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Spreading ridges and hot spot swells are identified by their high surface heat flow, shallow seafloor,
and high geopotential. To understand these and other thermotectonic features, the oceanic lithosphere
is modeled as a thermomechanical boundary layer moving through a three-dimensional, time-
independent heat source. The heat source mimics the heat advection associated with a spreading ridge
or hot spot without introducing the nonlinearities of these flow processes. The Fourier transforms of
three Green'’s functions (response functions), which relate the three observable fields to their common
heat source, are determined analytically. Each of these reponse functions is highly anisotropic because
the lithosphere is moving with respect to the source. However, the ratio of the gravity response
function to the topography response function (i.e., gravity/topography transfer function) is nearly
isotropic and has a maximum lying between the flexural wavelength and 27 times the thickness of the
thermal boundary layer. The response functions are most useful for determining the surface heat flow,
seafloor topography, and geopotential for complex lithospheric thermal structures. In practice, these
three observables are calculated by multiplying the Fourier transform of the heat source by the
appropriate response function and inverse transforming the products. Almost any time-independent
thermotectonic feature can be modeled using this technique. Included in this report are examples of
spreading ridges and thermal swells, although more complex geometries such as ridges offset by
transform faults and RRR-type triple junctions can also be modeled. Because forward modeling is both
linear and computationally simple, the inverse of this technique could be used to infer some basic
characteristics of the heat source directly from the observed fields.

1. INTRODUCTION

The thermal and mechanical properties of the oceanic
lithosphere have been largely determined by modeling sea-
floor depth, surface heat flow, and geopotential. Intrinsic
thermal properties such as coefficient of thermal expansion,
thermal diffusivity, and mantle temperature are inferred by
modeling the observed age dependence of depth, heat flow,
and geoid height [Sclater and Francheteau, 1970; Sclater et
al., 1975; Parsons and Sclater, 1977; Sandwell and Schu-
bert, 1980]. According to the lithospheric cooling models
[Turcotte and Oxburgh, 1967; McKenzie, 1967; Parker and
Oldenburg, 1973; Haxby and Turcotte, 1978] significant
variations in these observable fields occur over distances
greater than the thickness of the thermal boundary layer.
This indicates that lithospheric thermal properties are most
sensitive to the longer wavelength variations in the observ-
able fields. On the other hand, the rheology of the litho-
sphere is most strongly reflected in topography and free-air
gravity anomaly at wavelengths near the flexural wavelength
[Walcott, 1970; McKenzie and Bowin, 1976; Watts, 1978;
Caldwell and Turcotte, 1979; Chapple and Forsyth, 1979;
McNutt, 1979]. The combination of these studies, at long
and short wavelengths, demonstrates that the oceanic litho-
sphere is a thermomechanical boundary layer. The thermal
boundar layer (TBL) develops and increases in thickness as
a consequence of conductive heat loss. A mechanical bound-
ary layer develops concurrently with the TBL because creep
processes are highly dependent upon temeprature [Kirby,
1980]. To a first approximation, the uppermost portion of the
lithosphere, between depths of 10 and 40 km, has a viscous
relaxation time that is greater than the age of the lithosphere
and can maintain the large bending stresses (~50 MPa)
associated with lithospheric flexure. Between the base of
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this elastic layer and the lithosphere-asthenosphere bound-
ary, lies material with a plastic rheology that flows when it is
subjected to the larger flexural stresses but is rigid enough to
maintain the smaller, thermally induced stresses that support
the difference in elevation between ridge crests and ocean
basins [Turcotte and Oxburgh, 1976; Kirby, 1980; Lambeck
and Nakiboglu, 1980]. The asthenosphere, which readily
flows over geologic time, lies beneath this plastic layer.

In this study we develop a combined thermomechanical
model for the oceanic lithosphere that is based upon the
successful aspects of the longer-wavelength lithospheric
cooling models and the shorter-wavelength flexure models.
Our major purpose is to calculate the observables (surface
heat flow, seafloor topography, and geopotential) for three-
dimensional thermotectonic features without resorting to
numerical methods (i.e., finite difference or finite element
techniques).

The addition of a third dimension makes it possible to
model features such as hot spot swells, offset spreading
ridges, and RRR (ridge-ridge-ridge) type triple junctions.
However, to maintain mathematical simplicity and linearity
in the model, a number of physical processes are neglected
or approximated. First, we assume that the flexural rigidity
is not temperature dependent. This assumption is valid as
long as the temperatures of the upper third of the lithosphere
do not change significantly across the region being modeled.
Second, we assume that perturbations to the observable
fields result from thermal anomalies within the lithosphere.
This assumption cannot be justified, since small-scale con-
vection beneath a mature lithosphere has an effect upon both
the seafloor topography and the geopotential [McKenzie,
1977; Kaula, 1980). However, it is difficult to estimate these
effects since the thermal and mechanical properties of the
mantle are not well constrained [Hager and O’Connell,
1981]. In this model we consider only the lithospheric
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Fig. 1. As the lithosphere passes through a distributed heat
source, at a velocity v it is heated, causing thermal expansion. The
increase in surface heat flow far downstream from the source lowers
the temperature perturbation, and the swell begins to subside. The
base of the lithosphere, defined by the T,, isotherm, remains at a
depth L.

contribution to the observable fields and assume that any
portions of the observed fields that are incompatible with
this model are, indeed, associated with mantle flow.

Heat advection from the upper mantle to the lithosphere is
simulated by embedding a stationary time-independent heat
source within the moving lithosphere. Clearly, this situation
is physically unreasonable since the heat source will be
swept downstream by the moving lithosphere. As an alterna-
tive, the source could be distributed along the base of the
lithosphere. However, for velocities greater than a few
millimeters per year, a basal heat source does not significant-
ly alter the lithospheric thermal structure because down-
stream heat advection dominates vertical heat diffusion
[Birch, 1975; Gass et al., 1978; Pollack et al., 1981]. To
produce the rapid uplift rate at the southeast end of the
Hawaiian swell, heat must be advected into the lower two
thirds of the lithosphere [Detrick and Crough, 1978]. Instead
of modeling this flow process, we have bypassed the prob-
lem by introducing a heat source within the moving litho-
sphere. This heat source representation not only retains
linearity in the thermomechanical model but also allows
creation of lithospheric thermal structures that are identical
to the more reasonable flow models. In fact, any imaginable
time-independent thermal structure can be created by a
suitable heat source.

Perhaps that most severe restriction of the model is the
assumption of a time-independent heat source, since it is
evident that major plates have changed velocity, both ampli-
tude and direction [Menard and Atwater, 1968]. The Hawai-
ian-Emperor seamount chain reflects the direction change of
the Pacific plate with respect to the Hawaiian hot spot. For
the past 40 m.y., however, this relative velocity has re-
mained constant; to a first approximation, our proposed
model may be applied. The heat source response is linear, so
the effects of time variations in velocity, which are equiva-
lent to space-time variations in heat source strength, could
be approximated by superposition of a number of time-
independent models. Alternatively, the problem could be
reformulated with a time-dependent source. We have not
added this fourth dimension, however, since time-dependent
effects are not well constrained by the observations.

In section 2 we present a linear thermomechanical model
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for the oceanic lithosphere and develop analytic expressions
for the Fourier transforms of three Green’s functions (i.e.,
response functions) that relate the three observable fields to
a lithosphere moving through a distributed heat source. Each
of the observable fields is a three-dimensional convolution of
the heat source with the appropriate Green’s function. In the
Fourier transform domain the convolution is just a multipli-
cation, and the problem is naturally divided into a source
function and a response function. The forms of these solu-
tions lend themselves to three commonly used modeling
techniques: transfer function modeling, forward modeling,
and inverse modeling. Examples of each of these techniques
are presented in sections 3, 4, and 5, respectively, to
demonstrate the capabilities and limitations of the model. In
section 3 we compare the gravity/topography transfer func-
tion for this thermal compensation model to the transfer
functions for Airy and regional compensation models. For-
ward models of symmetrically spreading ridges and hot spot
swells are presented in section 4. Finally, in section 5 we
discuss the application of the response functions to the
inverse problem, which is to infer basic characteristics of the
heat source directly from the observables.

2. RESPONSE OF A MOVING PLATE TO A DISTRIBUTED
HEAT SOURCE

The thermomechanical model consists of a plate of thick-
ness / moving at a constant velocity v through a three-
dimensional, time-independent heat source, as shown in
Figure 1. Far upstream from the source (i.e., v direction) the
surface heat flow, seafloor topography, and gravitational
potential are all zero. As the lithosphere passes through the
source, its temperature increases. This produces a local
increase in the observable fields. The amplitude and geome-
try of the field perturbations depend not only upon the shape
and extent of the heat source but also upon the rheology and
thermal properties of the lithosphere.

These properties and the boundary conditions are shown
in Figure 2. The top of the lithosphere is maintained at a
temperature of Ty, while the base of the lithosphere, at a
depth /, has a temperature T,,. The intrinsic thermal proper-
ties a, k, and C, (see Table 1 for definitions and values of
these parameters) are assumed to remain constant through-
out the lithosphere. Figure 2b shows the rheology of our
model lithosphere. The uppermost layer behaves like a thin

a. Thermal Properties b. Rheology
Boundary Conditions
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Fig. 2. (a) Intrinsic thermal properties and thermal boundary
conditions. The temperature at the seafloor is T, and at the base of
the lithosphere is T,,. The thermal properties a, x, and C, are
constant throughout the lithosphere. (b) The lithosphere has an
elastic layer with a flexural ridigity of D and a plastic layer that
extends to the base of the TBL.
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elastic plate with a flexural rigidity of D. Beneath it lies a
plastic layer that can support stresses arising from thermal
buoyancy but cannot support the larger deviatoric stresses
associated with lithospheric flexure. The asthenosphere lies
at depths greater than [/ and behaves as an incompressible,
inviscid fluid. The mechanical boundary conditions are the
vertical seafloor displacement w(x) and its derivatives must
vanish as IxI — «. In the absence of a heat source, the
temperature increases linearly with increasing depth from a
value of Ty at z = 0 to T,, at z = l. As the lithosphere passes
through the source, it heats up; maximum temperatures are
attained on the downstream edge of the source. Away from
the upper and lower boundaries the temperatures are con-
strained only by the heat source and could rise above T, or
fall below T if the source is not designed properly.

Expressions relating the surface observables and the tem-
perature perturbation to an arbitrary heat source are derived
in Appendix A. The solution proceeds in a straightforward
manner. The temperature perturbation is found by solving
the inhomogeneous heat conduction equation for a plate
moving through a heat source. The surface heat flow is the
thermal conductivity multiplied by the surface temperature
gradient. Downstream from the source lies a low-density,
buoyant region that exerts an upward force upon the base of
the elastic layer. The vertical seafloor deflection is deter-
mined by solving the biharmonic equation for a thin elastic
plate overlying a fluid half space where the inhomogeneous
pressure term is the integral over depth of the thermal
buoyancy force. The combination of the mass excess con-
tained in the seafloor swell and the mass deficit supporting
the swell perturbs the gravitational potential. Well-known
Greens’ functions exist for each of the differential equations
(i.e., the diffusion equation, the biharmonic equation, and
Poisson’s equation). Thus, the observable fields could be
calculated by multiple, three-dimensional convolutions over
these Green'’s functions. However, many of the integrals can
only be performed numerically. To avoid this time-consum-
ing procedure, each of the Green’s functions is Fourier-
transformed in the £ and y directions. This reduces the
multiple x and y convolutions to multiplications. The remain-
ing vertical convolution integrals are all simple enough to be
evaluated analytically.

A flat earth approximation is used throughout the deriva-
tion. The error introduced in the gravitational potential by
this approximation can be estimated from the ratio of the
spherical upward continuation kernel to the flat earth up-

TABLE 1. Definitions and Values of Parameters

Parameter Definition Value/Units

a mean earth radius 6371 km

a thermal expansion coefficient 3.1 X 1075 °C~!

D flexural rigidity 7 x 102 N m

C, heat capacity 1172 J kg™ ' °C™!

g acceleration of gravity 9.82ms 2

G gravitational constant 6.67 X 107" N m? kg2

K thermal diffusivity 8x 107" m?s™!

1 lithospheric thickness 128 km

P mantle density 3330 kg m™3

P water density 1025 kg m™3

K mean seafloor depth S km

T, mantle temperature 1365 °C

Ty seafloor temperature 0°C
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Fig. 3. The ratio of the spherical upward continuation kernel to
the flat earth upward continuation kernel for topography that is
isostatically compensated at a depth of 100 km is plotted (solid
circles) against spherical harmonic order n. The same ratio with the
factor 2n/(2n + 1) removed is shown as crosses.

o
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ward continuation kernel for isostatically compensated to-
pography [see Jeffreys, 1976, p. 237]:

2n 1 - - hla)" )

Q2n + 1)/ \1 — exp (— nhla) M
where rn is the spherical harmonic degree, a is the radius of
the earth, and 4 is the depth of compensation. This ratio is
shown in Figure 3 (solid circles) for 4 = 100 km. Most of the
difference between the two upward continuation kernels
comes from the factor 2n/(2n + 1) [Dorman and Lewis,
1970]. The crosses on Figure 3 show this ratio with the factor
omitted. This ‘isostatic earth-flattening factor’ was included
in the derivation of the gravitational potential and substan-
tially reduces the error associated with the flat earth approxi-
mation.

The two-dimensional Fourier transforms of the tempera-
ture perturbation T(k, z), the surface heat flow Q(k), the
seafloor topography W(k), and the gravitational pbtential
U(k) are equal to the vertical convolution of the heat solirce
q(k, z) with their respective response functions. These
convolution integrals are given in equations (Al11), (A14),
(A19), and (A29) of Appendix A. Calculating the tempera-
ture perturbation and the observables from these equations
requires a considerable amount of computation. For an
arbitrary source, one must first take its Fourier transform at
each depth, perform the vertical convolution, and take the
inverse Fourier transform of the result. Computation time is
vastly decreased if the heat source can be separated into
horizontal and vertical components as follows:

q(x, 7) = q(x) flz) )

and if the vertical convolution of fiz) with each of the
response functions can be performed analytically.

The most useful source function decreases linearly with
depth between either the seafloor and the base of the
lithosphere or a depth z; and the base of the lithosphere:

[ =0
fD=1-z2

z2< 2z
y<z<l 3)
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Fig. 4. Gravity/topography transfer functions for Airy compen-
sation (solid line), regional compensation (dashed line), and thermal
compensation (dashed-dotted line for downstream, dotted line for
cross-stream). The five important length scales are A; = 31 km 27
X ocean depth), A, = 69 km (27 X depth to Moho), A\ = 263 km
(flexural wavelength), \; = 804 km (27w X depth to the astheno-
sphere), and 27a, where a is the radius of the earth.

As shown in the following sections, this particular depth
variation can be used to construct a spreading ridge model or
a lithospheric thinning model. Consider a thinning model.
Far upstream from the source, the temperature increases
linearly with depth. The lower portion of the lithosphere,
between depths of z; and /, can be thinned (raised to a
temperature approaching T,,) by a source that decreases
linearly with depth according to (3). Equation (3) is also
simple enough to be analytically convolved with each of the
response functions. These convolutions are carried out in
Appendix B. The results are given in equations (B2), (B3),
(B4), and (B5), where the temperature and the observables
O4K) are related to the source g(k) by multiplication with the
appropriate response function K;'(k):

0{k) = q(k) K/ (k) “

The index i is equal to 0 for temperature, 1 for heat flow, 2
for topography, and 3 for potential. By performing these
convolutions analytically the modeling procedure is reduced
to two, two-dimensional Fourier transforms that can be
calculated rapidly using the FFT algorithm (fast Fourier
transform). For example, the geoid height over a lithosphere
moving at velocity v through a source that varies with depth
like (3) is calculated by taking the two-dimensional FFT of
the source, multiplying by K3'(k), and inverse transforming
the result.

In theory, this procedure is relatively simple. However, in
practice, problems arise because the heat source must be
represented on a grid with a finite number of points. To
avoid aliasing the digital Fourier transform of the source, the
spacing between grid points must be less than one half the
shortest wavelength contained in the source. The width of
the grid in the cross-stream direction must be at least twice
the source width or the flexural wavelength, whichever is
larger. In the downstream direction, the grid length must be
> [Pv/« so that the inverse FFT is not aliased by incomplete
sampling in wave number space; we have used a grid length
of 4 x 10* km in our models. This great length is required
because it takes about one billion years for a heat pulse,
within a 128-km-thick lithosphere, to decay to less than 1%
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of its initial value. Indeed, it is numerically impossible to
calculate models when the plate thickness approaches infin-
ity, since the grid must contain an infinite number of points
in the downstream direction (L. M. Dorman, personal
communication, 1980). However, if the shortest wavelength
contained in the heat source is >1 km and the lithospheric
thickness is <1000 km, then the modeling procedure is
extremely fast.

Before presenting forward model calculations, it is useful
to look at the ratio of the gravity response function (B6) to
the topography response function (B5) in the wave number
domain, since this ratio is independent of the horizontal heat
source variations.

3. GRAVITY/TOPOGRAPHY AND GEOID/TOPOGRAPHY
TRANSFER FUNCTIONS

Transfer functions or admittance functions have been used
to determine the strength of the lithosphere. Since gravita-
tional potential is nearly linearly related to topography in
wave number space [Lewis and Dorman, 1970; McNutt,
1979], the ratio of the Fourier transform of the potential to
the Fourier tranform of the topography contains information
about the topographic compensation mechanism (e.g., local,
regional, or thermal). The flexural rigidity of the elastic
portion of the lithosphere has been estimated by fitting the
observed transfer function to the transfer function predicted
by the elastic plate model. The implicit assumption in
transfer function modeling is that the perturbation to the
gravitational potential is caused by a topographic load on the
earth’s surface [Dorman and Lewis, 1970]. In this case the
source is the topographic load, the transmitter is the elastic
plate model, and the receiver is the gravitational potential.
However, for thermotectonic features such as spreading
ridges and broad swells in the seafloor, the ultimate source
of the gravitational potential is not the topographic load but
is instead the thermal anomaly within the lithosphere. There-
fore, it is not strictly legitimate to calculate the potential/
topography transfer function for this model, and the quotient
Uk)/W(k) will not always be well behaved. Despite this
difficulty, it is useful to compare this thermomechanical
transfer function Ry{(k) with transfer functions for other
types of compensation and also with observed transfer
functions. Horizontal variations in the heat source are
eliminated by taking the ratio of U(k) to W(k). This yields

Ry(k) = K3'(K)/K;'(k) ®)

where K,' and K3' are given in (BS) and (B6), respectively.

A comparison of this thermal transfer function with the
elastic plate transfer function demonstrates that the two
compensation mechanisms are partially separated in wave
number space. Figure 4 shows normalized gravity/topogra-
phy transfer functions for the elastic plate model with
flexural rigidities of zero, which corresponds to Airy-Heis-
kanen compensation (solid line), and 7 x 10%> N m, a typical
value for oceanic lithosphere (Watts [1978]; dashed line).
The important length scales for the elastic late model are
reflected in the transfer function. For wavelengths less than
Aa (27 X ocean depth) the portion of the gravity field caused
by undulations in the seafloor-water interface is attenuated
by upward continuation. Similarly, A\, (27 X depth to the
crust-mantle interface) marks the shortest wavelength where
the gravity field from Moho undulations can still be ob-
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served. Accordingly, Airy-compensated topography has a
transfer function peak lying between A, and \.. A larger
value of flexural rigidity introduces another length scale, the
flexural wavelength \r, which is related to the flexural

rigidity by
1/4
Ar = 2] L
gpm — pw) (6)

For wavelengths much less than \r the topography is strong-
ly reflected in the gravity field, and therefore it appears
‘uncompensated’ (regionally compensated is a better term).
The real part of the thermal transfer function for the down-
stream (dashed-dotted line) and cross-stream (dotted line)
directions are also shown on Figure 4. The imaginary part of
the downstream transfer function is only about 1% of the real
part, while the cross-stream transfer function is purely real.
This transfer function corresponds to a lithosphere that has
been thinned from an initial depth of 128 km to a final depth
of 40 km, using (3) for the vertical heat source variation. The
main peak in the thermal transfer function occurs between \,
(27 X depth to the asthenosphere) and As(for this case D = 7
X 10?2 N m). Looking from A, toward shorter wavelengths,
the transfer function first becomes negative, then positive,
and finally approaches zero. This rapid decline in the trans-
fer function at the flexural wavelength occurs because the
strength of the elastic layer does not allow the seafloor to
flex under the thermal buoyancy force, and therefore the
positive gravity field caused by the attenuated seafloor swell
is not as strong as the negative field from the low-density
root. At wavelengths less than Ay, the strange behavior of the
transfer function should be ignored, since for any reasonable
heat source (i.e., one that does not melt the lithosphere
anywhere) both the gravity and topography are too small to
be observed.

The geoid height/topography transfer functions for these
same models are shown in Figure 5. These geoid/topography
transfer functions are enhanced at the longer wavelengths
with respect to the gravity/topography transfer functions.
The ‘isostatic earth flattening factor’ 2n/(2n + 1) forces the
transfer functions to approach two thirds its maximum value
as the wavelength approaches 2# X radius of the earth.
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Fig. 5. Geoid/topography transfer functions for the same three
models as shown in Figure 4. The thermal transfer function domi-
nates the mechanical transfer function when A > \.
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Fig. 6. Data points are estimates of the geoid/topography trans-
fer function for a region in the central Pacific containing the
Hawaiian swell. For wavelengths greater than 1100 km the data lie
closest to the thermal transfer function, while at shorter wave-
lengths the topography appears to be Airy compensated.

Without this factor it would remain constant, as predicted by
the Ockendon-Turcotte approximation [Ockendon and Tur-
cotte, 1977].

A comparison of Figures 4 and 5 reveals the relative
sensitivity of the free-air gravity data and geoid height data
to various forms of compensation. For example, 1 km of
thermally compensated topography with a wavelength of
3000 km will produce 10 mGal of gravity anomaly and 7 m of
geoid height. At longer wavelengths, however, the gravity
field diminishes, while the geoid amplitude remains relative-
ly constant. At the other end of the spectrum, where A < A,
the gravity anomaly is more sensitive to the mechanically
compensated topography than the geoid height when mea-
surement errors are considered [Chapman and Talwani,
1979]. Finally, near the flexural wavelength, the thermal
transfer function Ry(k) and the mechanical transfer function
Ry/(k) must overlap. This region of overlap can lead to some
difficulties when interpreting observed gravity/topography
or geoid/topography transfer functions.

Sandwell and Poehls [1980] have calculated the geoid/
topography transfer function for a region in the Central
Pacific. The major topographic features included in this
region are the Hawaiian swell, the Hawaiian Island chain,
the Necker ridge, the northern end of the Line Islands, the
Mid-Pacific mountains, and a number of fracture zones.
Transfer function estimates and one starnidard deviation
uncertainties are shown on Figure 6 along with the thermal
and mechanical transfer functions from Figure 5. At wave-
lengths greater than 1100 km the data roughly follow the
thermal compensation model, while at shorter wavelengths
the data lie closer to the Airy compensation model. At
intermediate wavelengths, however, the behavior of the
observed transfer function can be understood by considering
that some fraction of the topography is mechanically sup-
ported Wy,(k), while the remaining topography is thermally
supported Wx(k). The observed transfer function could be
reproduced from a mixture of R;; and Ry

R = RulWp/(Wy + Wp)] + RAWH(Wy + W1 (7)
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There are an infinite number of ways to partition the
topography amplitude spectrum between Wy, and Wy. Sand-
wel and Poehls [1980] assumed that all of the topography
with wavelengths greater than 1100 km was thermally com-
pensated, while the remainder was Airy compensated. For
this partitioning, the transfer function follows Ry, for A <
1100 km and follows Ry for A > 1100 km. A more reasonable
partitioning could be used to fit the data more precisely.
Considering the uncertainty in the observed transfer func-
tion, a step function partitioning suffices.

The thermal compensation model provides a direct link
between potential/topography transfer functions and a ther-
mal perturbation within the lithosphere. However, to esti-
mate the amplitudes of the observable quantities (i.e., heat
flow, topography, free-air gravity, geoid height), it is best to
look at the space domain response of the lithosphere to
thermal perturbations of varying geometry. This is done in
the next section, where we present forward model calcula-
tions for spreading ridge models and lithospheric thinning
models.

4. FORWARD MODELS
Lithospheric Cooling Models

Lithospheric cooling models are presented here to demon-
strate the utility of the heat source formulation and also to
check our results against previously published results (i.e.,
depth and heat flow model, McKenzie [1967]; free-air gravity
model, Sclater and Francheteau [1970], Lambeck [1972],
and Oldenburg [1975]; geoid height model, Sandwell and
Schubert [1980] and Parsons and Richter [1980]). To simu-
late the thermal structure of lithosphere leaving a spreading
center at a velocity v,, the initial linear temperature gradient
is perturbed to a constant temperature with depth. This is
accomplished by placing a heat source at the ridge crest that
is infinite in the y direction, delta function like in the £
direction (in practice, a narrow Gaussian function was used
to avoid aliasing the FFT of the source) and decreases
linearly with depth according to (3) with z; = 0. This heat
source geometry produces only half of a spreading ridge.
The other half is obtained by using only the real part of the
complex response functions (i.e., forcing symmetry). The
depth-age and heat flow—age relations are identical to those
already published for the late spreading model (Parsons and
Sclater [1977]; North Atlantic model) and therefore are not
presented. The gravity anomaly versus distance from the
ridge appears in Figure 7 for half-spreading rates of 10, 40,
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and 80 mm/yr. The amplitude of the gravity anomaly is
nearly inversely proportional to the spreading velocity and
correlates better with distance from the ridge axis than it
does with seafloor age. On the other hand, the geoid height-
age relation is nearly independent of spreading velocity, as
shown in Figure 8. Thus, correlations of geoid height with
age are useful in characterizing the actual thermal structure
of a cooling lithosphere [Haxby and Turcotte, 1978; Sand-
well and Schubert, 1980].

In our model, the heat source used to recreate the thermal
structure of the plate spreading model has an infinite heat/
volume supplied directly beneath the ridge axis. This delta
function heat source (in £ direction) produces a singularity in
the surface heat flow and also causes the gravity anomaly to
have a very sharp peak over the ridge. The response function
technique allows a variable width heat source. A more
reasonable width of 10 km [Sleep and Rosendahl, 1979]
removes 10 mGal from the gravity peak for v, = 10 mm/yr
and at the same time lowers the ridge crest heat flow
singularity to a finite value of 475 mW m™2. Since the choice
of the heat source geometry is totally arbitrary, more exotic
spreading ridge models can be created.

As the lithosphere moves from the spreading ridge, it
cools and thickens with age. If the growth of the TBL is
uninterrupted by additional sources of heat, then the litho-
sphere and, consequently, the seafloor depth continue to
increase as (age)'?, assuming that a and « are constant
throughout the lithosphere. However, in both the Atlantic
and Pacific oceans the average depth-age relation begins to
flatten from the prediction of the TBL model at about 70
m.y. [Sclater et al., 1971; Parsons and Sclater, 1977]. In the
next section we assume that this flattening is caused by heat
transfer from the upper mantle to the base of the lithosphere.
We then use our model to predict the shapes and amplitudes
of the observable fields for various heat source geometries.

Lithospheric Reheating Models

The flattening of the depth-age relation can be explained
by the plate cooling model [McKenzie, 1967] which as a
constant temperature at the base of the lithosphere. Accord-
ing to this model, the lower temperature boundary condition
is maintained by mantle-to-lithosphere heat transfer that

v =80 mm/yr
161> v=40 mm/yr
“A.V= 10 mm/yr

GEOID HEIGHT (m)
@

0 T T T T T T T
0 40 80 120 160 200
AGE (Myr)
Fig. 8. Geoid height versus age for three spreading velocities.

The geoid-age relation is nearly independent of spreading velocity
for this cooling model.
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increases monotonically with age. This age-dependent heat
input has been modeled by a number of physical mechanisms
including convective instability at the base of the lithosphere
[Parsons and McKenzie, 1978] and an increase in shear
heating with age as the lithosphere-asthenosphere boundary
cools and becomes more viscous [Schubert et al., 1976]. One
must ask, however, is the heat input really age dependent?
Surely, this cannot be determined from the depth-age rela-
tion, since by correlating depth with age, much of the
information about spacial variations of depth is lost; this is
especially true for the depth variations along isochrons. The
space domain deviations of the depth, heat flow, and geoid
from the predictions of the TBL model (i.e., residual depth,
residual heat flow, and residual geoid anomalies) may,
however, provide this information.

Residual depth maps have been computed for a large part
of the world’s oceans [Menard, 1973; Sclater et al., 1975;
Cochran and Talwani, 1977, Menard and Dorman, 1977,
Mammerickx, 1981]. Thermal perturbations with character-
istic wavelengths near 1000 km appear as topographic swells
on residual depth maps (e.g., Bermuda swell, Hawaiian
swell, Cape-Verde swell, Cook-Austral swell, etc.). These
swells are also associated with an increase in geoid height
[Crough, 1978] and an increase in heat flow [Detrick et al.,
1981]. Furthermore, hot spot swells are not preferentially
located on older lithosphere. Indeed, if seafloor that has
passed over a hot spot is excluded from the depth-age
correlation, then depths increase as the (age)"? out to 90
m.y. (Heestand and Crough, 1981]. Hot spots provide an
age-independent heat input and are partially responsible for
the flattening of the depth-age relation.

In this section we simulate the effects of lithospheric
reheating. Rather than focus on a particular reheating model
such as small-scale convection, shear heating, or mantle
plumes, we suggest dividing the off-ridge heat transfer
according to its characteristic wavelength. The amplitudes of
the observable fields are strongly dependent upon this wave-
length. Forward modeling of various width heat sources
provides a method for estimating the amplitudes of the
surface observables and more importantly a means of deter-
mining which type of observable is best suited for studying
thermal perturbations within a given wavelength band.

The responses of a moving lithosphere to thermal pertur-
bations of three different characteristic wavelengths are
shown in Figure 9. In these models, the lithosphere is
thinned, using (3), to a depth of 40 km as it passes through a
heat source at a velocity of 40 mm/yr. The source we have
chosen varies as a Gaussian in both horizontal directions:

_ mepvmef —(x2 + }’2)
q(x) -( 2o )exp( 53 ®

where 20 is the source half width and f is a number <1
(temperatures may rise about T,, if f > 1). The source half
widths for Figures 9a, 9b, and 9¢ are 2000, 200, and 60 km,
respectively, and are outlined by circles. For comparison
purposes, f was chosen so the maximum topographic swell
produced by each of the three sources was 1.1 km when the
lithospheric flexural rigidity was zero (local compensation).
The maximum heat input per area for each of the sources is
given in Table 2. To calculate the models shown in Figure 9,
a typical value of flexural rigidity was used (7 X 10?2 N m).
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The top row in Figures 9a, 9b, and 9¢ shows the contours
of temperature perturbation at a depth of 64 km. In each case
the isotherms are swept downstream by the moving litho-
sphere. The maximum temperature is attained at a distance
of 1o to 20 downstream from the heat source maximum.
Contours of surface heat flow appear in the second row. The
heat flow maxima are 19, 16, and 12 mW m and are displaced
in time from the source peak by 32, 21, and 16 m.y. for
Figures 9a, 9b, and 9c, respectively. The heat flow peak for
the shortest-wavelength source has a relatively lower ampli-
tude because a portion of the heat is conducted horizontally
away from the source. The topography for the long- and
intermediate-wavelength heat sources reaches a maximum
of ~1 km at a distance of about 1o downstream from the
source peak. The smallest source, however, produces a
maximum swell in the topography of less than 0.7 km and
has a width that is much greater than the source half width.
This relatively low amplitude accompanied by an increase in
response wavelength occurs because the lithosphere does
not bend readily at wavelengths shorter than its flexural
wavelength.

The final two rows in Figures 9a, 9b, and 9c show
contours of geoid height and free-air gravity anomaly. The
peak response of the gravity field to the broadest heat source
is only 8 mGal. Furthermore, the ratio of gravity to topogra-
phy in the space domain is not constant but varies from 7 to 0
mGal/km. On the other hand, the geoid height closely
resembles the topography and has a peak amplitude of 6.5 m.
The intermediate-wavelength heat source produces a rela-
tively large gravity anomaly (38 mGal) and 5.1 m of geoid
height. The narrowest heat source (Figure 9¢) produces a
maximum gravity anomaly of 28 mGal, while the geoid
height peak for this case is rather low (2.4 m). The effects of
flexure are apparent in the intermediate- and short-wave-
length gravity fields (the zero contour deviates from the
others) but are absent in the geoid height contours.

The peak responses of the observables, heat flow, topog-
raphy, gravity anomaly, and geoid height, are summarized in
Table 2 for each of the three sources. A number of conclu-
sions can be drawn about the observability of thermal
perturbations in the lithosphere from these calculations.

1. A thermal perturbation with a characteristic wave-
length much less than the flexural wavelength will be difficult
to observe on maps of residual depth, residual geoid height,
or residual gravity anomaly since the nonthermally compen-
sated topography dominates at these wavelengths.

2. Thermal perturbations with characteristic wave-
lengths greater than As (400 to 2000 km) have been observed
in all of the data types and provide a basis for this litho-
spheric reheating model.

3. The longest-wavelength source (20 = 2000 km) is
reflected in the topography, heat flow, and geoid height but
is absent in the gravity anomaly. Therefore, long-wavelength
off-ridge lithospheric reheating will be observed on residual
depth, residual heat flow, and possibly residual geoid height
maps if reheating exists at this scale.

With the forward problem solved, the next step is to
determine the class of acceptable heat sources that are
compatible with the observed fields. As we have shown, the
fields are linearly related to the source; thus, linear inverse
theory can be used for this problem. These ideas are
discussed in the next section.
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5. INVERSION OF OBSERVABLES FOR HEAT SOURCES

The proposed thermomechanical model for the oceanic
lithosphere incorporates many assumptions and approxima-
tions. We have assumed that the intrinsic thermal and
mechanical properties such as «, x, C,, and D are indepen-
dent of temperature or pressure. Moreover, we assume that
their values are accurately known from previous studies.
The most severe model approximation is that the heat source
is time independent. It is evident that plates change speed
and direction on a time scale that is about equal to the time it
takes a heat pulse to diffuse through the lithosphere. Indeed,
this approximation limits the application of the model to the
few regions where the thermal structure is steady state.
Considering that little is known about lithospheric heating or
reheating mechanisms, this approximate model may be
useful.

For the moment, we assume that the model is a correct
representation of the lithosphere. The solution to the for-
ward problem shows that the vertical variation in the heat
source q(zo) is related to the observables O; by a linear
transformation:

1
O4k) = L q(k, zo) Ki(k, zo) dzo )
where i = 1, 2, 3. The i = 1 subscript corresponds to the heat
flow, i = 2 corresponds to the topography, and i = 3 is the
gravitational potential (see Appendix A, equations (Al4),
(A19), and (A29)). The inverse problem is to determine the
three-dimensional variations in the heat source from the
observations. Although the problem is linear, it is clearly
nonunique for two reasons. First, (9) maps the function
q(z¢), which resides in an infinite dimensional space, into a
three-dimensional data vector, and therefore the mapping is
not one to one. Second, observations are made at only a
finite number of points. Therefore, even if the data are
errorless, the source cannot be uniquely defined. The prob-
lem is also unstable since the kernels of (9) are of the upward
continuation type. It is impossible to determine the actual
source function. However, the data may reveal its basic
characteristics [Parker, 1977].

The first step in the problem is to minimize the class of
acceptable solutions by applying a priori assumptions or
constraints. For instance, the heat source should not oscil-
late from positive to negative in depth. Thus, a source that is
responsible for a positive topographic swell should be posi-
tive and should not be composed of a large positive source
overlying a smaller negative source. The class of acceptable
models can be further restricted by requiring that the tem-
perature of the lithosphere does not exceed the melting
temperature. These constraints will greatly limit the class of
acceptable heat source models.

Considering both the data inaccuracies and the inherent
nonuniqueness of the inverse problem, it is probably best to
either assume that the horizontal location of the source is
known and invert for the depth dependence or assume that

Fig. 9. (opposite) The responses of the lithosphere moving at a
velocity of 40 mm/yr toward the right over Gaussian heat sources
with half widths of (a), 2000 km, (») 200 km, and (c) 60 km. From top
to bottom the boxes contain contours of temperature perturbation,
surface heat flow, seafloor topography, free-air gravity anomaly and
geoid height. The peak in each of the observable fields lies on the
downstream side of the source.
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TABLE 2. Peak Responses of the Lithosphere to Gaussian Heat
Sources

Half Width of Source

2000 km 200 km 60 km
Maximum source strength, W m™2 0.043 0.269 0.948
Temperature at 64-km depth, °C 320 375 423
Surface heat flow, mW m™2 18.8 15.9 12.1
Seafloor topography, km 1.10 1.02 0.63
Geoid height, m 6.5 5.1 2.4
Gravity anomaly, mGal 8.0 37.8 28.3

the depth dependence is known and solve for the horizontal
variations. To solve either of these problems, the vertical
and horizontal source variations must be decoupled:

q(k, zo) = q(k)f(zo)

where g(k) contains all of the horizontal variations and f{(z)
is a function that depends on depth only. The second case,
where f(zy) is known, could be used to locate off-ridge heat
sources that are not associated with some obvious tectonic
feature such as a linear island chain. With f(zo) known, the
solution to (9) is just

(10)

0

1 -1
q(k) = Odk) U Az0) Ki(K, 20) dz()] an

The three types of data can be used to estimate the uncer-
tainties in g(k); call them o,(k). Both the horizontal varia-
tions in the source and its uncertainties can be mapped back
into the space domain with the inverse Fourier transform.
The spectral division in (11), however, is an unstable proce-
dure since the denominator approaches zero at large wave
numbers. Observational errors will appear as wild oscilla-
tions in the source function. To avoid these problems,
spectral deconvolution techniques should be used [Olden-
burg, 1981].

For a spreading ridge the horizontal location of the source
is fairly well known since it coincides with the axial valley of
the ridge crest. Equation (9) can be used to solve for the
vertical dependence of the source. In this case, (9) becomes

1

O(k)/qk) = J Rzo) Ki(k, 20) dzo (12)

0

where g(k) is the Fourier transform of the ridge crest
location. Each type of datum exists at only a finite number of
wave numbers, say N. If i denotes the data type and j
denotes a particular wave number k, then (12) becomes

1

Oijl = L Azo) Kifzp) dzg (13)
where O;' = Oyl/q; and Ki(zo) is the i kernel at the j wave
number. The form of (13) is ideally suited for numerical
inversion using the Backus-Gilbert [Backus and Gilbert,
1968] or spectral expansion [Parker, 1977] inversion tech-
niques. Like other types of linear inverse problems there is a
trade-off between model resolution and data misfit.

6. CONCLUSIONS

1. A stationary, time-independent heat source, within a
moving lithosphere, has been used to represent the upper
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mantle heat transfer processes associated with material
upwelling at a spreading center and lithospheric thinning
over a hot spot. Using this heat source representation along
with a linear thermomechanical model for the oceanic litho-
sphere, we have derived analytic expressions, in the Fourier
transform domain, relating the three-dimensional heat
source to fields that can be observed on the earth’s surface
(i.e., surface heat flow, seafloor topography, and geopoten-
tial). The linearity and computational simplicity of the model
lends itself to transfer function modeling, forward modeling,
and inverse modeling.

2. The results from gravity/topography transfer function
modeling demonstrate that the thermal compensation model
transfer function peaks at a wavelength greater than the
flexural wavelength; the transfer function peak for the
regional compensation model occurs at a wavelength less
than \s. This indicates that off-ridge thermotectonic features
can be distinguished from off-ridge, regionally compensated
topography on the basis of the gravity/topography transfer
function. However, if a region of seafloor topography has a
mixed compensation mechanism such as the Hawaiian swell
and the Hawaiian-Emperor seamount chain, then near the
flexural wavelength, the observed transfer function is diffi-
cult to interpret.

3. The utility of the heat source formulation was demon-
strated by reproducing the thermal structure and observa-
bles for a plate cooling model. The heat flow-age and depth-
age relations are in agreement with previous studies.
Furthermore, we have shown that for typical spreading
velocities, geoid height is almost entirely dependent upon
age and agrees with geoid height relations derived using the
Ockendon-Turcotte approximation.

4. The amplitudes of the surface observables for a ma-
ture lithosphere moving through a Gaussian heat source are
dependent upon the width of the source. A very narrow
source (half width of 60 km) does not appear strongly in the
observable fields because the flexural rigidity of the litho-
sphere suppresses the signal. The geoid height is greatest
over a broad source (half width of 2000 km), while the free-
air gravity anomaly is most sensitive to an intermediate
width source (half width of 200 km).

5. The relationship between the heat source and the
observables is linear. Therefore, it is possible to invert
directly for the class of sources that are consistent with the
data by using linear inverse theory. The class can be
narrowed by applying physically reasonable constraints. The
three data types are each sensitive to different aspects of the
heat source and should be used simultaneously in the
inversion to enhance the source resolution. The inverse
problem will divide the observed fields into a part that is
associated with the lithosphere and a part that comes from
deeper within the earth and hopefully will provide a charac-
teristic wavelength for the off-ridge thermal perturbations.

APPENDIX A: THERMOMECHANICAL RESPONSE OF A
MOVING PLATE TO A DISTRIBUTED HEAT SOURCE

In this section we derive analytic expressions relating
quantities that can be observed on the surface of the earth
(i.e., surface heat flow, topography, geoid height, and free-
air gravity anomaly) to a thermal perturbation within the
lithosphere. The geometry of the problem is shown in Figure
1. The observable fields are perturbed as a plate of constant
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thickness [/ passes through a heat source g(x, y, z) at a
velocity v. The temperature at the plate’s surface is constant
T(x, y, 0) = Ty and at its base is T(x, y, [) = T,,. The assumed
rheology and mechanical boundary conditions are described
in section 2. The solution is obtained through a number of
separate steps.

1. Solve the inhomogeneous time-independent heat con-
duction equation.

2. Differentiate the temperature with respect to z to
determine the surface heat flow.

3. Integrate the thermally induced density perturbations
to find the vertical stress on the elastic layer.

4. Solve the inhomogeneous biharmonic equation for the
surface deflection.

5. Calculate the disturbing potential for the thermally
compensated topography.

Each of these problems has been solved separately (for 1
and 2, see Carslaw and Jaeger [1959, p. 266] and Birch
[1975]; for 3 and 4, see Banks et al. [1977] and Dorman and
Lewis [1974]; for 5, see Parker [1972]). Space domain
convolutions could be used to link these separate problems,
but many of the convolution integrals must be performed
numerically and require large amounts of computer time for
even the simplest heat source geometries. Fourier transfor-
mation of all of the equations in the £ and y directions
reduces the space domain convolutions to wave number
domain multiplications. The convolutions in the # direction
are simple enough to be evaluated analytically.

From the outset, the homogeneous solution to the heat
conduction problem is subtracted from the thermal struc-
ture, since this solution corresponds to the infinite wave-
length case. All length scales are nondimensionalized by the
lithospheric thickness [. Throughout the derivation the fol-
lowing notation is used:

x=(x,y)

k = (ks ky)
d d
Vh = —+ —
ox  dy

The two-dimensional Fourier transform and inverse trans-
form are defined as

Tk z) = f J 1(x, 2)e™™* d’x

Hx, 2) = (—2:77 f : ﬁ; T(k, 2)e” **d’k
or in shorthand notation,
Tk, z) = &, [1(x, 2)]
(x, z) = F> [Tk, 2)]

Temperature

The temperature perturbation #(x, z) is found by solving

921(x, Pq(x,
Iv - Vs, 2) — k Vi, o) — kD L D)
9z PmCp

(A1)
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subject to the boundary conditions
t(x,0) =0
tx, 1) =0

(A2)
(A3)

where « is the thermal diffusivity, p,, is the density, and C, is
the heat capacity. The boundary conditions are maintained if
an infinite number of heat sources and sinks are suitably
placed above and below the plate. Consider a source g(x, z)
= g(x) 8(z — zp). By adding positive images at z; + 2m and
negative images at —zo + 2m, where m is any integer, the
new source becomes

qx, 2) = q(x) X [z — 20 — 2m) — &z + zo — 2m)]

T (Ad)
and the boundary conditions are satisfied. With this source,
(A1) becomes

i ot Pgx)
vVt - V- = Y
PR h 022 kpmCp

o

2 8z - z0—2m) — &z + 2 — 2m)]

m=—o

(AS5)

Fourier transformation of (AS) in the £, y, and Z directions
yields

—il . 2
[(Tv.k+k~k)+kz:|T(k,kz)

_ P

( eik;zo _ e—iklzo)
KkpmCp

2 eik72m:| ( A6)

m=—o0
where g(k) is the Fourier transform of g(x). Let
il

PP=kK-k—-—v-k (A7)
K

Next we solve (A6) for T(k, k;) and take its inverse Fourier
transform in the &, direction only:

12 k © ©
Tk, 2) = 271':[: )C ) f

P=—

exp [ik(zg — z + 2m)]

—o0

— exp [—ik(z0 + 2 = 2m)]i(k, + ip)k, — ip)]™" dk, (A8)

This integral is performed by calculus of residues. The poles
lie at +ip and never intersect the real axis except when Ikl =
0, which corresponds to the homogeneous solution. The path
of integration is chosen so that temperature is zero far from
the heat source (i.e., Re (p) > 0). However, the m = 0 term
must be treated separately, since the path of integration
depends on sgn (z — zo). After this integration, (A8) becomes

Pak)

Tk, 2) =
k. 2) 26pmCpp

|:e—plzo~zl — e Pty 4 (e~p(z-zo)
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