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[1] The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile
ruptured a ∼600 km length of subduction zone. In this paper, we make two independent
estimates of shear stress in the crust in the region of the Chile earthquake. First, we
use a coseismic slip model constrained by geodetic observations from interferometric
synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the
change in static shear stress along the ruptured fault. Second, we use a static force balance
model to constrain the crustal shear stress required to simultaneously support observed
fore‐arc topography and the stress orientation indicated by the earthquake focal
mechanism. This includes the derivation of a semianalytic solution for the stress field
exerted by surface and Moho topography loading the crust. We find that the deviatoric
stress exerted by topography is minimized in the limit when the crust is considered an
incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young’s
modulus. This places a strict lower bound on the critical stress state maintained by the crust
supporting plastically deformed accretionary wedge topography. We estimate the
coseismic shear stress change from the Maule event ranged from −6 MPa (stress increase)
to 17 MPa (stress drop), with a maximum depth‐averaged crustal shear‐stress drop of
4 MPa. We separately estimate that the plate‐driving forces acting in the region,
regardless of their exact mechanism, must contribute at least 27 MPa trench‐perpendicular
compression and 15 MPa trench‐parallel compression. This corresponds to a
depth‐averaged shear stress of at least 7 MPa. The comparable magnitude of these
two independent shear stress estimates is consistent with the interpretation that
the section of the megathrust fault ruptured in the Maule earthquake is weak, with
the seismic cycle relieving much of the total sustained shear stress in the crust.
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1. Introduction

[2] On 27 February 2010, an earthquake of magnitude 8.8
struck off the coast of Maule, Chile, the sixth largest since
recording began. This event represents the latest release of
strain energy built up along the locked megathrust zone
consisting of the oblique subduction of the Nazca plate

beneath the South American plate at a rate of 65 mm/yr
[Kendrick et al., 2003]. Prior to this event, the last major
rupture in the region occurred in 1835, such that the Maule
region had been identified as a seismic gap [e.g., Lorito
et al., 2011; Madariaga et al., 2010; Moreno et al.,
2010]. Following the earthquake, several groups worked
to determine the coseismic slip distribution and moment
release. Peak coseismic slip has generally been estimated in
the range of 16–20 m, with an average slip of 5–6.5 m and a
moment release of 1.8–2.6 × 1022 N m [Delouis et al., 2010;
Lay et al., 2010; Lorito et al., 2011; Pollitz et al., 2011;
Tong et al., 2010b; Vigny et al., 2011]. The slip is distrib-
uted in such a way that it at least partially filled in the
identified seismic gap.
[3] The slip along this locked plate boundary is part of the

broader setting of a downgoing oceanic slab contributing
to the formation of topography, both through continental
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orogenic processes such as crustal shortening and more
localized coastal processes such as sediment accretion. The
height of this topography can be used to constrain the
strength of the subduction megathrust, measured by either
the sustained shear stress or the coefficient of friction on
the fault. Lamb [2006] estimated the mean shear stress
required to support the elevation of the high Andes at ∼37
and ∼15 MPa in northern and southern Chile, respectively,
consistent with estimates from previous thermal modeling
studies in megathrust regions. This stress was principally
transmitted through the lower crust, with smaller portions
transmitted through the upper crust and mantle. Seno [2009]
used a similar force balance method and estimated that
mean shear stress along subduction zones is generally tens
of megapascals, with the value in northern Chile on the
higher end of that range, greater than 80 MPa. Zhong and
Gurnis [1994] used a dynamic model of developing trench
topography to estimate shear stress on subduction faults
in the range of 15 to 30 MPa. More recently, Tassara [2010]
determined that fore‐arc topography is spatially correlated
with various earthquake parameters and likely plays at least
some part in controlling seismogenic behavior. Other studies
have used observations of present‐day topography to con-
strain the effective coefficient of friction on subduction
thrusts to be less than 0.2 [Cattin et al., 1997] or 0.03 to
0.09 [Lamb, 2006].
[4] The broad discussion about fault strength has stemmed

from a few key kinds of observations. Low stress drops and
the absence of a strong fault‐related heat flow anomaly
along the San Andreas fault in California suggest that the
stress stored and released over the seismic cycle is much
lower than the large in situ stresses that are both observed
in borehole measurements and predicted from laboratory
faulting experiments [e.g., Byerlee, 1978; Scholz, 2000;
Zoback, 2000]. These observations may be reconciled if
faults in general, or perhaps the San Andreas specifically,
are weak with a coefficient of friction ∼0.1. However, other
lines of evidence, such as the angle between the principal
stress axes and a particular fault trace, have led to incon-
sistent interpretations of fault friction [Hardebeck and
Michael, 2004]. At subduction zones, observations of the
reactivation of outer rise normal faults have shown that
while these faults are weaker than newly formed faults, they
still have a coefficient of friction of 0.6, in line with the
predictions of laboratory experiments [Billen et al., 2007].
Along the southern Chilean megathrust, low friction coef-
ficients are suggested to relate to an abundance of accu-
mulated sediment that acts as a trench lubricant [Lamb and
Davis, 2003].
[5] In this paper, we provide two independent estimates of

shear stress in the rupture area of the Maule event. In the
first, we calculate the coseismic stress change on the rupture
surface. The complete interferometric synthetic aperture
radar (InSAR) coverage over the rupture area of the Maule
event provided a unique opportunity to derive a detailed slip
model needed to estimate the spatially variable stress change
from the event. In addition, we present a new formulation to
directly estimate the three‐dimensional (3‐D) crustal stress
field on the megathrust fault exerted by local surface and
Moho topography, constrained by gravity observations. We
can then determine the minimum value of stress in the crust

applied by tectonic forces required to both offset the stress
exerted by topography and to maintain a stress field orien-
tation consistent with that of the stress released in the
earthquake. This idea is similar to previous studies that
have estimated tectonic stress by balancing the loading of
topography [e.g., Lamb, 2006], but it has the advantage of
deriving its estimate from the short‐wavelength topography
immediately above the ruptured megathrust region. In this
way, the estimate more directly assesses the stress in the
crust at the seismogenic portion of the subduction zone,
rather than relying on stress beneath the high Andes being
transmitted several hundred kilometers back to the shallow
megathrust region. By estimating both of these quantities
independently, we have the opportunity, in this one instance,
to make a direct comparison of the stress released in a major
earthquake with a lower bound on the crustal‐driving stress.
In doing so, we are able to constrain the fraction of driving
stress released in the seismic cycle versus that which is
transmitted across the plate boundary, and we find evidence
that the southern Chile subduction thrust is weak in the
Maule area.

2. Minimum Stress Drop From the 27 February
2010 Maule Earthquake

[6] The coseismic displacement from the 2010 Maule,
Chile, earthquake was observed in unprecedented detail
using InSAR [Tong et al., 2010b]. Several factors contribute
to the quality of these observations. First, radar inter-
ferograms acquired with the L‐band Advanced Land
Observatory Satellite (ALOS) [Shimada et al., 2010] have
improved coherence relative to C‐band radar. Second, recent
processing advances allow interferograms to be made from
radar images acquired in the scanning synthetic aperture
radar (ScanSAR) mode [e.g., Bamler and Eineder, 1996;
Ortiz and Zebker, 2007; Sandwell et al., 2008; Tong et al.,
2010a, 2010b]. This is especially important because the
descending passes made days after the Maule main shock
were recorded in ScanSAR mode and recorded the defor-
mation along the entire coastline in a single track. (These
interferograms and sampled displacement data are available,
along with the updated slip model and stress drop model
presented in this paper, online at ftp://topex.ucsd.edu/pub/
chile_eq/). A third factor contributing to the quality of these
coseismic observations is that the region of interest is a
subduction zone with a shallow dip. Spatial variations in
coseismic slip on the fault are thus better represented by
spatial variations in surface displacement compared with
those in a vertical fault plane, even though the shallowest
portions of the fault lie offshore, where displacement is
unobservable by InSAR. The observations from interfer-
ometry need to be combined with observations of coseismic
displacement from a network of GPS stations in the region,
required for constraining the absolute offset.
[7] Tong et al. [2010b] inverted near‐field geodetic data

from InSAR line‐of‐sight (LOS) displacement and 13 con-
tinuous GPS stations to model coseismic slip on a single
dipping plane 670 km long by 260 km wide, approximating
the geometry of the shallow megathrust with a strike 16.8°
EofN and a 15° dip to the east. The inversion assumes an
isotropic homogeneous elastic half‐space [Fialko, 2004;
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Okada, 1985] and resolved slip on the dipping fault plane
with a resolution of approximately 40 km × 40 km. Since
the publication by Tong et al. [2010b], coseismic observa-
tions from an additional 9 continuous GPS stations in the
rupture near field have become available [Pollitz et al., 2011;
Vigny et al., 2011]. (For further information about the added
sites, CONS, DGF1, MAUL, PORT, SJAV, VALN, VNEV,
RCSD, and ROBL, see Vigny et al. [2011, Table S1]). These
stations are located near the high‐slip patch toward the
northern end of the rupture zone and help constrain the
extent and magnitude of the slip. The updated slip model
is shown in Figure 1a and includes the full set of coseismic
geodetic observations recorded from this earthquake.
[8] This refined model shares general features with the

previous model: (1) the maximum slip is at ∼20 km depth
and the downdip rupture limit is about 40–45 km depth,
(2) there is an area of relatively low slip (∼7 m) offshore
west of Concepción, and (3) there is a relatively high slip
area (∼10 m) at ∼30 km depth northeast of the peak slip.
Compared with that of the previous model, the major slip
area ∼140 km north of the epicenter increases slightly to
∼20 m and becomes more localized. Although the changes
to the slip model are slight, the additional GPS observations
are more important for constraining the stress change from
this earthquake.
[9] We compute the static shear‐stress change from the

refined coseismic slip model using a fast Fourier transform
(FFT) method [Andrews, 1980; Ripperger and Mai, 2004],
chosen because of its computational efficiency that allows
the exploration of multiple model parameters. The 20 km ×
20 km gridded slip model is initially downsampled via

bicubic interpolation to a 1 km × 1 km grid, which serves
as the input for the stress‐change calculation. This down-
sampling ensures that the resulting stress features are stable
and that no stress artifacts that are due to slip model reso-
lution are introduced. Shear strain change is computed from
the slip model and then converted to shear stress change
using an average shear modulus of 40 GPa.
[10] Previously this method has been used successfully

on vertical fault planes, employing a mirror‐image tech-
nique to satisfy the free‐surface zero‐traction boundary
condition for strike‐slip‐induced stress change. For inclined
faults, however, it has the disadvantage of neglecting the
free‐surface boundary condition for dip‐slip‐induced stress
change. We tested the efficacy of using the FFT method on a
simple shallow dipping thrust fault by comparing the static‐
stress drop of the FFT method with that of an exact half‐
space formulation [Okada, 1992]. The effect of neglecting
the half‐space boundary condition was at most about 20%
near the top edge of the fault (0–3 km depth), with the
disagreement between the two solutions decreasing with
depth. Below 5 km depth, the static‐stress‐change estimates
from the FFT and half‐space methods agree well, so the FFT
method solution is considered reliable.
[11] The static shear stress change in the dip‐slip direc-

tion derived from the full slip model is shown in Figure 1b
for depths of 5 km and below. The static stress change
varies approximately from 17 MPa (stress drop) to −6 MPa
(stress increase) over the fault plane. The variation of the
static stress drop follows the variation of the slip model, as
expected, and a significant portion of the stress drop is
contributed from thrust motion at the asperity 140 km north

Figure 1. (a) Coseismic slip magnitude from joint inversion of GPS and InSAR data. Static shear stress
change from Maule, Chile, earthquake derived from slip model shown in Figure 1a resolved in the
(b) dip‐slip and (c) strike‐slip directions. The stress change is shown below 5 km depth, where the result
from the FFT calculation method is most reliable. Positive (negative) shear stress values correspond to
stress release (buildup). The focal mechanism from the Maule event is shown with a line to the main
shock hypocenter, indicated by a black star. Solid and dashed lines denote the edge of the model and
approximate Moho depth at 40 km, respectively.
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of the epicenter. Stress change resolved in the strike‐slip
direction (Figure 1c) is between −5 MPa (stress increase)
and 5 MPa (stress drop), and it may be safely neglected
since the coseismic slip and stress change was dominated by
thrust motion.
[12] The calculation of stress change from a given slip

model is straightforward and depends on only a choice of
shear modulus for relating shear strain to shear stress. The
peak shear stress value is a direct consequence of the peak
slip model curvature (i.e., the second derivative of slip on
the fault plane), which can be characterized by a nondi-
mensional roughness parameter describing the weight given
to a smoothing requirement in the slip inversion (see sup-
plementary material to Tong et al. [2010b]). Figure 2
demonstrates the dependence of both slip model misfit
and peak static stress drop on the nondimensional rough-
ness parameter. The c2 misfit reduces from 3.2 to 1.1 as
roughness increases from 1 to 10, clearly illustrating that the
additional roughness is required to explain the geodetic
observations. However, increasing slip model roughness
from 10 to 25 provides only a marginally improved misfit
of 0.95. For roughness greater than 25, the decrease in misfit
is negligible, indicating that the geodetic observations can-
not justify the fine‐scale features of a model this rough,
though, strictly speaking, neither can they rule them out.
[13] The peak stress drop is heavily dependent on model

roughness, so it is important to identify the range of accept-
able slip models that provide a reasonable fit to the geodetic
observations. A model roughness of 10–25 corresponds to a
range of likely stress drops of 17–28 MPa, and the slip and
stress change models shown in Figure 1 are calculated with
a roughness of 10, corresponding to a 17 MPa stress drop.
Again, this is strictly a lower bound on the possible peak
stress drop, but a higher stress drop would require a slip
model that is more rough than can be justified by the data.
When the preferred stress change is averaged throughout the

crust (top 40 km, or 154 km along dip), the mean stress drop
is ∼4 MPa.

3. Minimum Tectonic Stress Estimate
From Topography

[14] In addition to the shear stress released in a major
earthquake, we can also estimate the stress applied to the
crust from plate‐driving forces by calculating the minimum
crustal stress field that could simultaneously support the
local topography and maintain an orientation consistent with
a subduction thrust plate boundary. Topography formation
is subject to many different processes, but in the region of
the Maule earthquake the topography may be divided by
wavelength into two portions. The long‐wavelength topog-
raphy across the coast of South America (i.e., wavelengths
greater than 2p times the depth of compensation) is
dominated by the rise from the offshore subduction trench
to the high Andes and is supported by a combination of
isostatic compensation and dynamic buoyancy that is due
to convecting upper mantle material. The short‐wavelength
topography (i.e., wavelengths less than ∼350 km) in the
megathrust region is dominated by an accretionary wedge
of material scraped from the subducting slab. This wedge
is built through processes of plastic deformation such that
the state of stress supporting this topography is maintained
at the level of critical failure [Dahlen, 1990]. The height of
this critical wedge topography is limited by the portion of
the lithosphere that can sustain shear stress (i.e., the depth
to the brittle‐ductile transition).
[15] It was previously observed that the coseismic slip of

the Maule earthquake was negligible below the fore‐arc
Moho, such that no shear stress was relieved in the conti-
nental mantle from this event (Figure 1). We therefore infer
that the stress state of critical plastic failure related to the
accretionary wedge topography in this region is sustained
throughout the crust, but not below the Moho. This suggests
that the in situ crustal stress state in this region can be
directly related to the height of the local short‐wavelength
topography. Furthermore, if the processes by which the local
topography formed behaved as roughly elastic‐perfectly‐
plastic, then the critical stress state maintained throughout
the crust can be estimated as that which the critical topog-
raphy would exert in an elastic plate. The model of an elastic
plate loaded by local surface and Moho topography may
thus be used to estimate the in situ deviatoric nonlithostatic
stress state throughout the crust in a region where topogra-
phy height is critically limited by the strength of the crust.
[16] We can calculate the 3‐D stress exerted by the load of

this short‐wavelength topography and the corresponding
buoyant load from the Moho at the surfaces of a uniformly
thick elastic plate (Figure 3). We do this with a semianalytic
model in which an analytic solution for the stress within a
thick elastic plate loaded on the surface and base by non-
identical point loads (derived in Appendix A) is numerically
convolved with the actual observed shape of the surface
and Moho topography in the Fourier domain. We can then
examine the 3‐D stress field along a dipping plane re-
presenting the locked seismic zone, where we expect the
strength of the plate boundary region to be limited in order
to constrain the magnitude of the applied driving stresses.

Figure 2. The c2 misfit of inverted slip model to geodetic
observations (squares) and stress drop derived from slip
model (circles) as a function of nondimensional roughness
parameter (see supplementary material of Tong et al.
[2010b]). The peak static‐stress drop is calculated at
72.55°W, 34.53°S, within the main slip asperity north of the
epicenter. The filled symbols indicate the roughness value of
the stress change model shown in Figure 1. We interpret this
as a lower bound of peak stress drop estimated from geodetic
inversion.
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[17] In order to calculate the stress state exerted by
topography, the surface topography and bathymetry [Becker
et al., 2009] is first high‐pass filtered using a cosine taper
between spherical harmonics 100 and 140 (corresponding to
wavelengths between 300 and 400 km). The shape of the
Moho is related to the surface topography by flexure, con-
strained by observations of the gravity anomaly in the region
that have also been high‐pass filtered (continent region from
Pavlis et al. [2008]; ocean region from Sandwell and Smith
[2009]). For a 40 km thick crust, consistent with the esti-
mates from receiver functions [Lloyd et al., 2010; Sick et al.,
2006; Yuan et al., 2002], the ∼250 mGal anomaly across the
region is fit to an RMS of 31 mGal with an effective elastic
thickness of 3 km and a density of 2600 kg/m3.
[18] Stress values calculated in an elastic plate will nec-

essarily depend somewhat on the elastic moduli. We assume
a Young’s modulus of 70 GPa, but that the Poisson ratio of
the material may vary. Strictly speaking, we want to find
the stress state with the smallest critical stress in order to
identify the strict minimum possible tectonic stress magni-
tude. The critical stress in the crust is measured by calcu-
lating the second invariant of the deviatoric stress tensor, i.e.,
the von Mises stress. We show in Appendix A that the
smallest deviatoric stress the wedge topography could exert
in the crust corresponds to a Poisson ratio of v = 0.5, or that
of a load acting on an incompressible elastic solid. We use
this parameter in order to ensure the calculation gives a strict
lower bound on the size of the deviatoric stress sustained by
the deformed crust. In practicality, however, this stress dif-
fers very little from that in an elastic solid with v = 0.25 when
topography is nearly Airy compensated, as it is in this region.
[19] Appendix A also shows that, because we use stress to

calculate stress, with strain involved only as an intermediate
step, the thick plate stress solution is actually independent
of Young’s modulus. For the calculations presented here,
Young’s modulus is only a factor in the flexural rigidity used
to determine the shape of the Moho from gravity analysis. As
such, the results are robust to the choice of a single repre-
sentative value of Young’s modulus, rather than accounting
for depth variations of Young’s modulus throughout the
crust.
[20] The stress required to support topography is calcu-

lated along the locked interface between the subducting slab

and the overriding crust, using the same fault geometry as
that of the coseismic stress change model in the previous
section. We first resolve this 3‐D stress into reverse‐slip
shear stress on the megathrust fault plane (Figure 4a), where
positive (negative) values indicate that a reverse (normal)
dip slip is favored. Across most of the fault plane, the load
of the topography by itself induces a normal stress state,
except in the very low regions of the offshore trench and
onshore sediment basin. The largest negative shear‐stress
values are ∼7 MPa, indicating that the tectonic driving
forces in this region must contribute at least this much shear
stress in order to overcome the influence of topography and
ensure a thrust absolute stress state.
[21] We can further constrain the magnitude of the plate‐

driving stress acting on the fault plane by comparing the 3‐D
orientation of the stress derived from topography with that of
the centroid moment tensor solution of the Maule event
(National Earthquake Information Center (NEIC)). The total
in situ stress orientation across the ruptured region should be
largely consistent with the focal mechanism orientation. We
can quantitatively assess differences in stress orientation by
defining a goodness‐of‐fit parameter x 2 [0,1], such that

� ¼ 0 if model and event stress regimes differ
~vmodel1 �~v event1 þ~vmodel2 �~v event

2 þ~vmodel3 �~v event3

� �
=3 else

�
;

ð1Þ

where~v i
model and~v i

event are the eigenvectors (principal stress
axes) of the 3‐D stress tensor of the model and the event,
respectively. The definition of stress regime involves the
plunge angle of each principal stress axis, following the
convention of the World Stress Map catalog [e.g., Zoback,
1992]. The mean of this parameter over each location on
the fault plane � tests the fit of each modeled stress field.
[22] Figure 4b shows the value of x along the rupture

region for the stress field calculated from topography alone.
The lower‐hemisphere projection “beach balls” indicate the
orientation of the modeled topography stress field, with the
tension principal stress axis oriented through the shaded
quadrants and the pressure axis oriented through the
unshaded quadrants. These are compared with the Maule
event focal mechanism, shown by the larger beach ball on
the side. As expected, the stress from topography alone is

Figure 3. Schematic illustration of megathrust geometry showing the locked seismogenic zone between
the subducting slab and the continental crust. The model region, indicated by the dashed box, is repre-
sented mathematically as a uniform thick plate loaded by surface and Moho topography, as shown in
the inset. The dashed line indicates the dipping fault plane, representing the locked seismic zone, on
which the calculated stress field is resolved.
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not consistent with the orientation of the Maule event across
most of the fault plane. Only the offshore trench region is
in a properly oriented thrust regime, while the onshore
coastal foothills are in a normal or strike‐slip regime. This
poor fit is quantitatively indicated by the low mean fit
value of � = 0.161.
[23] To reconcile this stress mismatch, we add a regionally

uniform horizontal stress field (representing the depth‐
averaged tectonic plate‐driving stress in the crust), consisting
of three free parameters (two principal horizontal stress
magnitudes and the orientation angle of the axes), to the
topography‐supporting stress field. We search this parameter
space and define the conditions that maximize �, the fit
between the model stress field and the Maule event. The best
orientation of the added stress is nearly trench‐parallel and
trench‐perpendicular, favoring a slightly counterclockwise
orientation.
[24] Contours of � with respect to applied trench‐

perpendicular and trench‐parallel stresses (Figure 5) reveal
two requirements on the added stress magnitude in order
to ensure that the combined stress field is aligned with that
of the earthquake. First, there must be a trench‐parallel
compression of at least 15 MPa above lithostatic pressure.

Second, trench‐perpendicular compression must exceed
trench‐parallel compression by at least 12 MPa for a total of
at least 27 MPa of trench‐perpendicular compression. Any
added stress that satisfies both of these conditions will result
in a properly oriented thrust‐regime stress field along the
entire megathrust fault plane. The estimate of stress from
topography thus provides a firm lower bound on the mag-
nitude of nonlithostatic stress acting in the region of the
Maule earthquake. Figure 4c shows the value of x along the
ruptured fault plane for the topography stress field plus
the smallest satisfactory representation of additional tectonic
stress (15 MPa compression at 10°EofN and 27 MPa com-
pression at 100°EofN). With this addition, the mean fit of
the stress field orientation improves to � = 0.919, indicating
that across most of the fault plane the model stress field is
consistent with the orientation of the Maule event.
[25] A trench‐perpendicular compression of 27 MPa

resolved onto a 15° dipping plane corresponds to 7 MPa of
resolved reverse‐slip shear stress. This value is expected, as
it balances the minimum value of the topography‐only shear
stress observed in Figure 4a, ensuring that the total stress
field favors reverse dip slip over normal dip slip. However,
ensuring a thrust regime throughout the fault plane also

Figure 4. (a) Magnitude of crustal stress field exerted by surface and Moho topography, indicated as the
dip‐slip shear stress resolved onto the dipping fault plane. Positive (negative) shear stress values indicate
that reverse (normal) dip‐slip motion is preferred. (b) Orientation of crustal stress field exerted by surface
and Moho topography (beach balls) and parameter x (shading), indicating the fit between model stress
field orientation and that indicated by the Maule event focal mechanism. (c) Fit parameter x (shading)
and orientation (beach balls) of smallest stress field capable of both supporting short‐wavelength topog-
raphy and maintaining a stress orientation consistent with that of the Maule event throughout rupture
region. Stress field includes an additional 27 MPa compression at 100°EofN and 15 MPa compression
at 10°EofN.
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requires trench‐parallel compression to exceed vertical
compression. Otherwise the stress could favor reverse slip
over normal slip but still be in a dominantly oblique or
strike‐slip regime. The requirement for at least 15 MPa of
trench‐parallel compression corresponds physically to the
difference between the vertical and trench‐parallel stresses
exerted by topography alone. Adding trench‐parallel stress
ensures that the least‐compressive stress is vertical. It seems,
therefore, that in order to maintain a properly oriented stress
field, the regional driving tectonic stress must maintain at
least 12 MPa deviatoric stress.

4. Discussion

[26] The stress drop of a single earthquake can vary
widely, from ∼10−1 to 102 MPa [e.g., Allmann and Shearer,
2009; Hardebeck and Aron, 2009]. The peak value of our
slip‐model‐derived estimate at 17 MPa is on the higher end
of this range, well above the 3–4 MPa median stress drop
estimated from the corner frequency of the seismic spectra
for a global catalog of events. However, the depth‐averaged
stress drop estimate of 4 MPa may be a better quantity to
compare with seismic estimates of stress drop. While the
peak stress drop depends on the roughness parameter chosen
when inverting the slip model (Figure 2), the depth‐averaged
stress drop is largely independent of model roughness.
This depth‐averaged estimate is consistent with previous
observations that intraplate earthquakes deep in the sub-
ducted slab in Chile have a higher stress drop, around 9 MPa,
while interplate earthquakes along the contact megathrust

zone between the plates have a lower stress drop, around
3 MPa [Leyton et al., 2009].
[27] Previous studies have disagreed over whether there is

any correlation between event stress drop and event mag-
nitude, depth, or regime. Larger stress drops have been
associated with thrust events along the San Andreas fault in
California [Hardebeck and Aron, 2009], but a global study
of stress drops found rather that the stress drop is larger for
strike‐slip events than for thrust events, though it could be
that some of the assumptions of a seismic estimation of
stress drop (e.g., a circular slip patch, constant rupture
velocity) break down for very large earthquakes [Allmann
and Shearer, 2009]. The M 8.8 Maule earthquake is, to
date, the sixth largest earthquake since modern recording
began, and yet has a stress‐drop magnitude equal to the
global average. This corroborates the previous observations
that event magnitude and stress drop are not correlated.
[28] One thing we may be able to infer from a spatially

distributed model of stress drop is which regions of fault
slip, if any, may have been loaded with increased shear
stress by the rupture. Our model suggests the largest area of
shear stress increase (∼−5 MPa) was downdip in the lowest
crust north of the main shock hypocenter but south of the
main slip asperity. Further updip and offshore, we observe
widespread dominant stress release. This is in contrast to
observations of Coulomb stress change observed by Lorito
et al. [2011], who found a stress increase of up to 3 MPa
broadly in the shallowest portions of the rupture area and
specifically closer to the coastline between 36°S and 37°S.
In that zone we observe a small asperity‐adjacent patch on
which shear stress may have increased by ∼1 MPa, but we
see no evidence that a broader stress increase occurred.
[29] While our estimate of depth‐averaged cosesmic stress

drop is robust, our tectonic mean crustal shear stress esti-
mate is a minimum for two reasons. First, the assumption of
material incompressibility calculates the stress state with the
smallest possible deviatoric stress that the topography as a
load could exert, such that our calculation of the short‐
wavelength stress is a minimum. Such an assumption may
be appropriate when considering the support of short‐
wavelength topography. Dahlen [1981] proposed that the
deviatoric stress in unflexed regions of oceanic lithosphere
is the minimum state required to support topography and
found that this corresponded to the case of an incompress-
ible material, though this was not explicitly stated. Also, for
nearly Airy compensated topography, the deviatoric stress
magnitude differs by less than 10% between an incom-
pressible material with v = 0.5 and an elastic material with
v = 0.25. Thus, we are confident that our calculation
closely estimates the spatial variations in the magnitude of
stress sustained throughout the crust at this wavelength.
[30] The second reason our mean crustal shear stress esti-

mate is a minimum is because we have made no assumptions
about the forces responsible for ongoing processes beyond
the locked seismic zone. Any stress responsible for net plate
motion that is sustained through the crust must be in addition
to the minimum long‐wavelength stress we have identified
as necessary to support the observed topography and stress
regime. It is interesting that our minimum estimate of crustal
shear stress is about half that of previous estimates of tectonic
shear stress throughout the entire plate that focused on the
balance of long‐wavelength topography with tectonic stress

Figure 5. Contours of mean fit parameter � averaged over
the entire fault plane as a function of roughly trench‐
perpendicular (100°EofN) and trench‐parallel (10°EofN)
additional tectonic driving stress.
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[Lamb, 2006; Seno, 2009; Zhong and Gurnis, 1994]. While
this could simply indicate that the in situ crustal stress is
actually larger than that estimated in this paper, it may instead
indicate that while the bulk of plate strength resides in
the continental crust [e.g., Jackson et al., 2008], some litho-
spheric strength is maintained in the continental mantle,
despite its aseismicity.
[31] The comparison of our crustal tectonic stress estimate

with our stress drop estimate from the Maule event has some
implications for our understanding of fault strength in the
region. If the coseismic stress drop exactly equaled the
crustal‐driving stress, that would indicate that all of the stress
was taken up in the seismic cycle and the downgoing motion
of the slab, leaving no excess stress to be accommodated
in back‐arc mountain‐building processes. This would cor-
respond to a completely weak subduction fault, unable to
sustain any amount of shear stress in the long term. In con-
trast, if the coseismic stress drop was much less than the
crustal‐driving stress, a large quantity of stress would be
available to be accommodated in continent‐deformation
processes. This would indicate a very strong subduction
fault, transmitting most of its sustained stress across the plate
boundary. In actuality, our estimate of crustal‐driving stress
is moderately larger than the coseismic stress drop. The
depth‐averaged shear stress drop at the northern asperity
is 4 MPa, compared with at least 7 MPa resolved tectonic
shear stress required to support topography.
[32] If these numbers accurately represent the stresses

sustained by the fault and relieved through the seismic
cycle, then our estimates indicate a fairly weak crustal fault
in which major earthquakes relieve much of the total stress.
This would be consistent with modeling studies that indicate
a low effective coefficient of friction (less than 0.2) is
required on subduction thrust faults in order to be consistent
with observations of arc front topography [Cattin et al.,
1997; Lamb, 2006]. Because the crustal‐driving stress esti-
mate is strictly a minimum, the analysis presented here
cannot absolutely determine that the southern Chilean sub-
duction thrust is weak. However, the only way it could be
strong is if either the tectonic stress magnitude in the crust is
much larger than the minimum stress required to sustain
the observed topography and stress regime, meaning a sub-
stantial portion of plate driving stress is transmitted through
the crust, or if the stress drop from this event was anoma-
lously low for this region. Large crustal stress transmission
seems particularly unlikely, however, because at this latitude
there has been little crustal shortening in the back arc [Brooks
et al., 2003]. In addition, the calculated coseismic stress
drop does not seem anomalously low compared with global
averages, though there are few observations of stress drop in
this exact region to compare. We therefore prefer an expla-
nation that the section of fault ruptured in the Maule event
is fairly weak.

5. Conclusions

[33] In this paper, we have made two independent esti-
mates of shear stress in the crust in the region of the Mw

8.8 Maule, Chile, earthquake. In the first, we have combined
observations from InSAR and GPS to develop a coseismic
slip model for the event and used this model to calculate the
spatially variable static shear stress change along the fault

from the rupture. We estimate the stress change from this
event varied between −6 MPa (stress increase) to 17 MPa
(stress drop). When averaged through the crust, this corre-
sponds to a maximum shear‐stress drop of 4 MPa.
[34] In the second, we have calculated the stress field

exerted by surface and Moho topography loading the crust
and have related that to the critical stress level sustained in
the support of the accretionary wedge topography in the
rupture region. We observe that long‐wavelength plate‐
driving forces, regardless of their exact mechanism, must
contribute at least enough stress in the crust to both support
the observed topography variations and ensure that the 3‐D
orientation of the stress field is consistent with the in situ
stress field indicated by the focal mechanism of the Maule
event. We can therefore identify the following constraints
on the tectonically applied stress in the crust at this location:
Trench‐parallel compression must be at least 15 MPa, and
trench‐perpendicular compression must exceed trench‐
parallel compression by at least 12 MPa for a total of at
least 27 MPa of trench‐perpendicular compression. When
resolved into dip‐slip shear stress on the subduction fault
plane, this corresponds to a mean crustal shear stress of at
least 7 MPa.
[35] The comparable magnitudes of these two indepen-

dent estimates suggest that the seismic cycle relieves a
quantity of stress similar to that required to sustain the
observed topography and stress orientation, consistent with
a weak megathrust fault that transmits very little compres-
sion to the back arc. These observations are consistent with
previous studies that estimate a low coefficient of friction
for subduction faults as well as a low mean shear stress
along the subduction interface of southern Chile in partic-
ular. Detailed geodetic imaging of the coseismic slip from
the Maule event as well as the development of a force
balance model derived specifically to constrain the magni-
tude of crustal tectonic stress has allowed us to investigate
the stress state in a narrow geographic region. We are thus
able to place strict lower bounds on the absolute magnitude
of the deviatoric stress in the lithosphere at this location.

Appendix A: Derivation of Loaded Thick Elastic
Plate Green’s Function
A1. Method and Boundary Conditions

[36] This appendix contains the derivation of the 3‐D
stress field generated by top and bottom loading of an elastic
plate of thickness h. Solutions to the Boussinesq problem
for balancing vertical tractions on a surface were originally
developed for an elastic half‐space [Boussinesq, 1885;
Steketee, 1958]. More recently, similar methods have been
followed to derive solutions for balancing vertical tractions
on the surface of an elastic plate overlying a viscoelastic
half‐space [Luttrell and Sandwell, 2010; Luttrell et al.,
2007; Smith and Sandwell, 2004]. Here we again follow
the approach of Steketee [1958] to solve a Boussinesq‐like
problem in which we apply two distinct loads to the surfaces
of an elastic plate.
[37] The model is semianalytic in that the Green’s function

stress from nonidentical vertical point loads at the top
and bottom of the plate is analytically derived below and
then numerically convolved with the actual two‐dimensional
(2‐D) shape of the load to get the 3‐D stress field. This
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method of calculation is advantageous because it is numer-
ically efficient, though it does require that the vertical
structure of the model earth be simple. The loads at the top
and bottom of the plate (f (x, y) at z = 0 and g(x, y) at
depth z = h, respectively) may be arbitrarily intricate and
need not be related, though Moho shape is generally
related to surface topography through flexure. The only
restrictions on the loads come from the FFT convolution,
which requires that the zero‐wave‐number component of
the force be zero and that the computational region be
wider than the longest wavelength we are interested in.
The compensation of very long wavelength loads can be
adequately described by thin‐plate flexure, while the
compensation of short‐wavelength loads can be described
by an elastic half‐space. We are primarily interested in the
intermediate‐wavelength loads between these domains.
[38] The response of a plate to a vertical point load is

radially symmetric; therefore only four boundary conditions
are needed to describe the system. Shear tractions must
vanish at the surfaces, and vertical normal tractions are
defined by the applied loads. We treat the distributed loads
as horizontally varying but applied at a single depth:

�xz ~x; 0ð Þ ¼ 0; ðA1aÞ

�xz ~x; hð Þ ¼ 0; ðA1bÞ

�zz ~x; 0ð Þ ¼ �f ~xð Þ; ðA1cÞ

�zz ~x; hð Þ ¼ �g ~xð Þ: ðA1dÞ

Stress is positive in extension and negative in compression,
and z is positive up. If f(~x) and g(~x) are positive numbers,
both applied normal stresses are compressive (negative).
Note that despite the inherent radial symmetry of the prob-
lem, we continue the derivation in Cartesian coordinates for
simplicity, and note here that the additional boundary con-
ditions, requiring that the other vertical shear stresses syz also
vanish, are appropriate but redundant. Numerical FFTs are
done in Cartesian coordinates on a global 1‐min Mercator‐
projected grid divided into strips of latitude, and individual
strips are merged using a cosine taper to reduce any effect
from latitude seams.

A2. Stress in a Thick Elastic Plate

[39] As Luttrell and Sandwell [2010] did, we let dis-
placement and stress be a function of the Galerkin vector
potential Gi:

ui ¼ Gi;kk � �Gk;ki; ðA2Þ

�ij ¼ � 1� �ð Þ�ijGl;kkl þ � Gi;kkj þ Gj;kki

� �� 2��Gk;kij; ðA3Þ

where a is a constant yet to be determined and stress above
the lithostatic state sij has been related to strain and dis-
placement ui through an elastic constitutive equation with
Lamé parameters l and m. Note that we use the standard
summation notation, such that a variable with a single

subscript is a vector, a variable with two subscripts is a
tensor, a repeated index indicates summation over the co-
ordinates, and an index following a comma indicates dif-
ferentiation with respect to that coordinate. Because the
applied point loads are purely normal and applied on a hori-
zontal free surface, we need retain only the third component
of the Galerkin vector, such that Gx = Gy = 0 and Gz = G,
which we call the Galerkin potential.
[40] When the equilibrium equations for a body in the

absence of internal body forces or acceleration sij,j = 0 are
written in terms of the Galerkin potential, we find that by
letting a = (l + m)/(l + 2m), the Galerkin potential must
satisfy the biharmonic equation r4G = 0. After taking the
2‐D horizontal Fourier transform of this equation, the
solution form is recognized as

G ~k; z
� �

¼ Aþ B�zð Þe�z þ C þ D�zð Þe��z; ðA4Þ

where b = 2p∣~k∣ = 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the horizontal wave

number and (A, B, C, D) are coefficients to be determined
by the boundary conditions (equations (A1a)–(A1d)).
[41] We may now express the components of the stress

tensor (equation (A3)) in terms of Young’s modulus E,
Poisson ratio v, horizontal wave number, and the Galerkin
potential coefficients. The stress components relevant to the
boundary conditions (equations (A1a)–(A1d)) are

�xz
~k; z
� �

¼ �i	kx
E�2

1� 
2
Aþ B 2
 þ �zð Þð Þe�zþ
C þ D �2
 þ �zð Þð Þe��z

� 	
; ðA5aÞ

�zz
~k; z
� �

¼ E�3

2 1� 
2ð Þ
�Aþ B 1� 2
 � �zð Þð Þe�zþ
C þ D 1� 2
 þ �zð Þð Þe��z

� 	
: ðA5bÞ

This system of four equations and four unknowns can now
be solved using a computer algebra system (Mathematica).
The coefficients of the Galerkin potential are found to be

Φ ¼ 
2 � 1

E�3 1þ 2�2h2 � cosh 2�hð Þ ; ðA6aÞ

A ¼ Φ
f ~k
� �

�2
 2�hþ sinh 2�hð Þ þ �2
 1� cosh 2�hð Þ � 2�2h2ð Þ½ �þ
g ~k
� �

4
 �h cosh�hþ sinh �hð Þ þ 2 1� 2
ð Þ�h sinh �h½ �

2
4

3
5;

ðA6bÞ

B ¼ Φ
f ~k
� �

1� cosh 2�hð Þ þ 2�hþ sinh 2�hð Þ½ �þ
g ~k
� �

2�h sinh�h� 2 �h cosh�hþ sinh �hð Þ½ �

2
4

3
5; ðA6cÞ

C ¼ Φ
f ~k
� �

�2
 2�hþ sinh 2�hð Þ � �2
 1� cosh 2�hð Þ � 2�2h2ð Þ½ �þ
g ~k
� �

4
 �h cosh�hþ sinh�hð Þ � 2 1� 2
ð Þ�h sinh �h½ �

2
4

3
5;

ðA6dÞ

D ¼ Φ
f ~k
� �

1� cosh 2�hð Þ � 2�hþ sinh 2�hð Þ½ �þ
g ~k
� �

2�h sinh �hþ 2 �h cosh�hþ sinh �hð Þ½ �

2
4

3
5: ðA6eÞ
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When substituted back into equations (A4) and (A3), the
six components of the stress tensor can be written as

�xx
~k; z
� �

¼ f ~k
� � k2x

~k



 


2

Cf � Sf
� �� 2
Sf

k2y

~k



 


2

2
4

3
5

þ g ~k
� � k2x

~k



 


2

Cg � Sg
� �� 2
Sg

k2y

~k



 


2

2
4

3
5 ðA7aÞ

�yy
~k; z
� �

¼ f ~k
� � k2y

~k



 


2

Cf � Sf
� �� 2
Sf

k2x

~k



 


2

2
4

3
5

þ g ~k
� � k2y

~k



 


2

Cg � Sg
� �� 2
Sg

k2x

~k



 


2

2
4

3
5 ðA7bÞ

�zz
~k; z
� �

¼ f ~k
� �

�Cf � Sf
� �þ g ~k

� �
�Cg � Sg
� �

; ðA7cÞ

�xy
~k; z
� �

¼ kxky

~k



 


2

f ~k
� �

Cf � Sf þ 2
Sf
� �n

þg ~k
� �

Cg � Sg þ 2
Sg
� �o

; ðA7dÞ

�xz
~k; z
� �

¼ ikx
~k



 


 f ~k

� �
S′f þ g ~k

� �
S′g

h i
; ðA7eÞ

�yz
~k; z
� �

¼ iky
~k



 


 f ~k

� �
S′f þ g ~k

� �
S′g

h i
; ðA7f Þ

with depth dependence for the normal stress components
and the horizontal shear stress component given by the
transfer functions

Cf ¼ 2�2h� cosh�z� �z sinh �z� �z sinh� hþ �ð Þ
1þ 2�2h2 � cosh 2�h

; ðA8aÞ

Cg ¼ 2�2hz cosh�� � �� sinh�� � �� sinh � hþ zð Þ
1þ 2�2h2 � cosh 2�h

; ðA8bÞ

Sf ¼ 2�h sinh �zþ cosh�z� cosh � hþ �ð Þ
1þ 2�2h2 � cosh 2�h

; ðA8cÞ

Sg ¼ 2�h sinh�� þ cosh �� � cosh � hþ zð Þ
1þ 2�2h2 � cosh 2�h

; ðA8dÞ

where z is the depth from the top of the plate and z = h − z
is the distance from the bottom of the plate. The transfer
functions related to the bottom load g(~k) are depth‐inverted

versions of those related to the top load f (~k), such that any
occurrence of z and z are interchanged. The transfer func-
tions for the vertical shear stress components are related to
those in equations (A8a)–(A8d) by derivatives with respect
to depth, such that

S′ f ;gð Þ ¼ � 1

�

d

dz
C f ;gð Þ þ S f ;gð Þ
� �

: ðA9Þ

A3. Benchmarks of Limit Cases

[42] We numerically compared the stress solutions above
with those of Love [1929] for a point load in an elastic half‐
space and confirmed that stress calculations match to within
a factor of 10−3. We also show that in the long‐wavelength
limit, these solutions reduce to the 2‐D stress solutions for
a thin elastic plate in which topography is exactly Airy
compensated, such that g(x, y) = f (x, y). We can simplify
the full 3‐D solution for the Airy‐compensation case where
g(x, y) = f (x, y), such that the stress solution given in
equations (A7a)–(A7f) to (A9) reduces to

�xx ¼ f ~k
� � k2x

~k



 


2

C � S½ ��2
S
k2y

~k



 


2

2
4

3
5; ðA10aÞ

�yy ¼ f ~k
� � k2y

~k



 


2

C � S½ �� 2
S
k2x

~k



 


2

2
4

3
5; ðA10bÞ

�zz ¼ f ~k
� �

�C � S½ �; ðA10cÞ

�xy ¼ f ~k
� � kxky

~k



 


2

C � S þ 2
S½ �; ðA10dÞ

�xz ¼ i
kx
~k



 


 f

~k
� �

S′; ðA10eÞ

�yz ¼ i
ky
~k



 


 f

~k
� �

S′; ðA10f Þ

with transfer functions given by

C ¼ �� cosh�zþ �z cosh ��

sinh�hþ �h
; ðA11aÞ

S ¼ sinh�zþ sinh��

sinh�hþ �h
; ðA11bÞ

S′ ¼ � 1

�

d

dz
C þ S½ �: ðA11cÞ
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In the limit as b → 0, the transfer function for the vertical
shear stresses S′ approaches zero, while the transfer func-
tions for the horizontal shear stress and normal stresses,
C and S, both approach 1/2. The long‐wavelength stresses
therefore become

�xx ¼ �f ~k
� �



k2y

~k



 


2

; ðA12aÞ

�yy ¼ �f ~k
� �



k2x

~k



 


2

; ðA12bÞ

�xy ¼ f ~k
� �



kxky

~k



 


2

; ðA12cÞ

with the applied load szz = −f(~k) and the vertical shear
stresses sxz = syz = 0. These are the Cartesian stresses for a
load within a thin elastic plate [e.g., Dahlen, 1981]. On the
basis of these three benchmark comparisons, we are con-
fident that the more general 3‐D solution is correct.

A4. Minimum Deviatoric Stress in a Loaded Elastic
Plate

[43] The solutions of equations (A7a)–(A7f) serve as
Green’s functions, allowing the full 3‐D stress tensor to be
computed by a simple convolution in the Fourier domain.
We seek the conditions for which the deviatoric stress given

by this solution is minimized. The second invariant of the
deviatoric stress tensor tij = sij − (1/3)skk is given by

II� ¼ 1

6
�xx � �yy

� �2þ �xx � �zzð Þ2þ �yy � �zz
� �2h i

þ �2
xy þ �2

xz þ �2
yz: ðA13Þ

In terms of the transfer functions of equations (A8a)–(A8d)
to (A9), this becomes

II� ¼ 1

3

3 f ~k
� �

Cf þ g ~k
� �

Cg

� �2
�3 f ~k

� �
S′f þ g ~k

� �
S′g

� �2

þ f ~k
� �

Sf þ g ~k
� �

Sg
� �2

1� 2
ð Þ2

2
64

3
75;

ðA14Þ

which is minimized when v = 0.5, corresponding to an
incompressible elastic solid.Dahlen [1981] similarly showed
that in the 2‐D case, the second invariant of the deviatoric
stress from Airy‐compensated topography at midocean rid-
ges was minimized for v = 0.5, though this was never
explicitly stated. Our analysis extends the results of Dahlen
[1981] to three dimensions. Note that the form of the sec-
ond invariant is the same as the stress used to define the von
Mises yield condition. Therefore, if the material has an
elastic‐plastic rheology and it has been stressed to its yield
strength, then the minimum stress derived here is also the
maximum stress that can be maintained in the crust.
[44] The dimensionless Green’s functions for an Airy‐

compensated load g(~k) = f(~k) on an incompressible elastic
plate at depth z = h/4 are shown in Figure A1. The wave
numbers have been scaled by the plate thickness h and
the stress components have been scaled by the applied

Figure A1. Contours of the Green’s functions for each 3‐D stress tensor component assuming an Airy‐
compensated load g(~k) = f(~k) on an incompressible elastic plate v = 1/2 at depth z = h/4. The dimension-
less horizontal wave number is scaled by the plate thickness h, and the dimensionless stress values are
scaled by the size of the load f(~k). The Green’s functions of the vertical shear stress components sxz
and syz are purely imaginary, so the imaginary component is plotted.
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load f (~k). In the long‐wavelength (zero‐wave‐number)
limit, the vertical shear stresses are zero and the vertical
normal stress is the same as the size of the applied load. At
this same limit, the horizontal stress components no longer
depend on the size of the horizontal radial wave number ∣~k∣,
but rather depend on only the relative sizes of the two hor-
izontal wave number components, kx and ky, consistent with
stress in a thin elastic plate. In the short‐wavelength (infinite‐
wave‐number) limit, all stress components go to zero.
[45] The Fortran code to calculate the 3‐D stress field that

is due to an arbitrary surface topography load is provided
at the following ftp location: ftp://topex.ucsd.edu/pub/chile_
topo_stress.
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