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Thermomechanical Evolution of Oceanic Fracture Zones
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A fracture zone (FZ) model is constructed from existing models of the thermal and mechanical
evolution of the oceanic lithosphere. As the lithosphere cools by conduction, thermal and mechanical
boundary layers develop and increase in thickness as (age)'/2. Surface expressions of this development,
such as topography and deflection of the vertical (i.e., gravity field), are most apparent along major FZ’s
because of the sharp age contrast. A simple model, including the effects of lateral heat transport but with
no elastic layer, predicts that variations in seafloor depth and deflection of the vertical will become
increasingly smooth and ultimately disappear as the FZ ages. Observations, however, show that both the
FZ topography and the deflection of the vertical remain sharp as the FZ evolves. These two observa-
tions, as well as the observed asymmetry in deflection of the vertical profiles across the Udintsev,
Romanche, and Mendocino FZ’s, are explained by including a continuous elastic layer in the model. The
asymmetry in deflection of the vertical is a consequence of elastic thickness variations across the FZ.
Modeling also shows that the evolution of the FZ topography is extremely sensitive to the initial thermal
structure near the ridge-transform intersection. Model geoid steps and their development with age are
used to access techniques for measuring geoid offsets across FZ's. Reasonable step estimation techniques
will underestimate the overall step amplitude by up to 50%. This implies that abnormally thin thermal

boundary layers, derived from studies of geoid height versus age, are not required by the data.

INTRODUCTION

Fracture zones are linear scars in the seafloor produced by
transform faulting [Wilson, 1965]. Topography along their
inactive segments consists of long ridges, troughs, and scarps
which separate regions of different depth [Menard and Atwa-
ter, 1969]. In spite of erosion and sedimentation, fracture zone
(FZ) topography does not diminish and become smoother
with age; instead it intensifies and becomes more rugged with
age. This persistence indicates that vertical tectonic move-
ments remain after the FZ migrates beyond the active trans-
form fault. As shown below, and in a previous paper [Sandwell
and Schubert, 1982b], the vertical motions, resulting in ridge
and trough tropography, are due to thermomechanical inter-
actions in the lithosphere. These are driven by the age contrast
across the FZ.

In addition to their characteristic ridge and trough topog-
raphies, FZ’s are also associated with linear steplike geoid
undulations [Crough, 1979; Detrick, 1981; Sandwell and Schu-
bert, 1982a; Cazenave et al., 1982]. Recent advances in mea-
suring geoid undulations by satellite altimetry [Stanley, 1979;
Born et al., 1979] have yielded detailed geoid maps over most
ocean areas (William F. Haxby, personal communication,
1983; Sandwell [1984]). Besides the ocean trenches, these
maps are dominated by steplike FZ signals which persist on
even the oldest seafloor. Since FZ’s reveal past transforin fault
orientations, they will provide constraints on plate reconstruc-

tion models in the remote southern ocean basins where bathy-

metric data are sparse.

To explain both the topographic and gravitational signals
of FZ’s, a realistic model is developed and compared with
Seasat altimeter data across three major FZ’s. The model is
based upon existing thermal and mechanical models of the
oceanic lithosphere. These are the following: (1) the thermal
model—After lithosphere is created at a spreading ridge, it
cools by conduction [Turcotte and Oxburgh, 1967]. This
boundary layer cooling model predicts an error function geo-
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therm, which is a good approximation to the actual geotherm,
for seafloor ages less than 70 Ma [Parsons and Sclater, 1977];
(2) the subsidence model—Lithospheric cooling is accompa-
nied by thermal contraction. Because the asthenosphere has
fluidlike properties over million-year time scales, the thermally
induced density increases are compensated by subsidence pro-
portional to (age)'/? [Parker and Oldenburg, 1973]; (3) the
mechanical model—As the upper portion of the lithosphere
cools, an elastic layer develops and grows in thickness as
(age)'/? [Watts, 1978; Caldwell and Turcotte, 1979].

These three factors depend upon the age of the lithosphere
so they will vary abruptly across a FZ because of the sharp
age contrast there. The model developed below also includes
the effect of lateral heat conduction, which tends to smooth
the variations in the thermal [Louden and Forsyth, 1976] and
mechanical structure. It is similar to the model used by Sand-
well and Schubert [1982b] to explain the ridges and troughs
along Pacific FZ’s. However, due to a newly developed tech-
nique for solving the flexure problem with spatially variable
rigidity (see appendix), this new model is more realistic than
our earlier model. It can also accommodate a variety of initial
conditions which, as shown below, have a major influence
upon the evolution of FZ topography.

In addition to calculating FZ topography this new model is
used to calculate the evolution of the geoid signature across a
FZ. Model profiles are then compared with Seasat profiles
across the Udintsev FZ in the South Pacific, the Romanche
FZ in the Equatorial Atlantic, and the Mendocino FZ in the
North Pacific. The model including lithospheric flexure ex-
plains the persistence of sharp FZ geoid steps on old seafloor
as well as the asymmetry of the geoid steps across major FZ’s.
Since the model is based upon half-space cooling, it does not
explain the disappearance of the thermal part of the FZ geoid
signature.

After showing good agreements between model predictions
and Seasat altimeter profiles across major FZ’s, the model
profiles are used to access the various techniques for esti-
mating the overall geoid offsets across FZ'’s. Detrick [1981],
using a simple FZ model, showed that reasonable step esti-
mation techniques will underestimate overall offsets by as
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Fig. 1.

Thermomechanical fracture zone model (drawn to scale). Thermal and mechanical boundary layers develop

and increase in thickness as the lithosphere cools. The upper portion of the lithosphere, between the seafloor (T;) and the
stress relaxation isotherm (T,), is elastic while the lower portion, between T, and 0.9 T,, (mantle temperature), is plastic.
Beneath the thermal boundary layer the rocks are fluid. The age contrast across the FZ (20 Ma) and lateral heat
conduction result in continuous transition in thermal and mechanical properties. The younger lithosphere cools and
contracts faster than the older lithosphere producing lateral variations in thermal buoyancy force (0P/dt).

much as 25%. A similar analysis using this new model shows
that steps may be underestimated by as much as 50%. These
model predictions, if correct, will force reinterpretation of pub-
lished geoid height versus age data derived from altimeter
profiles across FZ’s.

MoODEL

Figure 1 shows a simplified model of the oceanic litho-
sphere. It consists of both thermal and mechanical boundary
layers which increase in thickness as the lithosphere ages and
cools. The base of the elastic layer is defined by the stress
relaxation temperature T, of approximately 450° [Watts et al.,
1980] (definitions and values for all parameters are given in
Table 1) and is characterized by a flexural rigidity D which is
proportional to the elastic thickness cubed. For mathematical
convenience this elastic layer is approximated by a thin elastic
plate. A plastic layer lies between the elastic layer and the fluid
mantle. It cannot support the large flexural stresses but is rigid
enough to prohibit large-scale flow that would smooth the
thermal transition. The base of the thermal boundary layer is
defined by a fraction of the deep mantle temperature T, of
1365°C. The seawater temperature T, (~0°C) constrains the
temperature of the upper surface of the lithosphere. Both the
thermal and mechanical boundary layers vary in thickness
across a FZ because of the age contrast ¢,. It is assumed that
thermal and mechanical variations are two dimensional.

Initially (i.e., t = 0), the geotherm on the left side of the FZ
(Figure 1) corresponds to an age of t,, while the right side has
a constant temperature of 7,,. Thus, initially, the elastic thick-
ness of the right side is zero. There is also an initial sharp step
in seafloor depth across the FZ. Later on these idealized initial
conditions are relaxed slightly to determine the sensitivity of
FZ evolution to the initial conditions.

The model represents the development of the FZ outside of
the active transform fault. Along this seismically inactive seg-
ment it is assumed that there there are no significant horizon-
tal motions. Based upon the results of our previous study of
bathymetry across FZ’s in the North Pacific [Sandwell and
Schubert, 1982b], it is also assumed that vertical slip does not
occur along the FZ. As it evolves from its initial state (see
Figure 1) the lithosphere on the right (younger) side cools
more rapidly than the lithosphere on the left (older) side, al-

though these spatial variations are smoothed somewhat by
lateral heat conduction. Thermal contraction produces a
downward pressure which is stronger on the right side than on
the left side, as shown in the lower part of Figure 1. Stresses
produced by differential contraction in the region of strong
lateral temperature gradient are relieved by strain in the plas-
tic layer and are not large enough to cause failure in the
elastic layer. As the FZ ages, the elastic layer on the right side
develops rapidly to form a continuous elastic layer. The lateral
pressure variations flex the elastic layer. The shape of the
flexure depends upon the elastic thickness variations. Thus the
thermal evolution of the FZ both drives the flexure and modu-
lates the elastic thickness.

TEMPERATURE
The two-dimensional thermal structure near a FZ is found
by solving the time-dependent heat conduction equation

o*T  9*T 10T

oxr " 9 kot

where k is the thermal diffusivity. The initial temperature dis-
tribution is

1

'1;+(Tm—Ts)erf< 2 > x<0
T(x, z, ty) = 2./ Kt

©)]
T, x>0

The surface boundary condition is
T(x,0,0)=T, 3)

Carslaw and Jaeger [1959, p. 276] expressed the solution to
this problem as a two-dimensional convolution of the initial
temperature distribution with a line source Green’s function.
For the initial temperature distribution given in (2) the convo-
lution integral can be evaluated analytically [Sandwell and
Schubert, 1982b] and is

(T, —T) x z
Tx, 2,0 =T, f f
(x, 2, t) += [er c (2 v t0)> er (2\/E>

+ erfc < X ) erf < z >:| 4)
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The function erfc (x) ranges from 2 to 0 as x goes from — oo to
co. Thus far from the FZ the geotherm follows the error func-
tion of the boundary layer convection model [Turcotte and
Oxburgh, 1967]. Because of lateral heat conduction, temper-
atures vary continuously across a FZ [Louden and Forsyth,
1976].

DENSITY, DEPTH, AND PRESSURE

Variations in density are coupled to temperature variations
because of thermal expansion. The following equation of state
is used

p(xs 2z, t) = pm[l - oz(T(x, z, t) - Tm)] (5)

where p,, is the density of the mantle at temperature T, « is
the thermal expansion coefficient, and z is depth measured
from the seafloor.

If the lithosphere is in local isostatic equilibrium, then the
integral of density over depth must remain constant as the FZ
evolves. This compensation is achieved by space and time
variations in seafloor depth d(x, t) given by

dix, f) = d g+ —2Pm f T zt)dz (6)
Pm— Pw) Jo

m

where p,, is seawater density and d, is the seafloor depth at
the spreading ridge. The analytic expression for d is obtained
by integrating (6) using (4). The result is

‘xpm(Tm -1

P
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If seafloor depth does not change to compensate the density
increases, then pressure will build up with increasing time as

d(x’ t) = dref +

P(x, 1) = agp,(Ty — T) \/% [\/I_to
+ t+erf<2 )(\/t—to \/)] (8)
Kt — to)

where g is the average acceleration of gravity. When litho-
sphere strength is included in the model, this pressure term
drives the lithosphere flexure.

Figure 2 shows the evolution of FZ topography, assuming
local isostatic equilibrium (i.e., equation (7)). An age offset ¢, of
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Fig. 2. Variations in seafloor depth for the FZ model with no
elastic layer. The age offset is 20 Ma and ages of the younger litho-
sphere (right) are 0, 1, 9, 25, and 49 Ma. Lateral heat conduction and
local isostasy are responsible for the pronounced smoothing of the FZ
step with age.
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Fig. 3. Density structure used for calculating variations in gravi-
tational potential. The seawater density is p, and the lithosphere
density is p,, plus a small temperature-dependent term (—ap,AT).

20 Ma was used in this and subsequent calculations. Depth
curves are labeled according to the age of the younger (right)
lithospheric segment. Initially, the step is sharp; however, in
just a few million years, lateral heat conduction smooths the
step.

GRAVITATIONAL POTENTIAL

Variations in gravitational potential expressed as gravity
anomalies, deflections of the vertical, or geoid heights can also
be calculated from this model. A flat-earth, two-dimensional
approximation is used, and the lithosphere is assumed to be in
local isostatic equilibrium. The regional effects caused by flex-
ure are included later. Variations in potential are found by
convolving the density structure shown in Figure 3 with the
In (r) Green’s function. In Figure 3, AT is T — T, and d,, d,
are the depths on the left and right side of the FZ, respectively.
Figure 3 shows a sharp step in the seafloor, whereas the actual
step for this model is smooth as shown in Figure 2. Potential
variations corresponding to these depth differences are includ-
ed as a separate term. Before integrating, a constant density is
subtracted from each of three layers, and step functions are
used to account for the step in the thermal structure. The
resulting density variations Ap are

(0 z<d,
Pw — Pm(l + aT )1 — H(x))
< —ap,,T(z — dy)H(x)
—ap,,T(z — d (1 — H(x))
—ap,T(z — d,)H(x)

Ap(x, z, t) =

d;<z<d,

di<z

©®

where H(x) is the unit step function. The x convolution inte-
gral cannot be evaluated analytically because the density
structure is so complicated. However, in the wave number
domain, where Ag is the Fourier transform of Ap given by

Ap(k, z, t) = jw Ap(x, z, t)e™ ™ dx (10)
and the inverse transform of Ap is

Ap(x, z, t) = —21; J_mmAﬁ(k, z, t)e'*™ dk (11)
the x convolution becomes a muliplication. Also in this
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Fig. 4. (a) Deflection of the vertical and (b) geoid height across a

FZ with a 20-Ma age offset. The model and ages are the same as
Figure 2. Lateral heat conduction and local isostasy cause the initial
sharp peak in deflection of the vertical to decay rapidly. The overall
amplitude of the geoid step remains constant with age.

domain, the z convolution integral for the potential, evaluated
at z = 0, is the Laplace transform of the density structure

N 1mG [=
Ok, 1) = =~ f Ap(k, z, e~ M= dz (12)
0

Ik

where G is the gravitational constant. Both the Fourier trans-
form integral (10) and the Laplace transform integral (12) can
be evaluated analytically for the density structure described by
equation (9). Tables of Fourier and Laplace transforms, such
as the CRC Standard Mathematical Tables [Beyer, 1976],
were used to evaluate several of the integrals. After the inte-
grations, the Fourier transform of the potential is

- 2niG
Otk 1) = 5 {on — pu + 20,(T, = T)Jle™ 41 —e™ M%)
+ ap g"‘____Ti) e~ |kld2
" 2

- [s* (k. Db(klN/K(t—t0) +5™ (K, Db(Ikl/xt)]

T, — T,
( m2 s) e_mdl

m

- [s™(k, Ob(IKI/K(t—to) +5* (k. Db(kl/k0)]  (13)
where b(z) = e** erfc (z). The functions s* and s~ incorporate
the effects of lateral heat conduction, where

stk, 1) = 1 + exp [—k2x(t — to)] (14)
and

sT(k, ) =1 —exp [—k2k(t — ty)] (15)
The time interval ¢t — t, corresponds to the thermal contact
time across an FZ. If t — ¢, is replaced by zero in s* and s,
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then s* = 2 and s~ = 0, and the model reduces to the thermo-
gravitational edge effect model, which does not include lateral
heat conduction.

As stated above, an additional term must be added to (13)
to account for the smoothness of the FZ topography. The
difference between the smooth step given in (7) and the step
function used in (9) is

wi. 1) = 220n(Tn = T) \/5
(pm - pw) n

. [H(x) — 4 erfc <#——\/___t;_)>(\/f —Jt—= to)] (16)

g
&
o]
-
2,
(Y
A
6.5 —-200 -100 0 100 200
Distance (km)
100 b
80
~
)
s 60
£
3
x40
o
~
Z 20
O‘
?9 Ma

—100 0 100 200

Distance (km)

—200

L

—-100 0 100
Distance (km)

Fig. 5. Evolution of an FZ (20-Ma age offset), which includes the
mechanical boundary layer: (a) The elastic layer prohibits decay of
the initial FZ scarp (0 Ma). Within a few million years an asymmetric
ridge and trough develop. (b) The deflection of the vertical peak re-
tains its high initial value, reflecting the persistence of the bathymetric
scarp. Asymmetric side lobes develop as the FZ ages. (c) The geoid
step changes in shape but not in amplitude as the FZ evolves.
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The approximate (i.e., using only the first term in Parker’s
[1972] expansion) potential U (k) produced by this extra to-
pography can also be calculated analytically in the wave
number domain. It is

o Iklda

Y Wt=t—1t0)

{1 —exp [—k?k(t — to)]}

where d, = (d, + d,)/2. Notice that this term vanishes when
the thermal contact time t — t, goes to zero in the exponential
function.

The total anomalous potential in the wave number domain
is the sum of (13) and (17). The geoid height, the deflection of
the vertical, and the gravity anomaly are

U 1k, 1) = 4niGap,(T,, — T) \/ =

(17)

Nk, o = Z&0 (18)

r a—Ne*"'“ dx=——_ik- Uk, 1) (19)
—w Ox 7]

gk, t) = —|k|U(k, t) (20

respectively. These functions are transformed back into the
space domain by using the Fast Fourier Transform (FFT)
algorithm.

Results are shown in Figure 4 for the evolutions of the
deflection of the vertical (Figure 4a) and geoid height (Figure
4b) across a FZ with a 20-Ma age offset. Ages of the right
(younger) side are 0, 1, 9, 25, and 49 Ma, corresponding to the
ages shown in Figure 2. Lateral heat conduction and local
isostasy are responsible for the rapid decrease, with increasing
age, in the amplitude of the deflection of the vertical (Figure
4a). Louden and Forsyth [1976] showed this same effect for the
gravity anomaly. The geoid height (Figure 4b) is obtained by
integrating the deflection of the vertical in the x direction. The
geoid step becomes smoother as the FZ ages although its
overall amplitude remains constant.

LITHOSPHERIC FLEXURE

The smoothing effects predicted by this model are not ob-
served along FZ’s. Instead both the topography and geoid
step remain sharp and in some cases become sharper with age.
The model fails because it assumes the lithosphere has no
strength and remains in local isostatic equilibrium. In this
section the flexural topography is calculated and added to the
model.

The differential equation describing two-dimensional flexure
of a thin elastic plate with variable flexural rigidity D(x) is

d? d?
e (D(x) %ﬂ"’) + Gpm — pWX) = P(x)

(02}
where w is the topography and P is the pressure exerted on
the elastic plate. The flexural rigidity is related to the elastic
thickness h(x) by

(22

where E is Young’s modulus, v is Poisson’s ratio, and h is the
depth to the T, isotherm. Both the pressure (i.e., equation (8))
and the elastic thickness are time dependent. Thus the flexural
topography is also time dependent. In practice these time-
dependent effects were accounted for by differentiating (21)
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Fig. 6. Same as Figure 5, except that the initial (0 Ma) thermal
transition zone is smooth rather than sharp. The transition zone
width of 10 km simulates | Ma of lateral heat transport.

with respect to time, solving it at discrete time steps, and
finally, numerically integrating the individual flexure contri-
butions. The differential term containing the factor 0D/t was
omitted because it is assumed that the elastic layer accretes
from unstressed material. Time steps were chosen to increase
as the square of the FZ age since pressure and rigidity change
rapidly for small times.

The most difficult aspect of the flexure problem is solving
(21). It could be solved by the finite difference or finite element
methods. However, these techniques are difficult to apply to
this FZ flexure problem because of the extremely sharp
changes in flexural rigidity during the early stages of FZ evo-
lution. A new approach to the solution of (21) is presented in
the appendix. If D(x) is a band-limited function, (21) can be
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Fig. 7. Along-track deflection of the vertical profiles from differentiated Seasat altimeter passes. This subset of de-
scending passes is plotted on an oblique Mercator projection where the pole is the relative rotation axis between the
Pacific and Antarctic plates. The plate boundary (heavy line) consists of the Heezen, Tharp, and Udintsev transform faults
(horizontal lines) as well as the Pacific-Antarctic Rise (vertical lines). Highlighted peaks reveal the characteristic signature

of the major age-offset Udintsev FZ.

transformed into a Fredholm integral equation. It is shown
that when spatial variations in rigidity are smooth (see appen-
dix for smoothness criteria) the Fredholm equation is a linear
contraction operator that can be solved, to any degree of
accuracy, by iteration. Furthermore, the iteration sequence is
Cauchy, and it converges uniformly in the L, norm. In prac-
tice, only a few iterations are required, except when rigidity
variations are extreme (e.g., when the elastic layer is fractured).
The major advantage of this technique is that computations
are done with an FFT algorithm so that it is extremely fast.

RESULTS

Predictions of the complete thermomechanical model are
shown in Figure 5. An age offset of 20 MA was used in this
calculation. The addition of the elastic layer has a pronounced
effect upon the evolution of both the topography and the
deflection of the vertical. In contrast to the smooth depth
variations predicted by the isostatically compensated model
(Figure 2) the flexure model has a large-amplitude ridge and
trough that develops in just a few million years, in agreement
with Sandwell and Schubert’s [1982b] results. Moreover, the
younger lithosphere flexes at a shorter wavelength than the
older lithosphere because of the elastic thickness contrast
across the FZ.

The difference between the models, with and without the
elastic layer, is most apparent in the deflection of the vertical
(Figures 5b and 4a). At zero age the two models are identical,
since both are in local isostatic equilibrium. As the FZ
evolves, however, the isostatically compensated FZ model pre-
dicts a decrease and ultimate disappearance of the deflection
of the vertical, while for the flexure FZ model, deflections
remain relatively constant. It should be noted that the overall
amplitude of the geoid step (Figures 4b and 5c¢) does not differ
between the two models. In both cases it appears that the
amplitude of the geoid step decreases as the FZ evolves, but it
actually remains at a constant value of 3.02 m. The impli-
cation of this apparent decrease in step amplitude for the
geoid height versus age relation is discussed later.

The model incorporating the elastic layer predicts not only

asymmetrical flexural topography but also an asymmetric de-
flection of the vertical profile (Figure 5b). The negative side-
lobe of the older (left) side of the FZ is broader and deeper
than the negative sidelobe on the younger side. In the next
section these model predictions are tested by comparing them
with Seasat altimeter profiles across three large age offset
FZ’s. Before making these comparisons, however, the sensitivi-
ty of the thermomechanical evolution of a FZ to the initial
conditions is discussed.

Detailed bathymetric surveys of ridge-transform intersec-
tions (J. Fox and K. MacDonald, unpublished SEABEAM
data, 1983) show that the lithosphere adjacent to the ridge
crest on the older plate is anomalously shallow. This shoaling
may be due to reheating and thermal expansion as the plate
slides beyond the midpoint between the two spreading ridges.
Thus, on the older plate, temperatures may be higher near the
FZ and normal away from the FZ. On the younger plate the
constant-temperature initial condition may be a good ap-
proximation, since material upwelling at the spreading ridge
axis is close to its melting temperature. Recent calculations
[Forsyth and Wilson, 1984] show that the temperature struc-
ture of a ridge-transform intersection depends primarily upon
the geometry of the flow in the upwelling region.

A simple method of modifying the initial thermal structure
without having to redo all of the convolution integrals is to
increase the thermal contact time (¢ — t,). Increasing this time
by an amount of ¢, results in a smooth initial temperature
transition having a characteristic width of 2,/«t,. Because the
base of the elastic layer follows the T, isotherm, this change
also smooths the elastic thickness variation across the FZ.

The effects of modifying the initial temperature distribution
are shown in Figure 6, where an initial contact time of 1 Ma
was used. For this value of ¢, the width of the thermal transi-
tion zone is 10 km, which is consistent with Forsyth and
Wilson’s [1984] preferred ridge-transform-ridge model. This
small change has a large influence upon the shape of the flex-
ural topography as well as the shape of the deflection of the
vertical (i.e., compare Figures 5 and 6). Most of the topo-
graphic difference occurs on the young side of the FZ where
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the ridge becomes sharper and the flexural wavelength be-
comes greater. For the deflection of the vertical the largest
difference is a decrease in the amplitude of the negative side-
lobe on the younger side of the FZ. This tends to enhance the
asymmetry in the deflection profile. These changes occur be-
cause the initially smooth temperature transition inhibits the
smoothing effects of lateral heat conduction for about 1 Ma.
During this time, the elastic plate thickens, and the flexural
wavelenth of the younger side becomes greater than the width
of the thermal transition zone. This increase in strength sup-
presses further flexure at very short wavelengths.

THE UDINTSEV FZ

Large values of the deflection of the vertical (~50 u rad
=10 s of arc) occur along the Udintsev FZ because of its
large age offset (~ 18 Ma, Weissel et al. [1977]). Examples of
along-track deflection of the vertical profiles, computed by
differentiating a subset of descending Seasat altimeter passes,
are shown in Figure 7. These are plotted on an oblique Mer-
cator projection where the pole is the relative rotation axis
between the Antarctic and Pacific plates (64.67°N, 279.77°E,
Minster and Jordan [1978]). On this projection the Heezen,
Tharp, and Udintsev transform faults are heavy horizontal
lines (Figure 7), whereas segments of the Pacific-Antarctic
spreading ridge are vertical heavy lines. On the Pacific plate
(e, left of the heavy line), positive deflection values near the
Udintsev FZ are filled, since the age offset is positive when
looking from north to south. Similarly, negative peak values
are filled on the Antarctic plate because the age offset is nega-
tive there. Although deflections of the vertical are larger along
the Eltanin FZ system, they are difficult to interpret because
the Heezen and Tharp FZ’s are so close together.

Deflections of the vertical along the Udintsev FZ show a
simple systematic pattern. At the midpoint between the two
spreading ridges, a positive peak lies to the north of the trans-
form fault, while a negative peak lies to the south. At the left
ridge-transform intersection there is only a positive peak. Fur-
ther to the left, along the inactive portion of the FZ, there is a
positive peak centered above the FZ with a negative sidelobe
on the older side. An analogous pattern occurs along the right
inactive FZ segment. Thus along all inactive portions of the
Udintsev FZ there is a prominent sidelobe on the older side
with a small or absent sidelobe on the younger side.

Two features of the deflection profiles across the Udintsev
FZ support the model which includes the elastic layer. The
first is the persistence of the deflection of the vertical signature
along older portions of the Udintsev FZ. This signal persists
to at least 60 Ma, where it diminishes because of a decrease in

TABLE 1. Definitions and Values of Parameters

Parameter Definition Value/Units

« thermal expansion coefficient 3.1 x 1075 K~!

d.o ridge crest depth 2500 m

E Young’s modulus 6.5 x 10'° Pa

g acceleration of gravity 982 ms~?

G gravitational constant 6.67 x 107'!' Nm?2 kg~?2

K thermal diffusivity 8x 107" m?s™!

v Poisson’s ratio 0.25

P mantle density 3330 kg m~?

% seawater density 1025 kg m ™3

T, stress relaxation temperature  450°C

T, mantle temperature 1365°C

T, surface temperature 0°C
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Fig. 8. Deflection of the vertical profiles across the Udintsev FZ
(solid curves). Predictions of thermomechanical model (dashed
curves). Locations of profiles A and B are shown in Figure 7.

age offset (J. Weissel, personal communication, 1983). The
second confirmation of the flexure model is the apparent
asymmetry in deflection of the vertical.

Quantitative agreements between model profiles and ob-
served profiles are shown in Figure 8. The locations of the two
profiles are marked in Figure 7. Profile A was inverted and
replotted (solid curve) along with the model prediction
(dashed curve). For all profiles, no attempt was made to im-
prove the fit by adjusting model parameters. The zero level of
the data was, however, adjusted to account for regional trends
in the geoid. For both profiles the model matches the data
fairly well, although there are short-wavelength variations in
the data that cannot be fit by the model. The model agrees
equally well with about half of the other profiles shown in
Figure 7. Disagreements of the model with the other profiles
could be due to crustal thickness variations or deviations of
the thermal structure from the boundary layer cooling model.

THE ROMANCHE FZ

The Romanche FZ in the Equatorial Atlantic is a major age
offset (~40 Ma, Sclater et al. [1980]) resulting from the jagged
rifting of South America and Africa [Wilson, 1965]. This
major FZ, like other smaller age-offset FZ’s in the Atlantic,
does not have the simple ridge and trough flexural topography
that is characteristic of Pacific FZ's. Altantic FZ’s either slip
to relieve stresses produced by differential subsidence or their
flexural signal (~1 km) is masked by other large-amplitude
topography [Sandwell and Schubert, 1982b]. Unlike Pacific
FZ's, Atlantic FZ’s generally consist of a narrow deep central
valley surrounded by bordering ridges [Van Andel et al.,
1971]. For example, Bonatti et al. [1977] demonstrated that
the northern wall of the Romanche FZ was near or possibly
above sea level during the late Cenozoic. This amplitude is
much greater than the prediction of Sandwell and Schubert’s
[1982b] model. Moreover, the ridge is on the older lithosphere
rather than the younger lithosphere as predicted by their
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model. These extreme variations in seafloor topography are
perhaps caused by stresses within the active transform fault
and may reflect variations in crustal thickness [Detrick and
Purdy, 1980]. Despite the failure of the model to explain the
rugged topography of Atlantic FZ’s, the FZ flexure model
seems to explain the gravity field reasonably well.

Examples of ascending Seasat profiles across the Romanche
FZ are shown in Figure 9. The heavy black line marks the
boundary between the South American and African plates. It
consists of spreading ridge segments offset by transform faults.
The largest offset occurs at the Romanche transform fault.
These 80 along-track deflection of the vertical profiles have
the same characteristic signatures as the Udintsev FZ profiles.
The profiles crossing the western segment of the FZ have
positive deflections of the vertical reflecting the decrease in age
from south to north across the FZ. There are negative side-
lobes on the south side (i.e., older side). Analogous signatures
occur along the eastern segment of the Romanche FZ. Within
the transform fault the profiles are very complicated but show
the same characteristics as the profiles across the Udintsev
transform fault.

Quantitative model comparisons are shown in Figure 10.
Locations of these two profiles are marked on Figure 9. Con-
sidering the complex topography of this area, the agreements
are good. For both profiles the model (dashed curves) over-
predicts the peak values of deflection. The disagreement is
greater for profile B, which crosses the FZ at an average age \
of 55 Ma. For comparison the model with no elastic layer is NN W AN
shown as the dotted curve in Figure 10. This curve, which pad .‘\\‘\\.\@‘\\}\‘;i\y RS
represents the thermal contribution to the geoid signature, is oA W
too wide and short to match the observed profile. The fit to
profile B is better when the elastic layer is included. The dis-
agreement directly above the FZ could be due to a number of
factors, including (1) unmodeled variations in crustal thick-
ness, (2) partial slip along the FZ, (3) lower lithosphere tem-
perature deviations from the boundary layer cooling model, or
(4) incorrect estimates of age offset along the older portion of
the FZ. Seafloor ages could be incorrect because there are no
identified magnetic anomalies in this equatorial area. It is
likely that the St. Paul FZ, which is 220 km to the north of the
Romanche FZ, has a greater age offset than shown in Sclater
et al. [1980], while the Romanche FZ has a smaller age offset
than reported.

—— 100 urad \

THE MENDOCINO FZ

Figure 11 shows many deflections of the vertical profiles
across the Mendocino FZ in the Northeast Pacific. Geoid
profiles over this FZ have been studied by a number of inves-
tigators [Crough, 1979; Detrick, 1981; Sandwell and Schubert,
1982a; Cazenave et al., 1982]. While these investigators suc-
cessfully interpreted the overall geoid step as a thermogravita-
tional edge effect, none was able to explain the shape of the
step. The most systematic unexplained feature of the geoid
profiles was the depression on the older side of the FZ. This
corresponds to the negative sidelobe on deflection of the verti-
cal profiles. The FZ model incorporating the elastic layer is
able to explain the negative sidelobe as well as the other main
characteristics of the deflection profiles across the Mendocino
FZ. Three examples are shown in Figure 12. Locations of
these profiles are shown in Figure 11.

It is remarkable that this model is able to match the data
along the older portions of this FZ (e.g., profile C in Figure
12). The plate cooling model, which explains the North Pacific

340

track deflection of the vertical profiles across Atlantic equatorial FZ’s. Heavy line marks the boundary between the South
American and the African plates. The largest offset is the Romanche transform fault.

320
Fig. 9. Along-
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depth-age relation [Parsons and Sclater, 1977], predicts that
the thermal portion of the FZ geoid step will decrease by a
factor of 2 when the average age of the lithosphere is 90 Ma. If
such a decrease does occur, it does not significantly alter the
deflection of the vertical because the flexural portion of the
signal is much greater than the thermal portion. This insen-
sitivity of the deflection of the vertical to the thermogravita-
tional edge effect suggests that estimates of geoid offset across
FZ’s should be made using geoid profiles rather than their
derivative. There are problems, however, with estimating
geoid offsets directly from geoid profiles. These are discussed
in the following section.

DisCUSSION

In a number of recent studies [Crough, 1979; Detrick, 1981;
Sandwell and Schubert, 1982a; Cazenave et al., 1982] the re-
lationship between geoid height and seafloor age was extrac-
ted from geoid profiles across large age-offset FZ’s. In each
study the overall amplitude of the geoid step was estimated
either visually or by fitting a simple model to the observations.
The step amplitude was then normalized by the age offset and
plotted as a function of age. When analyzed in this manner,
the data are easily compared with prediction of lithosphere
cooling models. The overall amplitudes of the geoid steps are,
however, difficult to estimate because their shapes are not well
understood and they are superimposed upon regional trends
that are unrelated to FZ's. Models of geoid steps presented
here agree with the shapes of observed geoid steps and there-
fore provide a basis for estimating amplitudes of geoid steps.
Detrick, using the boundary layer cooling model with no flex-
ure or lateral heat conduction, showed that realistic pro-
cedures for estimating FZ geoid offsets will always underesti-
mate their amplitude. At the ridge-transform intersection his
model predicted a sharp geoid step so underestimation is
minimal. When the average age of the lithosphere reaches 80
Ma, however, the step estimation method proposed by
Crough underestimates the total offset by 25%. Detrick ac-
counted for this bias when interpreting his geoid offset data
across the Mendocino FZ.

In this study, Detrick’s [1981] analysis for determining the

step estimation bias is performed on the thermomechanical
"model developed above. An example is shown in Figure 13,
where two model geoid height profiles are plotted. The solid
curve is the geoid step across a FZ separating lithosphere of
ages 20 Ma (left) and 0 Ma (right). The dashed curve is the
model prediction after the FZ has aged by 80 Ma. These steps
were estimated by visually fitting straight lines to the profiles;
data within 100 km of the FZ are excluded from the fitting
process. These lines were extrapolated back to zero to deter-
mine the estimated offset. The predicted offset is the desired
quantity. For this case it has a value of 3.02 m. Estimated
offsets are 2.70 m and 1.56 m for the solid and dashed profiles,
respectively. For the solid curve the ratio of estimated offset to
predicted offset is 0.89. This agrees with Detrick’s result. The
same ratio for the dashed curve is 0.52, which is substantially
less than Detrick’s value of 0.75. The difference is due to litho-
spheric flexure and lateral heat conduction.

The same experiment was performed on FZ’s with 10 Ma
and 30 Ma age offsets; the results are similar when the ratio of
estimated offset to predicted offset is plotted against the
average age of the two lithospheric segments. (Note: Detrick’s
[1981] bias model is also independent of age offset when plot-
ted against average age rather than time in contact.) The re-
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Fig. 10. Two profiles across the Romanche FZ (solid curves). Lo-
cations are shown in Figure 9. Dashed curves are predictions of the
thermomechanical model. Dotted curve is prediction of the model
with no elastic layer. The St. Paul FZ lies 220 km to the north.

sults are summarized in Figure 14. The dashed curve is
Detrick’s bias model, and the solid curve is the bias model
developed here. If the thermomechanical FZ model is correct,
then reasonable methods for measuring geoid offset will
underestimate the total offset by 20% at 20 Ma and 40% at
50 Ma. This underestimation, if not accounted for, will lead to
false conclusions about the growth of the thermal boundary
layer.

Depth versus age data are best fit by a plate cooling model
with an asymptotic thickness of 110 to 140 km. This same
model predicts that the geoid height versus age relation will
begin to flatten (i.e., deviate from the boundary layer cooling
model prediction) at about 40 Ma. Geoid slope versus age
data which are biased by the step estimation procedure will
show an additional flattening beginning at about 20 Ma. Very
thin lithospheres must be used to fit biased geoid slope versus
age data. Unfortunately, interpretation of geoid age relations
derived from FZ geoid profiles will vary among investigators,
depending upon their understanding of the shape of geoid
steps. The method used by Sandwell and Schubert [1982a]
does not suffer from this problem, since it uses the deflection
of the vertical. However, it was shown in the previous section
that deflections of the vertical across old FZ’s are insensitive
to the thermogravitational edge effect so their results may not
be as accurate as reported. This is especially true for ages
greater than 60 Ma.

The agreements between the model predictions and the de-
flections of the vertical along major FZ’s as well as bathy-
metric profiles across the Mendocino FZ [Sandwell and Schy-
bert, 1982b] are direct evidence that FZ’s are not zones of
weakness. They have been interpreted as weak zones in the
lithosphere because of their fractured seafloor and their slight-
ly higher than normal [Bergman and Solomon, 1980] or
normal seismicity [Okal et al., 1980]. This possibly higher
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seismic activity may reflect the higher than normal stresses
near a FZ rather that FZ weakness. The sensitivity of the
flexure signature to the initial conditions indicates that the
older and younger segments of lithosphere become welded
together within the first couple million years beyond the ridge-
transform intersection. It is interesting that the mechanical
bond is not disrupted by thermoelastic stresses within the elas-
tic layer, especially those stresses produced by differential con-
traction along the strike of the FZ. It is possible that shear
stresses for very large age-offset FZ’s (>25 Ma) may exceed
the strength of the lithosphere, resulting in catastrophic failure
and magma leakage. Indeed, the FZ’s with very large age
offsets lie beneath the Ninetyeast Ridge and the Louisville
Ridge. The proximity of these two ridges to large age offsets in
the lithosphere may not be coincidental. Recent evidence
along the Louisville Ridge [Watts and Ribe, this issue] indi-
cates that the ridge formed after the FZ. One must conclude
that the FZ is responsible for the Louisville Ridge. It is likely
that it formed by catastrophic failure of the FZ. The results of
this study suggest that even if failure did occur along a major
FZ it is not a sign of FZ weakness. Rather the FZ is a zone of
high thermomechanical stress.
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Fig. 12. Three profiles across the Mendocino FZ (see locations in

Figure 11). The model matches profile C, which crosses the older
(90-Ma) part of the FZ.
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Ma for the solid curve and 80 Ma for the dashed curve. The ratio of
estimated offset to predicted offset is 0.89 for the young FZ (solid
curve) and 0.52 for the older FZ (dashed curve).

SUMMARY

1. Large age-offset oceanic FZ’s display a number of topo-
graphic and gravitational characteristics. These include ridges
on the younger lithospheric plate and troughs on the older
lithospheric plate which persist on old seafloor as well as a
sharp gravitational edge effect which is asymmetric across the
FZ and also persists on very old seafloor. L

2. These characteristics cannot be explained by a thermal
conduction model where the lithosphere is in local isostatic
equilibrium. The local compensation model predicts that to-
pography, deflection of the vertical, and free-air gravity signa-
tures across FZ’s will become increasingly smooth and ulti-
mately disappear as the FZ ages. These topographic and
gravitational characteristics are explained, however, by a ther-
mal conduction model incorporating a continuous elastic
layer where the base of the elastic layer is defined by the stress
relaxation temperature T,. Since the elastic layer varies in
thickness across the FZ, a rapid numerical technique was de-
veloped for calculating the flexural response of the lithosphere
to space and time-dependent thermal buoyancy forces. Be-
cause of the continuity of the elastic layer, the scarp, formed at
the ridge-transform intersection, remains constant with age.
This frozen-in scarp, along with the difference in subsidence
rates far on either side of the FZ, results in the characteristic
ridge and trough topography.

™
o
—

Estimated Offset/Predicted Offset

o

20 40 60 80 100
Average Age (Ma)

Fig. 14. Bias in estimating geoid offset (i.e, estimated off-
set/predicted offset) versus the average age of the lithosphere across
the FZ. Dashed curve is bias for FZ model with no elastic layer [after
Detrick, 1981]. Solid curve is bias for model with elastic layer. At 80
Ma, geoid offsets may be underestimated by 50%.
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3. Modeling results are extremely sensitive to the initial
thermal structure at the ridge-transform intersection. More
accurate initial conditions await a complete thermomechani-
cal description of the active transform fault. This active seg-
ment contains systematic topographic and gravitational
characteristics that will help constrain models.

4. If the model is correct, then most techniques for esti-
mating geoid offsets across FZ’s will substantially underesti-
mate their true offset. This estimation bias, if not accounted
for, makes the thermal boundary layer appear thin.

APPENDIX: FLEXURE WITH VARIABLE RIGIDITY

The differential equation describing two-dimensional flexure
of a thin elastic plate of density (p,, — p,,) overlying a fluid half
space and subject to a uniform gravitational acceleration g is

d? d*w(x) _
prc (D(x) vl s g(pm — pLIW(X) = P(x) (A1)
where D(x) is the spatially variable flexural rigidity, w(x) is the

deflection of the plate, and P(x) is the applied load. The
boundary conditions are

lim w(x)=0 (A2)
|x|— o
and
lim 20 _
x| 00 dx

It is assumed that D, w, and P are band-limited function so

their Fourier transforms exist. Forward and inverse Fourier

transforms are defined in equations (10) and (11), respectively.
The functions D and w can be written as

D(x) = L J ? D(s)e™* ds (A3)
21 -

w(x) = L J ) w(r)e'™ dr (A4)
2n J_ o

Upon substituting these expressions for D and w into the first
term of (A1) and differentiating under the integral, the follow-
ing is obtained

Z_2~7].[)—2J‘oo J\w (r + s)ZrZD"(s)W(r)ei(s+r)x dr ds

+ glpm — pIW(x) = P(x)  (AS)
Fourier transformation of (AS) yields
7 J_w J_ 00(r + 8)2r2D(s)W(r) J_ coe"""*"")" dx dr ds
+ G(pm — pIRK) = P(k)  (A6)
By making use of the fact that
1 [® .
-— et dy = 5[r — (k — )] (A7)

2n J_ o

performing the integral with respect to r, and using the band-
limited property of D(s) (i.e., D(s) = 0, |s| > B); (A6) is reduced
to a Fredholm integral equation

2 rp
;(_n f D(s)(k — s)(k — s)* ds + G(p, — pIW(K) = P(k)  (A8)
-p

Notice that if D(x) = D, then D(s) = 2nDyd(s). For this case
(i.e., constant flexural rigidity) the solution for w(k) is

W(k) = [Dok* + Glpm — p)] ™" Plk) (A9)
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Let

D(s) = D'(s) + 21D,d(s) (A10)

Inserting (A10) to (AS8), integrating and rearranging terms
yields

W(k) = [Dok* + glpm — PW)17"

- k2 [
: [P(k) ~ 5 J D'(syw(k — s)(k — s)? ds:l (All)
B

Equation (A11) can be rewritten as

W(k) = T[w(k)] (A12)
where T is a linear operator.

If T is a continuous contraction operater over a complete
metric space, then (A12) can be solved by successive approxi-
mation [Korevaar, 1968]. The successive approximation
method consists of making an initial guess at the solution, w,
(e.g., zero is a good guess). The operation T[w,] results in a
closer approximation to the true solution. This procedure is
repeated (e.g., w; = T[w;_,]) until the desired numerical accu-
racy is achieved. The sequence w,, wy, w,, ... is Cauchy (ie.,
d(w;, w)— 0 asjand !l tend to co,d( , )isthe norm), and it
converges uniformly to the true solution. In practice the
convolution integral in (A11) should be evaluated by using the
convolution theorem along with a FFT routine. This numeri-
cal approach saves not only computer and programming time,
but it is also more accurate.

Whether or not this scheme converges, the rate of conver-
gence is governed by the properties of T and therefore D. T is
a contraction operator if there exists a positive constant r < 1
such that

d(T[X], T[Y]) < rd(X, ¥) (A13)
where X(k) and Y(k) lie in the metric space. The rate of con-
vergence is high for small positive values of r and becomes
lower as r approaches 1. For the Fredholm integral equation
the infinity norm L, is used to test for the contraction proper-
tyof T

dX,¥)= max |X-7| (A14)
—w<k<ow
Inserting (A11) into (A13) yields
k2
max —
—w<lkj<ow 27[[D0k4 + g(pm - pw)]
ﬂ ~ o~ -~
. J D'(s)(k — s)* [X(k —s) — Y(k — s5)] ds
-8
< max [X(k)— Pk (A19)
— o <k<oo

However, the left side of (A15) is less than
k2 [_,2D'(s)(k — s)* ds
21[Dok* + Gpm — pu)]

so if (A15) is true, the following must also be true for all values
of k:

max | X(k) — Y(k) - max

—w<k<owo —ow<k<ow

#
J. D'(s)k*(k — s)* ds < 2n[Dok* + glom — p)]  (A16)
-8

The condition given in (A16) ensures that the iteration scheme

-
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converges and it should be tested in the portion of the wave
number spectrum being considered for a particular problem.
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