewest predicted outages) and (bottom) the five worst-case 
scenarios (i.e., most predicted outages) based on HOPM-predicted power outages for (left) Hurricane Ivan, 
(middle) Hurricane Dennis, and (right) Hurricane Katrina using 1,000 possible forecast track and intensity 
scenarios generated by the MCWSP 24 h prior to landfall.
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location and strength of these storms result in very 
high wind speeds in the service area. Conversely, all of 
the best-case scenarios are associated with hurricanes 
that weakened during the 24 h prior to landfall and 
with storms that shifted away from the service area 
or into the less densely populated areas. For example, 
for Hurricane Katrina the best-case scenarios were 
storms whose track was shifted to the east of Mobile 
and whose intensity decreased to tropical storm 
strength at (or shortly after) landfall. The best- and 
worst-case scenarios represent the extremes and they 
are much different than most of the 1,000 scenarios 
generated by the MCWSP model. However, these 
cases illustrate how changes in track and intensity 
(even 24 h prior to landfall) can have a significant 
impact on power outage predictions.

One method for quantifying the sensitivity of the 
HOPM predictions to variations in track and intensity 
is to calculate the coefficient of variation (coefficient 
of variation = standard deviation/ensemble mean) for 
each hurricane. The coefficient of variation provides 
a measure of the relative variability in the HOPM 
predictions and it allows us to directly compare the 
three cases. The coefficient of variation is 42% for 
Hurricane Katrina, 46% for Hurricane Dennis, and 
63% for Hurricane Ivan. This suggests that more 
confidence (less uncertainty) could be placed in 
the outage predictions for Hurricane Katrina and 
Hurricane Dennis than for Hurricane Ivan.

While it is instructive to look at the extremes from 
all 1,000 scenarios to demonstrate how variations 
in hurricane track and intensity can influence the 
HOPM, it is better to use the ensemble average (i.e., 
the average number of outages based on all 1,000 
simulations) to predict the number of outages. In all 
three cases that we examined, the ensemble average 
based on the 1,000 simulations is closer to the actual 
number of outages than predictions based on only the 
National Hurricane Center official forecast (OFCL) 

(Table 1). The HOPM prediction for Hurricane Ivan 
based on the OFCL 24 h prior to landfall had a relative 
error of 32.4% and the MCWSP ensemble average had 
a relative error of 3.9%. For Hurricane Dennis, the 
HOPM prediction based on the OFCL had a relative 
error of 288.4% and the MCWSP ensemble average 
had a relative error of 185.3%. The HOPM predic-
tion for Hurricane Katrina based on the OFCL had 
relative error of 30.2% and the MCWSP ensemble 
average had a relative error of 12.9%. For these three 
cases, the ensemble average based on running the 
HOPM 1,000 times provides a better estimate of the 
actual number of outages than running the HOPM 
once using the National Hurricane Center official 
forecast. Based on the three cases that we examined, 
the ensemble average provides a reasonable estimate 
of the expected number of outages. Of course these 
three cases are not enough for us to conclude whether 
this finding is robust and would hold up if we evalu-
ated more hurricanes.

The ensemble average appears to be a reason-
able predictor of the power outages, but it is a single 
number. The 1,000 hurricane scenarios can also be 
used to estimate the uncertainty in this prediction by 
constructing confidence bounds around the ensemble 
average. For consistency with the forecast cone, the 
range that captures 67% of the forecast outages will 
be calculated. If the HOPM outages were normally 
distributed, this range could be calculated using mean 
and standard deviation from the 1,000 scenarios (e.g., 
lower bound = ensemble mean – 1 standard deviation; 
upper bound = ensemble mean + 1 standard devia-
tion). However, it is evident from the histograms show 
in Fig. 4 that the outage predictions are not normally 
distributed and therefore the confidence bounds will 
be constructed using the empirical distribution by 
rank ordering the outage predictions and identifying 
the range that captures 67% of the forecast outages. 
Based on this approach, the outage range for Hurricane 

Table 1. Summary of the HOPM-predicted power outages based on the National Hurricane Center official 
forecast and the 1,000 possible forecast track and intensity scenarios generated by the MCWSP (ensemble). 
The ensemble mean and standard deviation are based on the 1,000 track/intensity scenarios. The observed 
outages are the actual number of outages reported by the utility. The relative error is based on the differ-
ence between the forecast and observed number of outages divided by the observed number of outages.

Hurricane Ivan Hurricane Dennis Hurricane Katrina

OFCL forecast 9,167 18,798 7,053

OFCL forecast relative error (%) 32.4 288.4 30.2

Ensemble mean (standard deviation) 13,035 (8241) 13,808 (6348) 8,800 (3628)

Ensemble mean relative error (%) 3.9 185.3 12.9

Observed outages 13,568 4,840 10,105
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Ivan is 4,318–21,793; the outage range for Hurricane 
Dennis is 7,296–20,834; and the outage range for 
Hurricane Katrina is 5,631–11,793. In other words, 
the model estimates that there is a 67% chance that 
the actual number of outages for Hurricane Katrina 
will be between 5,631 and 11,793. The outage ranges 
for these three storms match the sensitivity results 
described above. Hurricane Ivan has the largest range 
(and therefore the greatest uncertainty), and Hurricane 
Katrina has the smallest range. The actual number of 
outages was within these ranges for Hurricane Ivan 
and Hurricane Katrina, but the actual number of 
outages for Hurricane Dennis (4840) was below the 
forecast range. We expect that actual outages will be 
outside this range 33% of the time.

Of course, the 1,000 scenarios can be used to con-
struct outage ranges for any confidence level of inter-
est (20%, 50%, 90%, etc.). These data can also be used 
to answer other questions, such as the probability that 
the number of outages will exceed 5,000 (or 10,000) 
or whatever other threshold is seen as important 
from a planning standpoint. This ability to estimate 
quantiles of the probability distribution for outages 
is particularly valuable for utility decision makers, 
who in many cases may be risk averse. A risk-averse 
decision maker is particularly concerned about un-
certainty in impacts, weighting impacts nonlinearly 
(Clemen and Reilly 1999). If a model such as HOPM 
provides only a point estimate, it is not providing the 
information needed by risk-averse decision makers, 
limiting their ability to make well-supported deci-
sions about prestorm preparation activities.

The ensemble-based approach used in this paper 
provides a significant advance over previous work 
for hurricane power outage prediction. Most previ-
ous methods for predicting power outages due to 
hurricanes (e.g., Liu et al. 2005, 2007, 2008; Han 
et al. 2009a,b; Guikema et al. 2010; Winkler et al. 
2010) have not adequately modeled the uncertainty 
in the hurricane forecasts or incorporated it into the 
outage forecasts. Li et al. (2010) is the only prior study 
that has explicitly accounted for weather forecast 

uncertainty (i.e., differences between forecasted 
and observed weather variables). They provided 
confidence intervals on their damage predictions 
as well as worst-case scenarios. However, Li et al. 
(2010) focused on predicting damage to the power 
system from all weather events. Therefore, they did 
not explicitly incorporate uncertainty due to varia-
tions in the track and intensity of tropical storms and 
so their approach is not appropriate for quantify 
uncertainty associated with hurricanes. We have 
demonstrated that incorporating the uncertainty can 
both improve the predictions and provide a strong 
characterization of the uncertainties in the fore-
casts. Although this study has focused on the needs 
of electric utilities, the approach and methods used 
for quantifying and representing uncertainty can be 
applied to model how other weather-sensitive enter-
prises such as agriculture, transportation, emergency 
management, insurance, and water resources will be 
effected by adverse weather events such as hurricanes 
(Li et al. 2010). Accounting for the uncertain nature 
of hurricane forecasts in decision-support systems 
will provide better information that can enhance risk 
management and business continuity.

SUMMARY AND CONCLUSIONS. The main 
results of this study can be summarized as follows:

1) Small errors in the official track and/or intensity 
forecast can lead to large errors in the resulting 
HOPM outage prediction. Table 2 shows the 
official 24-h forecast position at approximately 
24 h prior to landfall for Hurricanes Ivan, Katrina, 
and Dennis versus the observed positions and 
intensities at the forecast validation time (ob-
tained from best-track data). The official 24-h 
track (intensity) forecasts for Hurricanes Ivan and 
Katrina 24 h prior to landfall had below (above) 
average errors (Franklin 2005, 2006), resulting in 
HOPM outage predictions with a relative error 
of about 30%. However, the official 24-h track 
forecast for Hurricane Dennis had below average 

Table 2. Official 24-h forecast positions and wind speeds valid at approximately the time of landfall and the 
corresponding observed positions and wind speeds.

Ivan Dennis Katrina

Forecast time 0600 UTC 15 Sep 2004 1800 UTC 9 Jul 2005 1200 UTC 28 Aug 2005

Valid time 0600 UTC 16 Sep 2004 1800 UTC 10 Jul 2005 1200 UTC 29 Aug 2005

Forecast (obs) lat 29.6°N (30.0°N) 29.9 N (29.9°N) 29.1 N (29.5°N)

Forecast (obs) lon 88.2°W (87.9°W) 87.2 W (86.9°W) 89.6 W (89.6°W)

Forecast (obs) wind speed 120 kt (105 kt) 120 kt (110 kt) 140 kt (110 kt)
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error, the intensity forecast had approximately 
average error (Franklin 2006), and the resulting 
HOPM outage prediction had a relative error of 
almost 290%. This suggests that the HOPM is 
sensitive to errors in the official forecast track 
and intensity.

2) The hurricane realizations generated by the 
MCWSP produced a large range in the HOPM-
predicted outages. The MCWSP algorithm 
creates realizations by sampling from the last 
5 years of official forecast track and intensity 
errors. As such, the MCWSP realizations used to 
run the HOPM in this study can be considered 
to be relatively plausible TC track and intensity 
scenarios. Yet Fig. 4 shows the large range in 
HOPM-predicted outages that resulted from this 
ensemble of plausible TC scenarios. In general, 
HOPM-predicted outages were found to range 
from a few thousand to 30,000. This result con-
firms that the HOPM is sensitive to reasonable 
(expected) errors in the official forecast track 
and intensity despite HOPM giving accurate 
outage forecasts when run poststorm using the 
best-track data. Stated differently, the uncer-
tainty in track and intensity forecasts accuracy 
has a major inf luence on the accuracy of the 
outage forecasts.

3) The ensemble methodology used in this study 
yielded supplemental information about the 
HOPM prediction that may be useful to end us-
ers. For Hurricanes Ivan, Katrina, and Dennis, 
the ensemble mean provided a more accurate 
prediction of the observed number of outages 
than the HOPM outage prediction generated 
using the official TC forecast. However, the 
small sample size prevents us from determin-
ing whether this finding is robust. The primary 
advantage of using an ensemble approach is that 
it provides a means to communicate uncertainty 
to decision makers. For example, confidence 
bounds can be constructed from the resulting 
outage distributions to help support decision 
making by end users concerned about forecast 
uncertainty. Future work should examine what 
elements of this information are most useful to 
end users and the best way to communicate that 
information.

As is the situation with most case studies, the 
above results cannot be generalized too broadly. Not 
all models used for decision support are necessarily 
as sensitive to errors in their meteorological inputs as 
the HOPM. Yet we believe these results do emphasize 

the importance of understanding and estimating 
how uncertainty and errors compound when fore-
casts models are integrated. This may be especially 
challenging when integrating models from different 
disciplines such as when meteorological predictions 
are used in a socioeconomic or infrastructure model. 
The development and use of decision-support models 
brings together people with different backgrounds 
who may not fully understand the intricacies of the 
other models and inputs.
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