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Who are we!

® A combination of UV technologists and astronomers who
are excited about the potential of HWO

® A cross-section of career stages - from graduate students to
retired experts

e A broad multi-institution collection - contributors from
Universities, NASA centers, and industry
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Why this working group?

The road to HWO is both really long (work wise) and surprisingly
short (time wise)

Crucial to capture the current state of UV technology
Want to document and address some past concerns & experiences

Demonstrate current state of the art — and exciting development
paths!

Instrumentalists are surprisingly (not that surprisingly) mediocre at
publishing things. Building things! Great. Documenting that? A...
little less great.
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Worlds & Suns
in Context




UV drives exoplanet photochemistry
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Cosmic
Ecosystems
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Key Science
Observing the Circumgalactic Medium (CGM)
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Hardware
& Processes
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Reflectance

10 1 1 | 1 | 1

UV & Optical Coating Performance
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Reflective Coatings

Next push - scaling optics upward

Elevated ) Dielectric
. Largest Optics Substrate 2XSEEU Layer
Value TRL r8estoP Humidity for ver
@ R>60% Coated Temperatures Coating Stability Deposition
Required? Process
_ >150 nm > 1 meter No ~70-100% -
_ >111 nm 6 > 1 meter No ~70% PVD
- >101nm 6 ~(0.5 meter No <30% PVD
~E —~ ~ 0, QAIXLE,(PVD)
- >102 nm ~5-6 0.3 meter Yes 60 % MgF, (ALD)
Reactive
>103 nm ~3 5x5 cm? No ~60%
PVD
" . N E-beam
>105 nm 4 5x5 cm No 60%
Plasma

K-roughness

~0.78 nm

~1.84 nm

Fresh 1.5-2.5
nm

Aged >3 nm

1.5-2.5 nm

~1-1.5nm

~0.81 nm



Detectors - Microchannel Plates
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Developing
Systems




Take aways

Both planetary characterization and the circumgalactic medium (key science
drivers) require pushing down to the 100nm cutoff.

Current coatings reach nominal desired values in the UV.

Electron-beam lithography is our most promising UV grating technology and has
been tested sub-orbitally.

Several mature UV detector technologies are available and flight qualified (with
several more in the wings). There is room for performance improvement - this
will especially benefit the transformational astrophysics goal of HWO.

Contamination must be controlled at the systems level and the component level.

We capture the wealth of knowledge on this topic to provide a strong start for
HWO.

Several multiplexing technologies have been space qualified. VWhen combined with
UV coating development, there is a very exciting path to a multiplexed UV
Instrument.



What comes next?
We suggest.....

® Process level (material physics) development (polarimetry
performance of coatings, for example)

® Technologies need to scale up in aperture.VVe need to support facility
to begin testing these larger scale components.

¢ Shifting modes from proving components to developing production
lines and systems development and testing.

® Development of laboratory prototype testbed instruments
® Investment beyond APRA (sub-orbital) missions

e Technology Demonstration Missions (smallsats/pathfinders) to do
systems level testing and provide early-career mission training
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Mapping the Circumgalactic Medium
OVlatz~0.3

* Predictions (from multiple simulations)
* Constraints from past projects (FIREBall1 & 2)

* Absorption measurements (COS-HALOs etc.)









