
Subhash Sankuratripati
Moti Yung,
Anirudh Garg,
Wentao Huang

Catch Me if You Can:
An Account Based
End-to-end
Encryption for 1/1
Snaps

Team that built this

Anirudh Garg Eddie Xue Mike Duong

Janelle Tiulentino Wentao Huang Daniel Hwang Charles Huang

In order of when they started working on the project

Moti YungSubhash Sankuratripati

What is a Snap?

What is a Snap?

• A multimedia message that is shared between users of the Snapchat
App

• The app is used by 186 million users on a daily basis (Q3 2018)

• Billions of Snaps are exchanged everyday

Snaps have inherent privacy protections

• They are ephemeral

• Deleted right after viewing

• Deleted in 30 days if not viewed

Why end-to-end encryption (E2EE)?

Why?

• Defense in depth

• Increased assurances around privacy to our users

Well, E2EE is a solved problem

Alice

Device 1

Bob
Device 1

Messaging
Provider

What if Bob switches
devices

Upload public key Upload public key

Fetch Bob’s public Key

Seal content with Bob’s
public key or variant thereof

Bob
Device 2

Re-seal content to Bob’s new
public key

Alice

Device 2

What if Alice
switches devices?
Content is lost

Key requirements

• Fast key distribution

• A fast mechanism to retry

• Retry delays increase probability of sender device churn and hence
content loss

Industry Status quo

• iMessage, WhatsApp and Signal have deployed, an, on by default,
E2EE system at scale for 4+ years!

But, they differ from Snapchat in that:

• None of them have an ‘easy’ logout mechanism

• Couple logout with single session restrictions

• Their authentication model relies on device identity (phone number or
the device itself)

• Sessions are pretty tightly coupled to devices

These difference allow Snapchat users to:

• Share a device (one device, many users)

• Hop between devices (one user, many devices)

• → All of which lead to identity churn

Tightly coupled device to device E2EE protocols

• Can offer stronger assurances that make it less amenable to retry

• Forward secrecy, especially at the recipient level increases retry times

• Yet, we tried!!

• We ran an Axolotl like protocol that had a retry required rate of 1.85%

So, our requirements:

Requirements

• Reduce the churn

• Securely support multiple users on a given device

• Support multiple devices for a given user

• Make retries faster!

Introduce the notion of an Account based E2EE

• Private keys are still present exclusively on client devices, but,

• Needed a mechanism by which we could perform fast private key to
device association changes

• And notions of recipient level forward secrecy, as introduced by
Axolotl make retries slower (hurt streaks!) and had to be relaxed

Building blocks - Identity

Post logout secure client DB

• Secrets stored within it can ONLY be recovered when the user is
logged in [with help of server: essentially 2-2-secret shared]

• Create an encrypted database that can be decrypted by keys
obtained from the server post login

• No information leakage about the identity of other on device users
(e.g. user-id’s or public keys)

• Use keyed HMAC’s instead of native ID’s or just hashes

How does login work?
Client

1. Generate Key Pair and a DBEK
2. Send HMAC’ed list of public keys if any
3. Send current public key
4. Along with login credentials

Server

1. Checks if it can retrieve a DBEK for
these credentials and HMAC’ed list
of public keys

2. If yes, then, returns DBEK along with
login session and discards the public
key

3. If no, then, associates new public key
with this user and fans the key out1. If DBEK is returned, then, it can open

the DB and recover prior identity
2. If not, then, it, “commits” the previously

generated key and uses it
Account based
identity with fast fan
out

Requirements - Status check

• Reduce the churn

• Securely support multiple users on a given device

• Support multiple devices for a given user

• Make retries faster!

Building block: Content Upload
and when things are perfect!

Content creation and upload - pre E2EE

• Content upon creation is encrypted with a key (CEK) that is generated
on the client

• When the user chooses to share the content with Snapchat, then, the
key (CEK) is uploaded

• If the user chooses to discard the content, then, the key is never
uploaded and content remains inaccessible to Snapchat servers

Change for E2EE

• Wrap CEK in an end-to-end encrypted manner

• Persist CEK on the client in the post logout secure database until an
ACK is received OR the content expires

• Crypto is the easy part: Use a KDF, derive a secret from the
pre-shared secret and encrypt and MAC (with AAD) the CEK

D1 (BD1)
D2 (BD2)

D3 (BD3)

Alice BobSnapchat

D1 (AD1)

Public key sync protocol

Encrypted,uploaded - K1

Wrap K1 to Bob’s 3 devices

Fetch Encrypted Snap,
Unwrap K1 and decrypt
the Snap

Requirements

• Reduce the churn

• Securely support multiple users on a given device

• Support multiple devices for a given user

• Make retries faster!

Building block:
Catch me if you can!

On Sender Side

D1 (BD1)
D2 (BD2)

D3 (BD3)

Alice BobSnapchat

D1 (AD1)

Public key sync protocol

Encrypted,uploaded - K1

Wrap K1 to Bob’s 3 devices

Fetch Encrypted Snap,
Unwrap K1 and decrypt
the Snap

Bob switches devices at
this point?

Re-Wrap K1 to Bob’s new device

Wrap K1 to Bob’s 4 devices

Requirements - Status Check

• Reduce the churn

• Securely support multiple users on a given device

• Support multiple devices for a given user

• Make retries faster!

Building block:
Catch me if you can!

On Recipient Side

D1 (BD1)
D2 (BD2)

D3 (BD3)

Alice BobSnapchat

D1 (AD1)

Public key sync protocol

Encrypted,uploaded - K1

Wrap K1 to Bob’s 3 devices

Login

What if Bob is on D4
and is logging in?

Snaps are
suppressed and a
retry is initiated

D4 (BD4)

Bob Snapchat

Pending Snaps from
Alice, Carol & Dave

Alice

Dave

Carol
Send retry requests that
contain Bob’s new key with a
request to retry. Response
contains the content
encryption key wrapped to
the new public key

Login

Login
Response

ASYNC Snap
delivery

Retry Mechanisms

• A regular message that is obtained on next app open

• Or a push notification to make it more instantaneous

What about the security of the push notification?
• Push notifications are not completely in our control - rely on Apple or

Google for ultimate delivery to the user

• The push notification contains the public key to re-wrap to. So,
integrity of this message is paramount

• We encrypt the public key with a key that is known ONLY to the
logged in user and Snapchat’s servers

• Google had published a blog post in July 2018 on related work; we’re
proud to have implemented it across both platforms in July of 2017

https://android-developers.googleblog.com/2018/06/project-capillary-end-to-end-encryption.html

Requirements - Status Check

• Reduce the churn

• Securely support multiple users on a given device

• Support multiple devices for a given user

• Make retries faster!

Where are we?

Launched

• Launched to 100% of users running compatible versions on Jan 12th
2018. Billions of 1/1 Snaps / day!

• Retry rate is about 0.1% with retry times of:
• p50 - 3.5 seconds
• p80 - 1 minute

Extensions

• Periodic forward secrecy (essentially re-key)

• Sender to ‘other’ sender devices (as added recipients) to reduce loss
rate

• Desire to extend to other 1/1 message types - text and group chat

• In the Trevor Perrin spectrum of EtA vs AtE, we are so far “E only”.
Desire to add “A” via peer authenticity and/or Key Transparency

https://rwc.iacr.org/2017/Slides/trevor.perrin.pdf

Summary

• Even if there isn’t a strong coupling between identities and devices,
we demonstrated a mechanism by which one can achieve end to end
encryption

• Making the account the focal point of the identity

• Caching users’ last devices

• Secure caching of sensitive data that is unlocked upon successful
authentication

