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Global Nondynamic Orbit Improvement for Altimetric Satellites
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The largest source of error in satellite altimetry is in the radial position of the satellite. Radial orbit errors of
more than a few decimeters prohibit basin-scale studies of sea surface height variability. We explore
nondynamic techniques for reducing this error. Sea surface height differences at intersections of satellite
altimeter profiles (crossover data) provide a strong constraint on radial orbit error but do not uniquely define it.
The portion of orbit error that is a function of latitude and longitude only produces no crossover differences
and therefore cannot be recovered with crossover data. Using mathematics (inclination functions) originally
developed for satellite dynamics, we determine the entire class of orbit error functions not recoverable with
crossover data. These functions are mappings of surface spherical harmonics into the orbit plane. For
example, the /=1, m=0 surface harmonic maps into sinusoidal orbit error with a frequency of once per orbit.
Nonzonal harmonics map into linear combinations of three or more frequencies that are linked by the
inclination functions. Between frequencies of 0 and 2.2 cycles per orbit there are nine orbit error components
that cannot be recovered using crossover data. These components are uniquely defined, however, by nine
globally distributed radial tracking points. Fewer tracking points are sufficient if a smoothness criteria is
applied to the orbit correction curve. Our findings suggest that radial orbit error can be significantly reduced
by including a few globally distributed radar reflectors (or transponders) in the tracking network.

INTRODUCTION

Satellite altimetry is a valuable observing technique for
geodesists, geophysicists, and oceanographers. For some
applications, however, the technique is limited by orbit
determination accuracy. The radial component of orbit error
introduces a long-wavelength bias (30 cm currently) into
altimeter profiles. This is many times the precision of any recent
or future instrument. The dominant portion of this error arises
from uncertainty of the earth’s gravity field [Marsh and
Williamson, 1980]. Until knowledge of the geopotential is
substantially improved, nondynamical (geometric) orbit
determination techniques must be explored. The nondynamic
orbit improvement method, presented here, is intended to reduce
the small radial orbit errors remaining in precision orbits; it does
not replace precision orbit determinations.

Several nondynamic techniques have been developed to reduce
radial orbit error. In each case the orbit was adjusted to minimize
the differences in sea surface height at intersections of ascending
and descending altimeter profiles (i.e., crossover differences).
Rummel and Rapp [1977) adjusted the bias and trend of each
altimeter profile, in a restricted area, to minimize all crossover
differences. This method has also been applied to large regions
and to a set of "primary arcs" [Rapp, 1983], giving global
coverage. Cloutier [1981] computed the smoothest curve
reducing the crossover differences and average radial error to
zero. Wunsch and Zlotnicki [1984] did not explicitly form
crossover differences but regionally modeled radial orbit error
using covariance functions in a least squares approach. Douglas
et al., [1984] (hereinafter referred to as DAS) used a truncated
Fourier series to model the orbit error globally.

All of these investigators found that crossover data alone, no
matter how geographically dense, do not uniquely determine
radial orbit error. Various methods have been used to stabilize the
problem of recovering radial orbit error from crossover data.
Regional solutions, where biases and trends were removed from
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each pass, were stabilized by fixing three points in the area or
pinning the edges of the area to the most accurate passes (i.e.,
master arcs). Cloutier [1981] stabilized the problem by seeking
the minimal rate of change of orbit crror giving an average orbit
error of zero. Wunsch and Zlotnicki [1984] avoided singularities
by prescribing a covariance function for radial orbit error.
Finally, DAS overcame the problem by including low-weighted
altimetrically determined sea surface heights not at crossover
points. While these stabilization methods are practical, it is not
clear that they yield an accurate orbit in every case.

The new technique presented here still relies mainly on
crossover data. However, it is designed to extract basin-scale
oceanographic signals from altimeter profiles and thus must meet
several criteria. First, the time span of the corrected orbit should
be long enough to create a global map (e.g., one ground track
repeat cycle) but short enough that sea surface topography does
not change appreciably. Second, it is desirable that sea surface
topography from different months, or even years, be compared to
determine seasonal or secular variations.

To attain these goals, we first identify all of the components of
radial orbit error that are not recoverable from crossover data. It
is shown that these unrecoverable components depend on latitude
and longitude only. Such purely geographical orbit error produces
no crossover differences, so it cannot be recovered with crossover
difference data.  After identifying these unrecoverable
components, we determine the minimum additional tracking data
needed to constrain them. In theory, the minimum tracking data
along with the crossover data uniquely define the orbit. In
practice, data gaps over continental areas destroy this unique
relationship. The orbit is poorly constrained over continental
areas but is accurate over ocean areas. Thus the improved radial
position of the satellite cannot be used to deduce the forces acting
on the satellite. Our method only improves the accuracy of sea
surface topography.

Several studies have identified Fourier components of orbit
error that depend only on latitude and longitude. The mapping of
the /=1, m=0 surface spherical harmonic into once per revolution
was found by Douglas and Sandwell [1983]. Wagner [1985] used
a simple argument to show that once per revolution orbit error and
all multiples thereof were unobservable from crossover data. He
proposed that all the zonal spherical harmonics map into multiples
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of the once per revolution frequency. Here we use inclination
functions, developed originally for satellite dynamics [Kaula,
1966; Allan, 1973), to confirm that the zonal harmonics map into
multiples of once per revolution. Furthermore, we show that the
nonzonal harmonics map into linear combinations of three or
more frequencies. Thus, for each surface spherical harmonic
(time independent) there is a component of radial orbit error that
cannot be recovered with crossover data.

GEOGRAPHICALLY DEPENDENT RADIAL ORBIT ERROR

The focus of this study is the Fourier model for radial
ephemeris error used by Goad et al. [1980] in their attempt to
improve altimetric satellite orbits on a global scale using
crossovers. The orbit error model is

N
O()=Y a;cos(2no;t)+b; sin(Qmo; 1) (1)
i=0

for N frequencies ;. There are several advantages to this model.
First, there is negligible radial error in a precise ephemeris at
frequencies higher than twice per revolution [Marsh and
Williamson, 1980] so if the Fourier model is truncated near twice
per revolution, the number of model parameters is much less than
the number of crossover data for arcs more than a few days in
length. Second, the correction curve is global but limited in time.
This time window is ideal for ocean dynamic studies. Finally, we
show the class of geographically correlated orbit error consists of
just a few Fourier components. These components can be
eliminated from the model, or better, determined from additional
data.

Radial orbit error that depends only on latitude and longitude
produces no height differences at crossover points. Consider this
in the context of the largest single component of orbit error: one
cycle per orbit. The sine component (as measured from the
equator) of orbit error depends on latitude alone. Latitude is
unaffected by earth rotation. Previous studies [Douglas and
Sandwell, 1983] have shown that it is perfectly correlated with the
1=1, m=0 surface spherical harmonic and is therefore
unobservable from crossover data. In contrast, the cosine
component of once per revolution orbit error is observable from
crossover data because the earth rotates with respect to the orbit
plane. When the cosine component of orbit error returns to the
same value (after one cycle) the longitude has changed because of
earth rotation.

In addition to the mapping of the I=1, m=0 surface spherical
harmonic into the sine component of once per revolution orbit
error, there is a similar mapping for every other surface harmonic.
The complete set of radial orbit error functions depending only on
latitude and longitude is most easily found by projecting
individual surface harmonics into the Fourier spectrum of the
radial orbit error. These mapping functions were derived
originally to compute the earth’s gravitational potential along a
satellite trajectory [Kaula, 1966; Allan, 1973]. Here we use the
same formulation to map surface harmonics into the orbit plane.
For a circular orbit, the mapping of the surface spherical
harmonics of degree ! and order m (i.e., Cy,, and Sy,) into radial
orbit error O, (t) is

!
Oin(t) =Y, Fimp (I) [Aim €08 (Wimpt) + Bim sin (Wimpt)]  (2)
p=0

where

Cin 1-m even Sim 1-m even
Am=_s,. I1-m odd Bim=1c,. 1-m odd &)
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and
anp = (l_2p )0)0 +ma, (4)

and the Fj,(I) are the inclination functions given by Kaula
[1966]. Without loss of generality we have chosen ¢=0 at zero
latitude and zero longitude. These mappings depend upon the
orbit frequency ®,, the orbit inclination I, and the earth rotation
rate relative to the orbit plane ®,. To determine mappings of
individual harmonic coefficients into radial orbit error, two cases
must be considered, /-m even and I-m odd. Mapping functions,
up to degree and order 2, are listed in Table 1. The odd zonal
harmonics (i.e., 1=1,3,5 - - - ; m=0) map into sine functions with
frequencies of ®,, 30,, 50, - - -, respectively. The even zonals
map into cosines of even multiples of ®,. The nonzonal mapping
functions are more interesting since they map into sets of
frequencies related through the inclination functions (see Table 1).
For example, C ;; maps into two cosine terms with frequencies of
®, £ ®,; S, maps into sine terms having the same frequencies.
The superposition of these two sine components is
2 cos (m,¢)cos (w.t). This is orbit error with a frequency of once
per revolution and amplitude modulated by the earth’s rotation
rate. Note that these functions have been derived without
requiring the orbit to be in a repeat mode.

For a concrete example, consider a Fourier model that is
restricted to frequencies between 0 and 1.1 cycles per revolution.
The frequency sets that cannot be determined from crossover data
are 0, ®,, and ®, £ ®,. With respect to crossover data these are
singular orbit error components. Higher spherical harmonics such
as /=2, m=2 map into a linear combination of 2w, + ®, and ®,.
Even though ®, is below 1.1 cycles per revolution, it does not
produce a singular component. A singularity only occurs if one
attempts to recover all of the components of the linear
combination simultaneously. In the subsequent numerical
analysis, using the frequency pair ®,  ®,, it is demonstrated that
®, + ©, by itself is not singular; it is only singular in combination
with ®, — ®,.

NUMERICAL EXAMPLES

The mapping function in equation (2) was derived for a circular
orbit. To estimate the effect of the slight eccentricity of the Seasat
orbit, as well as irregular sampling due to land masses, numerical
techniques must be used to calculate the actual strength of the
singularities. We use the least squares technique but believe other
numerical techniques will yield similar results.

Figure 1 shows the results of repeated fitting (least squares) of a
one-frequency model (sine and cosine) to the 354 deep water,
land-and-ice free Seasat crossover data in the 3-day repeat cycle
from September 20-22, 1978, used by DAS. The abscissa
displays a selected frequency, and the ordinate displays the
condition number of the Euclidian norm (spectral norm) of the
normal equation matrix. This condition number is a measure of
the conditioning (or singularity) of a system [Gill et al., 1981]. It
indicates the maximum effect of a perturbation on an exact
solution. The condition number ranges from 1 (completely stable)
to infinity (exactly singular). Figure 1 shows clearly the single-
frequency singularity at once per revolution. We also found that
sharp singularities occur at integer multiples of once per
revolution. The extreme sharpness of the singularities is
surprising, since the real orbit is mot exactly circular and has
complex perturbations.

To illustrate the additional singularities arising from
combinations of frequencies (i.e., ®,* ®,), another condition
number computation was performed. Figure 2 shows the
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TABLE 1. Mapping Functions

I m 7 ® Forg@) Fimp (108%) S (02
(Seasat)
50 00 i 100 Co
10 0 o —%sinl 048  Cyosin(w,1)
10 1 -o, % sin/ —048  —Cysin(@yt)
11 0 o+, %+% cos! 035  Cyy008(@,+0,) — S 1y 8in (@, +©,)0
11 1 -0+, %—%cosl 0.65 Cycos(w, —w, )t + .51, sin(w, - o, )t
2 0 0 20, - = sin?f -034  C,c08 Qw,t)
20 10 %sinzl—— 018  Cy
20 2 -20, ~ 3 sinr —034  Cppcos2ayt)
21 0 20,+0, %sin[ (1+cos/) 0.49 S 31 c08 2w, + W, )t + C 5;sin 2w, +w,)t
21 1 o, —%sinl cos/ 044 S cos(w,t)+C 4 sin(w,t)
21 2 -20,+0, % sin/ (1-cos/) 093 S co8 2w, -, )t —C,;sin (2o, —0,)t
2 2 0 20,+20, % (1+cosl)? 0.36 C 92005 (20, +2W, )t — S 53 5in 2w, +2w, )t
22 1 20, %sinzl 135 Cjp008 (20,0) = S g 5in (20,1)
2 2 2 -20,+20, %(1 —cos)? 129 Cyyc08 (26, —20,)t +8 5y 5in (20, —20,)¢

condition number for a pair of frequencies (four unknowns) using
the same 354 crossover data set of DAS. The frequencies were
selected by adding and subtracting an offset to the orbital
frequency w,. The peak of the singularity, associated with the
nonzonal harmonic /=1, m=1, is offset by the rotation frequency
of the earth relative to the precessing orbit plane ®, as predicted
by the theory.

To show the behavior of singularities in the full Fourier model
used by DAS, we solved for Fourier components (equation (1)) at
the following frequencies:

N=93
o=i*wo (=012-",N) O
o = L cycles per revolution
43

A numerical test of this system revealed the expected singularities
at once and twice per revolution and also at frequencies ®, + ,,

20, + ®,, and 20, * 2, as predicted from the theory.
Having identified the complete set of orbit error functions not

recoverable from ocean crossover data, we also considered the
case of complete global sampling, of course obtaining the same
result. Obviously, additional information is required if a solution
to the orbit error problem is to be obtained.

INCLUSION OF ADDITIONAL DATA

To provide a formal measure of the effectiveness of including
additional data in a generalized least squares solution, a synthetic
altimeter orbit error data set was created by subtracting the radial

ephemeris component computed by the Goddard Space Flight
Center (GSFC) from the radial component of the ephemeris
computed by the Naval Surface Weapons Center (NSWC). This
yielded 89,081 over water, once per second orbit error values for
the period September 20-22, 1978. Data more than one eighth of
a revolution from a crossover point were omitted. Of course, any
orbit error common to both ephemerides will not appear in these
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Fig. 1. Condition number versus frequency for single-frequency model.
The abscissa displays selected frequencies, and the ordinate displays the

condition number of the Euclidian norm (spectral norm) of the normal
equation matrix.
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354 CROSSOVERS —— TWO FREQUENCIES
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Fig. 2. Condition number for frequency pairs surrounding orbit
frequency. The condition number is for the normal equations for a pair of
frequencies (four unknowns) using the 354 crossover data set of DAS.
The frequencies were selected by adding and subtracting an offset to the
orbital frequency.

synthetic data. But since the two ephemerides were derived using
different tracking systems and force models, it is implausible that
their errors would be exactly in phase.

The synthetic orbit error possessed an uncorrected, root mean
square (rms) amplitude of 1.92. The magnitude of the synthetic
error was halved to more nearly represent the accuracy of newer
Seasat orbits. This yielded an uncorrected rms of 0.96 for the
89,081 points in the 3-day set. From these data a set of 354
synthetic crossover differences were generated. They have
uncorrected crossover rms of 1.09 and the time sampling
corresponding to the data set used by DAS. Note that if the error
had no geographic correlation, the crossover difference rms would
have been V2 times the orbit error rms.

We used all of the crossover data and a varying number of
additional constraints to recover the synthetic orbit error. The
constraints were assigned standard deviations of 0.1 m and were
globally distributed. The orbit error was modelled as a Fourier
series with 90 frequencies. Frequencies were evenly spaced
between zero and slightly more than twice per revolution. The
theoretical analysis, presented above, predicts this system of linear
equations has a rank deficiency of 7.

The results shown in Table 2 reveal the importance of
constraining the orbit in just a few places. When one constraint is
used, the rms crossover difference is reduced from 1.09 m to
0.064 m. However, the rms orbit error increases from 0.96 m to
more than 9 km. A plot of this large orbit error shows that it
matches the /=1, m=0 spherical harmonic. Orbit error is zero at
the equator, positive in the northern hemisphere and negative in
the southern hemisphere. The error is reduced to 61 m when three
constraints are used. When eight constraints are used the error is
reduced to 0.36 m. Note the number of constraints has little effect
on the rms of the crossover differences. This simulation shows
that ocean crossover data and a few globally distributed
constraints uniquely define the orbit over ocean areas. The orbit is
inaccurate over continental areas, however. This is why we did
not consider data more that one eighth of a revolution from a
crossover point in this simulation.

In practice it will be difficult to obtain globally distributed
unbiased altitude constraints of such high precision. One practical
method is to use altimeter ranges from accurately located
reflectors as constraints. Radar reflections from the sea surface
are precise, but the surface must fizst be accurately positioned in a
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geocentric coordinate system. Then variatiors in sea surface
height must be monitored to the same high accuracy, perhaps with
an inverted echo sounder [Miller et al.. 1985] or other
instrumentation. It may be easier to use inland lakes and salt flats
as reflectors. They could be accurately positioned using modem
geodetic techniques. The levels and tilts of the lakes could then
be monitored with tide gauges. Once the reflective surfaces are
established, they will provide reference points for calibrating both
the orbit and altimeter ranges for many years. While many
technical details must still be addressed, the ability to reduce
radial orbit error using crossover differences and just a few
absolute altitude constraints is appealing.

SMOOTHNESS CRITERIA

Another form of information that can be used is to require the
orbit correction curve to be smooth. That is, the integral of the
square of the slope of the correction curve should be minimal.
This criterion reflects our knowledge that the power spectrum of
radial orbit error decreases with increasing frequency above 1
cycle per revolution. This concept has been developed into an
orbit improvement method by Cloutier [1981]. He solved a
function

min ®=Y W; (0in— 0,)* (6)
i=1
for orbit error O; at time ¢; for a given weight W;,
1 1
W = W, = ———
Y-y (tin —1)? 0

subject to constraints that all crossover differences are zero.

We also have developed a smoothness criterion to select among
an infinite number of possible solutions. Our technique does not
require that all of the crossovers are zero. Instead the crossover
minimization competes with the smoothness criteria. We solve

the function
a0, |*
Aty

where W, is the weight on the crossover difference A; and W, is
the weight assigned to the smoothing. The term on the left is the
standard form for least squares. The term on the right is the
smoothness constraints. Here we recast (8) in the Fourier domain.
In the limiting case,

min &= ZWA1+ZW 8)

i=l k=1

L A0, | _ do
Ali’i‘oéw' [A:. ] TJ dr ©

We will assume that the orbit error is band limited so it can be
expanded in a Fourier series.

N
Y. a, cos 2w, t) + b, sin (2R @, t)

O(t)=a,+ (10)
n=1
The derivative of O (t) is
TABLE 2. Solutions, 10-cm Constraints
Number. of Altitude Crossover rms, Orbit mms,
Constraints m m

1 0.064 9138.162
3 0.065 60.532
4 0.065 14.223
8 0.066 0.360

Unfitted subset orbit rms = 0.959 m.
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TABLE 3. Gapped Smoothing

Number of Altitude Crossover rms, Subset Orbit rms,
Constraints m m
1 0.069 3.108
3 0.070 0.303
4 0.070 0.211
8 0.070 0.189
o X

i Y, 2r @, b, cos 2n @, t) - 2R W, a, sin (2n©, 1) (11)

n=1

By Parseval’s theorem [Bracewell, 1978, p. 413] the integral of
the square of the orbit slope is

T

J

This allows us to restate our problem in the frequency domain as

do

2 N
_ 2,2 2p2
m dt =T zz;l [(2um,.) al+(2no,) b,.] (12)

N
Y @nw,)* (al+ b

n=1

min =Y W, A?+W,T (13)
The term on the right represents the weighted constraints that
stabilize our least squares solution. To achieve a smooth
correction curve, the high frequencies are minimized more than
the low frequencies. Since we are using a Fourier model for orbit
error, the weighted constraints are easily implemented by adding
weights W, * (2 ®,)? to the diagonal elements of the normal
equation matrix.

The use of smoothing provides some very intuitive results. If
the weight on the crossovers W, is much greater than the weight
on the smoothing W,, then very little information is added to the
system of equations. The solution will yield the regular crossover
result but with the singular frequencies constrained to zero. On
the other hand, if the weight W, is much less than W, then the
smoothing predominates. This yields the smoothest solution
possible, a flat line.

As a refinement to smoothing, consider the nature of orbit error.
As discussed earlier, error in satellite ephemerides is largely
concentrated at the orbital frequency. If we had to hypothesize on
the appearance of the orbit in the absence of data, we would want
it to be smooth except at the orbital frequency. That is, we desire
our solution to converge to a once per revolution sinusoid instead
of a flat line as data are removed. This refinement is implemented
by putting a "gap” in our weighting function at once per
revolution so no weight is applied at the orbit frequency. This is
equivalent to stating that the orbit is smooth except for a strong
(nonzero) signal at once per revolution.

Using gapped smoothing, the results were recomputed and are
displayed in Table 3. The use of crossovers plus smoothing gives
good results with fewer constraints. This is important since it will
be difficult to obtain altitude constraints.

While the results in Table 3 are encouraging, they still illustrate
the need for absolute altitude constraints on the orbit. One
measurement of the radial orbit error at a point is needed to
establish the constant orbit bias a,. A second measurement is
needed to overcome the once per revolution singularity. A few
more measurements may be desired, depending upon the
smoothness of the orbit and the weight assigned to the smoothing.

SUMMARY

We have developed a technique for reducing radial orbit for
altimetric satellites. We first determined the components of radial
orbit error that cannot by recovered using crossover data. Each of
these singular components is a mapping of a surface spherical
harmonic into the orbit plane. For example, the [=1, m=0 surface
spherical harmonic maps into sinusoidal orbit error with a
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frequency of one cycle per orbit period. The nonzonal harmonics
map into linearly dependent sets of /+1 frequencies that are
related by the inclination functions. Using Seasat crossover data,
we demonstrate that the singularities associated with these
mappings are extremely sharp.

The theory implies that low frequency (<2 cycles per
revolution) orbit error can be uniquely recovered with crossover
data and a few globally distributed radial tracking data. Using a
numerical example, we confirm that this theory also applies to
irregularly spaced data by accurately recovering realistic orbit
error using ocean crossover data and eight globally distributed
radial tracking data. As expected, the recovered orbit is
inaccurate over the continental areas where there is no crossover
data.

Considering that forces acting on a satellite are smooth, we also
recover the smoothest orbit error function that is consistent with
the data. Fewer radial tracking data are required when the
smoothness criterion is used. Our findings suggest that a few
globally distributed radar reflectors (or radar transponders) should
be deployed during altimeter missions to reduce radial orbit error.
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