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Abstract. A three-dimensional approach to estimating elastic thickness is presented which uses
dense satellite altimetry and sparse ship bathymetry. This technique is applied to the Louisville
Ridge system to study the tectonic history of the region. The inversion is performed as both a first-
order approximation and a nonlinear relationship between gravity and topography based on
Parker’s [1973] equation. While the higher-order effect on the gravity anomaly is nearly zero for
most of the region, the magnitude is significant over the summits of the ridge. Nevertheless, the
inclusion of the nonlinear terms has only a minor influence on the elastic thickness estimate within
each region, lowering the value by ~1-2 km compared with the linear result. The incorrect
assumption of two dimensionality for circular features exhibits a marked effect on the gravitational
anomaly, resulting in false sidelobe structure of nearly 20 mGal for large seamounts. Our elastic
thickness estimates are compared with the contradictory values obtained in previous studies by
Cazenave and Dominh [1984] and Watts et al. [1988]. We find an increasing elastic thickness
along the chain from southeast to northwest, with a discontinuity along the Wishbone scarp. The
jump in elastic thickness values northwest of the scarp appears to be an indication of an age
discontinuity caused by an extinct spreading center north of the ridge.

1. Introduction

The Hawaiian-Emperor seamount chain serves as the
archetype for hotspot volcanism. The Hawaiian chain and its
surrounding areas have been the focus of numerous plate flexure
studies [e.g., Vening Meinesz, 1941; Moore, 1970; Walcott, 1970;
Watts and Cochran, 1974; Suyenaga, 1979; Watts, 1979; Watts
and ten Brink, 1989; Wessel, 1993]. Surprisingly, the Louisville
chain (Plate 1), second in size to the Hawaiian group, has not

attracted nearly as much attention, probably because of its remote

location. The only major bathymetric survey of the Louisville
Ridge system was in 1984 [Lonsdale, 1986, 1988], and there have
been just two attempts at calculating the elastic thickness beneath
the different sections of the chain [Cazenave and Dominh, 1984;
Watts et al., 1988].

Cazenave and Dominh [1984] performed a three-dimensional
forward model for geoid height using analog bathymetric maps
[Mammericx et al., 1974] and constrained the models with widely
spaced Seasat geoid height profiles. However, their study was
limited by the relatively low resolution of both the bathymetric
maps and the geoid height data. Watts et al. [1988] used high-
resolution ship bathymetry and gravity anomaly data for their
forward model, but they were restricted to modeling along two-
dimensional profiles. The two studies yield contradictory values
for the elastic thickness under Louisville: Cazenave and Dominh
estimate the elastic thickness (7,) increasing from southeast (12-
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19 km) to northwest (15-23 km), while Watts et al. estimate T,
increasing from northwest (12.5-17.5 km) to southeast (32.5-42.5
km). Until now there has been no attempt to reconcile these
results.

Higher-resolution data from the recent Geosat mission
[McConathy and Kilgus, 1987] provides precise gravity (3-7
mGal accuracy) over the world's oceans [Sandwell and Smith,
1997]. This has been used along with available bathymetric
profiles to develop a complete model of inferred bathymetry
[Smith and Sandwell, 1997]. We introduce a method for
determining the elastic thickness which utilizes the complete
spatial coverage of the satellite gravity data and sparse ship depth
soundings to perform a three-dimensional estimation of elastic
thickness. We assess the importance of nonlinear topography to
gravity relationships, and we test this method on the Louisville
Ridge.

2. Flexure Theory

Dorman and Lewis [1970] investigated the isostatic
compensation of continental landmasses by relating the Bouguer
anomaly to elevation in the Fourier transform domain. Parker
[1973] showed that the gravitational anomaly due to an uneven,
nonuniform layer could be written as the sum of an infinite series
of Fourier transforms:

n=

oo n—1
G(K) = 270 (py — pp )e 27 5 [E”ﬂ'-— F{e" (r)}}, M
1 n:

where s is the average depth of the area, I' is the gravitational
constant, k is the wavenumber vector (1/A, 1/Ay), and F{f'(r)} is
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Plate 1. Gravity anomaly over the Louisville Ridge system, southwest Pacific. Gravity data are taken from
Sandwell and Smith [1997]. Colored dashed boxes (1-3) represent regions over which gravity was inverted to
produce bathymetric predictions. Each box is approximately 1000 x 1000 km? in order to include the very long
wavelengths in the inversion. Smaller black boxes (A-L) represent subregions within which predicted bathymetry

was compared to available ship data. The rms values were calculated within each subregion and determined the best
fitting parameters for that subregion. :
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Figure 1. (a) Model of a topographic load on an elastic plate overlying a fluid asthenosphere. The load is a
Gaussian seamount of height of 3.6 km, 6=20 km, p.=2800 kg m>, p,=3400 kg m>, and T,=12 km. (b) The
nonlinear effects of the Moho for this seamount model, with 7,=6 km. The solid line represents the gravity anomaly
determined by equation 2, including the first term, the linear effect of bathymetry and Moho topography, and the
first seven terms of the second term, the nonlinear effect of bathymetry. The dashed line also includes the first
seven terms of the third term, the nonlinear effect of the Moho topography. The maximum difference between these

two signals is 10 mGal (<7%).

the two-dimensional Fourier transform of the nth power of
topography of the layer. We use these two approaches, along with
the thin elastic plate flexure model (Figure 1a) [e.g., McKenzie
and Bowin, 1976; Banks et al., 1977; McNutt, 1979], to write the
gravitational anomaly as the sum of a linear term (first term) and
two nonlinear terms, (second term) and (third term):

G(k) = 27 (p, - p,, e 27 B(k)[l —¢727Kd R(|k|)]

s N[ Rk" (o,
1221 (p, - p,, Je M 2[%1?{1; (r)}] @)
n=2
o2y N R
+21(p,, — 0. Je ;[ - F{m (r)},

where the first term on the right-hand side is due to both the
bathymetry of the ocean floor, b(r), and the Moho topography,
m(r), the second term on the right-hand side is due solely to the
bathymetry; and the third term on the right-hand side is due
entirely to the Moho. Using the thin elastic plate flexure model,
the Moho topography is given by

m(r)= F~! H%} R(|k|)3(k)},

with R(|k]), also known as the flexural response function, given by

=)

©)

@

The flexural rigidity of the plate, D, is defined as
=(ETe3)/[12( l-vz)], d is the average crustal thickness (6 km), E
is Young's modulus (1x10" N'm™), v is Poisson's ratio (0.25), T,
is called the elastic thickness of the plate, and g,, p., and p,, are
the densities of the mantle (3400 kg m™), bathymetry (2600-3000
kg m™), and seawater (1025 kg m'3), respectively.

Our approach for estimating elastic thickness, which uses
dense gravity measurements and sparse bathymetric soundings,
relies on a linear relationship between gravity and bathymetry so
we first assess the nonlinear terms in equation (2). Under the
loading conditions of the Louisville ridge we expect that the
nonlinear terms due to topography are large and must be
accounted for, while the nonlinear terms due to Moho topography
are small and can be neglected. To investigate the nonlinear
Moho terms (equation (2) third term) for this region, we consider
a worst-case scenario of a large seamount (Gaussian height of 3.6
km, 6=20 km, p,=2800 kg m™) loading a weak elastic plate (7, of
only 6 km); this will result in maximum Moho topography and
thus maximum nonlinear contribution. This T, is close to the
smallest distinguishable value of 5 km for our method. The
maximum difference between the gravity calculated with just the
first-order Moho (solid line in Figure 1b) and the gravity that
includes the nonlinear terms (2-7) (dashed line) is ~10 mGal
(7%). This difference drops quickly as T, increases, though, and
for a more reasonable plate thickness of 12 km the nonlinear
effect is only ~2 mGal (<2%). Thus we are able to justifiably
disregard the higher-order effects of the Moho topography. With
the nonlinear terms accounted for, equation (2) becomes

() = Z(1)B(k)+ N{K}), ®
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Figure 2. Model illustrating nonlinear and dimensionality effects. Each model represents the gravity anomaly due
to a topographic load placed on a flat surface (no flexure). (a) and (b) Modeled by a Gaussian with the same
parameters as Figure 2a. (c) and (d) Modeled by a ridge with the same parameters as in Figures 2a and 2b. The solid
line represents the true gravity anomaly over the model Gaussian seamount and is shown for comparison. Figure 2b
demonstrates the effect of ignoring the nonlinear terms of Parker’s [1973] equation for a three-dimensional feature.
The linear estimate (dashed) has similar flanks to the nonlinear (solid), but shows a much smaller peak amplitude.
Figure 2c shows the effects of improper dimensionality assumptions on the gravitational anomaly in the nonlinear
case. The flank structure is noticeably changed, reducing each side by 20 mGal and causing a shift in the peak
amplitude of ~30 mGal. The most common inversion techniques assume both linearity and two dimensionality,
yielding a model (Figure 2d) that has insufficient peak amplitude and a false negative sidelobe, leading to an

overestimate in 7,.

where N(|k|,f) contains the nonlinear contributions from the
bathymetry and Z(|k|) is called the "admittance function" and
represents the gravity anomaly in the wavenumber domain
resulting from the compensation of a point load.

Owing to the ease of inverting a linear system, most of the
previous elastic thickness studies have ignored the nonlinear
contributions [Watts, 1978; Dixon et al., 1983; Cazenave and
Dominh, 1984; Watts et al., 1988, etc.]. This is, in general, a
good approximation, as the linear contribution is usually 85-90%
of the total gravity anomaly [McNutt, 1979; Goodwillie, 1995].
However, the omission of nonlinear terms in
bathymetric/gravitational modeling could be detrimental in areas
where the higher-order terms grow large, such as regions where

the relief of the topography approaches the mean depth [Parker,
1973}, areas of short-wavelength, uncompensated topography, or
wherever the lithospheric deflection is comparable to the elastic
thickness [Ribe, 1982]. As this encompasses numerous regions of
the world’s oceans, some analyses of the gravity/topography
relationship over volcanic features have included these terms
[Baudry and Calmant, 1991; Goodwillie, 1995; Sichoix and
Bonneville, 1996].

Figures 2a and 2b demonstrate the importance of the higher-
order bathymetric terms when modeling gravitational anomalies
due to a topographic load. To investigate an extreme case (large,
short-wavelength feature on a thin plate), we again consider the
Gaussian model in Figure 1, but with an elastic thickness of 12
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km. The results are shown in Figures 2a and 2b. The solid
profile in both plots includes the nonlinear terms (up to N=7),
while the dashed profile in Figure 2b is the linear approximation.
Note that the inclusion of higher-order terms has very little effect
on the flanks of the anomaly but exerts a strong (~13%) influence
on the peak amplitude, suggesting that the inclusion of the
nonlinear relationship is important when attempting to fit
anomaly peaks, especially in regions where the topography nears
the ocean surface but that the linear approximation should be
satisfactory for fitting on the sides.

Figures 2¢ and 2d show the effect of correct dimensionality on
gravity anomaly models. For the past two decades, flexure
modelers have had sufficient spatial coverage in continental data
to model the gravity/topography relationship in three dimensions,
thus being able to properly account for the dimensionality of the
modeled features [e.g., Lewis and Dorman, 1970; Banks et al.,
1977; McNutt and Parker, 1978]. Marine geophysical studies,
however, have, until recently, been limited by the availability of
ship data along profiles. This has forced most researchers to
perform their modeling techniques either by using bathymetric
maps in areas of dense ship tracks [McNutt, 1979; Sichoix and
Bonneville, 1996; Hébert et al., 1999; etc.] or by looking at only
two dimensions: distance along track and depth [Watts, 1978;
Ribe and Watts, 1982; Dixon et al., 1983; etc.]. For Parker's
[1973] equation to hold in two dimensions, two assumptions must
be made: the length of the feature is much greater than the width
(such as a ridge) and the'ship track/profile crosses approximately
perpendicular to the feature. In general, the length of the feature
should be >250-300 km before the bathymetry can be safely
assumed as two-dimensional (2-D) [Ribe, 1982]. These
assumptions severely limit the number of ship tracks that can be
used with any degree of confidence within a given area.

In Figure 2c the solid line again represents the nonlinear
seamount model but is compared with the gravity over a ridge
with the same parameters as the seamount (dashed line). Both
models contain the nonlinear effects so the differences between
the profiles should be due solely to dimensionality. Here both the
peak amplitude and the flank shape for the ridge are different
from that of the seamount. The assumption of a 2-D structure for
a seamount causes a false negative sidelobe in the gravity
anomaly, shifting the peak of the anomaly by a significant amount
and creating a gravitational low at the base of the signal.

Figure 2d shows the combined effects of these two most
common assumptions in flexural modeling. The solid line once
again represents the true gravity signature over a model seamount,
while the dashed line represents an approximation of a linear
relationship between topography and gravity over a feature
modeled as a two-dimensional structure. By using somewhat
extreme parameters (large feature on a plate with low 7,), we see
that the resultant misfit is almost 20 mGal along the flanks and up
to 50 mGal at the peak. Trying to fit this model by altering the
elastic thickness parameter would yield a T, higher than the true
one if this feature were actually a seamount rather than a ridge.
Therefore, much caution should be taken in areas with high-
amplitude, circular features, and, if possible, both the nonlinear
effects as well as the correct dimensionality should be included in
any gravitational model.

3. Method

For the past few decades, limited data meant that marine
geophysicists could only perform flexure studies using gravity
and bathymetry along sparse ship tracks. However, with the
advent of satellite altimetry to determine the Earth's geoid, it has
been possible to investigate the gravity/bathymetry relationship in
three dimensions [Dixon et al., 1983; Kogan et al., 1985;
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Figure 3. Spatial coverage of satellite data versus ship tracks for
region G. Thick black lines represent ship profiles available for
the area. Light gray lines are Seasat tracks (used by Cazenave
and Dominh [1984]). Thin black lines indicate Geosat, TOPEX,
and ERS-1 altimeter tracks used in the Sandwell and Smith [1997]

2-min gravity grid, version 9.2.

Cazenave and Dominh, 1984; Calmant et al., 1990]. With the
recent declassification of the dense Geosat altimetry data, the
quality and resolution of the geoid have increased substantially,
making it possible to model in three dimensions with much more
reliability (see Figure 3). In our study, we used the Sandwell and
Smith [1997] 2-min gravity grid, version 9.2, to invert for
bathymetry on a grid, the Smith and Sandwell [1997] predicted
bathymetry, version 6.2, to give us an estimation of the nonlinear
anomaly contribution and the available ship bathymetry data
along profiles to compare with our predictions.

In order to invert the satellite-derived gravity grid to predict
bathymetry we first divided the Louisville system into three
approximately square regions with sides of length >1000 km (see
Plate 1, dashed boxes 1-3) so we could include wavelengths
longer than the maximum expected flexural wavelength in our
inversion. For each of these large regions we performed the same
procedure, iterating over a range of both crustal densities
(0=2600-3000 kg m™) and elastic thicknesses (7,=0-50 km). For
simplicity, the calculations were performed in the wavenumber
domain rather than the spatial domain.

Oldenburg [1974] performed a nonlinear inversion for
topography using an iterative method along two-dimensional
gravity profiles. We used a different approach: removing an
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Figure 4. The rms misfit for region G plotted against crustal density, p., and elastic thickness, T, for the nonlinear
case. Mantle density is 3400 kg m?, E=1x10"" N m’%, and d=6 km. Minimum rms is 293 m and the contour interval

is 5 m. For low elastic thicknesses, variation in o, does
decrease in crustal density translates to an increase in 7.

estimate of the higher-order gravitational terms (N(k|,¢) in
equation (5)) to yield a solvable linear approximation. This was
achieved by estimating the gravitational contribution of terms 2-7
from the predicted bathymetry of Smith and Sandwell [1997].
The Smith and Sandwell grid was derived by limiting the
waveband to avoid wavelengths where T, is important and then
adjusting the predictions to coincide with the ship bathymetry
along surveyed points (for a discussion of this, see Smith and
Sandwell [1994]). While not exact because of errors in the
predicted depths, this should provide a reasonable estimate of the
nonlinear contribution as the crests of most seamounts along the
chain were surveyed by Lonsdale [1988] and included in the
Smith and Sandwell [1997] bathymetry grid.

This estimate of N(|k|,f) was then subtracted from the satellite-
derived gravity anomaly, yielding an approximate linear equation,
Giirst order(K)=Z(Jk|)B(K). The admittance function, Z(|k|), was
calculated for each value of p. and T, and then band-limited, since
1/Z(|k|) suffers from instabilities at both very short wavelengths,
owing to low signal-to-noise ratio, and very long wavelengths,
owing to downward continuation [McNutt, 1979; Dixon et al.,
1983; Baudry and Calmant, 1991, Sichoix and Bonneville, 1996].
Following the example of Smith and Sandwell [1994], we
constructed a spectral window, W(k)=W,(k)*W(k), where W;(k)
is a high-pass (with wavenumber) cosine filter which ramps
between a value of 1 for A<571 km and 0 for A>800 km and
Wy(k) is a low-pass filter of the form

Wk)=1/(1+4]k|’e ), (©)
with 4=5x10"° m* so that the half amplitude occurs at 13, 17, and
20 km for s=2, 4, and 6 km, respectively. This filter preserves
data within the "coherent wave band" (25-250 km) [Ribe and
Watts, 1982; Ribe, 1982] in which admittance estimates are of a
high reliability (coherence > 0.75). Although W;(k) places a
lower-resolution limit of ~5 km on elastic thickness estimates
[Watts et al., 1980; Smith and Sandwell, 1994], the expected

value for T, within the Louisville system based on age of the crust

not affect the misfit. However, for older, thicker plates a

at time of loading is 20-25 km, so this should not cause any
deleterious effects in our inversion.

After solving for bathymetry for the entire 1000x1000 km?
region, we inverse Fourier transformed our prediction, Bpyeq(k), to
determine misfits within the spatial domain. We comzpared
Bpred(X,y) within smaller subregions of the 1000x1000 km* area
(see Plate 1, boxes A-L) to the measured bathymetry along
available ship tracks within that subregion. By using this
technique of subdividing, we were able to include the long
wavelengths necessary in the inversion for bathymetry, but we
constrained our solution with precise ship data within smaller
regions of interest.

Within each subregion, A-L, we fit our predictions, Bprd(X,y),
only at points where ship data were available. These predictions
were compared with both the ship bathymetry data (Byad(x,y),
henceforth called "unfiltered"), which was high-pass filtered to
remove the mean depth, and a band-pass-filtered version of the
ship data (Bau(x,y)=F T{Wy(K)*Bu(K)}, henceforth called
"filtered") which included only the signal within the same
waveband as our band-limited admittance function. The rms
values for both comparisons within each box were evaluated and
plotted to determine the best fitting values for our parameters, o,
and T.,.

4. Results and Discussion

Plate 2 shows the magnitude of the gravity anomaly due to
terms 2-7 of Parker's equation for subregion G, with a value for o,
of 2800 kg m™. Most of the region yields a nonlinear contribution
very close to zero, with a sharp increase in magnitude over the
seamounts, peaking to a value of >60 mGal over the summits.
This large nonlinear contribution by the short-wavelength features
to the total gravity anomaly is not surprising given the results of
the model in Figure 2b and demonstrates the importance of these
terms in areas with large-amplitude features such as the Louisville
chain.
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Figure 5. The rms misfit for each region of the Louisville Ridge, using 0,=2800 kg m™, normalized by the standard
deviation of the topography within that region. Values are for the nonlinear inversion and show misfit as a
percentage of the variation of topography. The circles represent the best fit value of the elastic thickness and are at
the point of maximum curvature. For region J the point of maximum curvature for 7,>6 km was used owing to the
anomalous kink in the misfit curve at 7,=5 km (the resolution limit of this method). These values are listed in Table
1 along with the lower and (where possible) upper bounds. Bounds are at 5% misfit from the best-fit value. While
the lower bound on T, can be determined for all regions, the upper bound is complicated by the pseudo-asymptotic
behavior as T, grows large. This is due to the negligible change in deflection caused by an emplaced load once the

elastic thickness reaches a critical value.

To determine the effect of various parameters on elastic
thickness estimates, we varied crustal density in our inversion
between 2600 and 3000 kg m>. An example of rms misfit for
varying p. and T, within region G is shown in Figure 4. As can
be seen in this plot, for areas with low elastic thickness, variation
in p, has little effect on misfit. However, for older, thicker plates,
a reduction in crustal density forces an increase in the elastic
thickness estimate. If it is assumed that the crustal density
remains constant along the chain, then a density that is too high or
too low will affect the magnitude of T,, but the trend of values
along the chain will remain the same. Variation in the value for

Young’s modulus yields a similar result. We used E=1x10"' N m’
2 for our calculations, but a smaller value, such as E=6.5x10'" N
m [Sandwell, 1984], increased the T, for each region by ~6%.
Again, by assuming that E is constant along the chain, only the
magnitude of T, is affected, and the tectonic implications of the
estimates should remain the same.

Thus it should be noted that the trend of elastic thickness
estimates along a seamount chain is generally more informative
than the magnitude, owing to the effects of variation in initial
parameters on T, estimates [e.g., Calmant et al., 1990; Burov and
Diament, 1995, Sichoix and Bonneville, 1996].
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Plate 2. Nonlinear contribution of topography to the gravitational anomaly. G(k) for n=2-7 from Parker’s [1973]
equation is shown for region G of the Louisville Ridge. Most of the region has a negligible nonlinear effect, but
over the larger features, gravitational contribution from the higher-order terms grows quite large.
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Table 1. Best Fitting Elastic Thickness Values From Watts et al. [1988], Cazenave and Dominh [1984], and This Study
Profile Expected Watts Cazenave 2-D  Cazenave 3-D Nonlinear Linear Region
Lower Best Upper  Lower Best Upper

1 (22) 12.5-175 21.7-23.1 22 26.5 23 27 A
2 (22) 10.0 - 20.0 15.0 - 20.0 18.6-21.4 21 24 215 24 B
3 (22) 10.0-17.0 19.5 24 215 24 B
4 (22) <15.0 12.8-18.8 19.5 23 20 23 C
5 (22) 12.5-20.0 19.5 23 20 23 C
6 (22)  30.0-375 19.5 23.5 19.5 23 D
7 (22) 19.5 235 19.5 23 D
8 22 34.0-41.0 12.0-15.0 16.6 - 19.0 6 7 9 6.5 8 12 E
9 225 10 13.5 12 15.5 F1
10 225 275-325 10.0- 12.0 16.6 - 17.8 10 13.5 12 15.5 F1
9 225 7.5 11.5 9 13 F2
10 225  275-325 10.0-12.0 16.6-17.8 7.5 11.5 9 13 F2
11 23 37.5-425 12.0-15.0 16.6 - 19.0 8 11 225 9.5 14 G
12 23 32.5-425 12.0-15.0 16.6 - 19.0 8 11 225 9.5 14 G
23 10.5 15 12 15.5 H

23 8 13 28 11 14.5 2

23 4.5 10 23 8.5 12 I3

22.5 4 9.5 6.5 10 J

22 8 9.5 9 9.5 K

22 8.5 11.5 10 12 L

Ship profile, as used by Watts et al. [1988], the regions in this study, including not only the corresponding profiles from the previous
studies, but all other ship data available within that area since our technique is not constrained by the requirement of profile alignment
perpendicular to the feature. Nonlinear represent bound estimates using the nonlinear approximation for the topographic contribution to gravity,
while the Linear represent bounds from the linear approximation as discussed in the text. Best estimate is the point of maximum curvature in
Figure 5 for each region. The lower and upper bounds represent +5% of the normalized misfit. While our results are in agreement with the
general trend of Cazenave and Dominh’s [1984] 3-D estimate, we find a distinctive jump in elastic thickness at region E. Our results are in
general disagreement with values from Warts et al. [1988], presumably due to both improved data sets and the inclusion of proper

dimensionality.

The best fitting 7, values within each region are provided in
Table 1, compared with the previous results of Watts et al. [1988]
and Cazenave and Dominh [1984]. Even though our best fit
values for crustal density varied somewhat for the regions, we
evaluated misfit for p.=2800 kg m™> for consistency of
comparison with the previous studies.

Cazenave and Dominh [1984] used analog bathymetric maps
from Mammericx et al. [1974] to model geoid height in three
dimensions, which they compared to geoid values derived from
Seasat altimeter data. They also performed 2-D spectral analyses
along profiles of ship data for comparison. It is interesting to note
that their 3-D estimates yield a T, that is typically ~4 km higher
than their 2-D values. In their discussion, Cazenave and Dominh
attribute this to the dimensionality issue, positing that a two-
dimensional assumption leads to an overestimate of lithospheric
deflection (shown by Watts et al. [1975] and confirmed in Figure
2¢) and a corresponding negative geoid anomaly. This, they
claim, added to an overestimate of the positive geoid anomaly
caused by topography (which we do not see in Figure 2c) yields
an overestimate of the total anomaly and a smaller derived plate
thickness as compared to the 3-D approach.

However, as can be determined from Figure 2, and discussed
by Ribe [1982] and Watts et al. [1988], a feature which is
inherently two-dimensional prefers a higher elastic thickness than
that of a more circular, three-dimensional feature. Therefore, the
improper assumption of dimensionality for a seamount would
actually result in an overestimate of elastic thickness. Thus, the
contradictory nature of Cazenave and Dominh's [1984] results is
probably due to the poor quality of the data sets and the
insufficient coverage of the earlier altimeter data.

Watts et al. [1988] estimated elastic thicknesses for the
Louisville chain using two-dimensional ship data, including that
obtained during the 1984 survey by the R/V Thomas Washington.
While the magnitude of their estimates in the northwestern region
of the chain appears to agree somewhat with Cazenave and
Dominh's [1984] results, Watts et al. find much higher best fitting
values in the southeast, and the general trend (increasing T, from
northwest to southeast) is the opposite, which they partially
attribute to dimensionality differences.

Our results tend to agree with Cazenave and Dominh [1984] in
trend and show increasing values from southeast to northwest.
The rms misfit for the nonlinear inversion (unfiltered comparison)
for all regions is shown in Figure 5. The rms is normalized by the
standard deviation of the region and represents the ratio of error in
our estimate to the variation in topography. Circles represent the
best fit estimate of elastic thickness and are the point of maximum
curvature of the misfit. This plot illustrates not only the bimodal
nature of the elastic thicknesses under the two sections of the
chain (A-D and F-L) but also shows the difficulty in assessing an
upper bound on the T, estimates. In most cases, the misfit does
not significantly increase as T, grows large, owing to the
negligible change in deflection (and, hence, gravitational
anomaly) caused by an emplaced bathymetric load once the
elastic thickness has passed a critical value.

Table 1 shows the estimates and bounds (where possible) for
elastic thickness values for both the nonlinear and linear cases
within each region. Bounds were determined by 5% of the
normalized misfit for the best T, value. This leads to a lower
bound in all cases but an upper bound in only a few regions. In
general, the pattern of best 7, estimates for all four cases is the
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Figure 6. Elastic thickness versus age at time ot loading. Data are taken from Figure 1 of Wessel [1992] and
illustrates the relationship first proposed by Watts [1978], which states that the elastic thickness under seamounts
follows the 450°+150°C isotherm based on the cooling plate model of Parsons and Sclater [1977]. Although
seamounts within French Polynesia (triangles) yield lower-than-expected values, estimates of T, from other regions
of the world’s oceans (squares) fall within these bounds. Solid circles represent our results for the Louisville Ridge.
Age at time of loading for Louisville is based on crustal ages taken from Mueller et al. [1997] and seamount ages
from Lonsdale [1988]. North of region E, where data are not available from Mueller et al. [1997], age is assumed to

increase linearly with distance along the chain.

Solid triangles represent our estimates using revised ages

approximated from the tentative tectonic history of Lonsdale [1997] which places an age discontinuity at ~39°S

along the ridge.

same: a relatively low value (~11 km) in the southeast, increasing
slightly toward the northwest, with a sharp anomaly (7 km) in
region E, followed by a higher value (~24 km) northwest of E
which increases toward the northwest.

Watts [1978] showed that the elastic thickness for the
Hawaiian chain agreed with the depth to the 450°+ 150°C
isotherm based on the cooling model of Parsons and Sclater
[1977]. This result has been supported by numerous studies since
[e.g., Watts and Ribe, 1984; Calmant et al., 1990]. Figure 6,
based on the data in Figure 1 of Wessel [1992], shows that, for
most seamounts outside of French Polynesia, the elastic thickness
does indeed fall between the 300° and 600°C isotherms. The
solid circles in Figure 6 indicate our estimates for the Louisville
region, with crustal ages taken from Mueller et al. [1997] and
seamount ages from Lonsdale [1988]. Along the northwest
section (A-D), where age data are not available, we estimated
crustal ages based on the assumption of linear age progression
with distance along the ridge.

Our elastic thickness estimates for Louisville are lower than
expected in the southeastern region (F-L) and are similar to those
obtained in French Polynesia. This low 7, could be due to the
presence of the nearby Eltanin Fracture Zone system, which
formed prior to the emplacement of the Louisville Ridge [Watts et
al., 1988]. However, since the southeastern region of the chain is
composed of numerous isolated, circular features, and most of the
studies included in Figure 6 were performed assuming two-
dimensional features, the lower than expected elastic thicknesses
from our study could also reflect the effect of considering correct
dimensionality for these seamounts. T, values in the northwest

section (A-D) of the Louisville system, when compared to the
southern section, are higher than expected, implying that the
northern seamounts formed on an older plate than the southern
ones and that our assumption of continuous age progression of the
plate is not correct. There is an anomaly in the elastic thickness
estimates (7,=7 km) at 39°S, dividing the northern region from
the southern.

The location of this T, jump is coincident with an anomaly in
the gravity field: the signature of the Wishbone scarp (see Plate
1). This scarp is thought to be a remnant transform fault which
had formed from the extinct spreading ridge located at ~25°S,
halfway between the Manihiki and Hikurangi plateaus [Lonsdale,
1997]. According to P. Lonsdale (personal communication,
1999), this remnant boundary could account for a crustal age
discontinuity of anywhere from 5 to 25 Ma, which would explain
the increased elastic thickness estimates to the northwest of the
scarp. Shown in Figure 6 (solid triangles) are the revised T,
versus age values for the northwestern region based on this
tentative new model, which increases the age at the time of
loading by 7 Ma on the northwest side of the scarp and by up to
30 Ma at the Osbourn Trough. These new T, estimates fall very
close to the 400°C isotherm. The 1999 AVONO04 cruise by the
R/V Melville to this region will place better constraints on the
crustal age and assist in untangling the complex tectonic history

- of this area.

Figure 7 shows the predicted topography along profile 12 over
a seamount in region G (43.5°S, 161.5°W) using our elastic
thickness estimate (11 km, short-dashed), Cazenave and Dominh's
[1984] 3-D result (17.8 km, dotted), and Watts et al.'s [1988]
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Figure 7. Comparison of topographic prediction with ship bathymetry for profile 12 over the seamount in region G.
Predicted bathymetry is shown for a range of elastic thickness values: our estimate (11 km, short-dashed), Cazenave
and Dominh’s [1984] (17.8 km, dotted), and Watts et al. [1988] (37.5 km, dash-dotted). The actual ship bathymetry
(high-pass filtered to remove the mean) is shown as a solid line. The rms misfits between predicted and actual ship
bathymetry for this profile are 267.43 m, 334.91 m, and 393.82 m for our study, Cazenave and Dominh’s [1984],

and Watts et al. [1988], respectively.

value (37.5 km, dash-dotted) compared with the actual ship
bathymetry (solid). Our estimate has the lowest rms misfit when
compared to the actual ship bathymetry (267.43 m), followed by
Cazenave and Dominh (334.91 m) and Watts et al. (393.82 m).
Comparison with the band-passed bathymetry yields a much
better fit in each case (201.17 m, 299.03 m, and 368.57 m,

Table 2. Minimum rms Misfit Value Within Each Region

respectively). While all three methods model the sides of the
seamount with similar accuracy, the higher 7, values do not
predict the peak of the seamount as well as our value of 11 km.
Inclusion of the nonlinear terms in our inversion did not have a
large effect on the elastic thickness estimates, with 7, values from
the linear method exceeding those from the nonlinear by a mean

Region Regional STD Unfiltered Filtered Linear Unfiltered Linear Filtered Difference, %*
Unfiltered Filtered Unfiltered Filtered

A 1009 952 418 377 421 413 1 9
B 948 889 354 306 352 325 -1 6
C 953 888 339 254 331 279 -2 9
D 1120 1093 299 230 342 299 13 23
E 1523 1508 560 544 566 557 1 2
Fl1 1188 1158 418 371 425 390 2 5
F2 1188 1144 418 368 455 432 8 15
G 1075 1026 203 208 301 275 3 24
H 1067 1037 288 209 337 294 15 30
12 779 716 275 217 251 210 -10 -3
I3 779 687 275 209 248 216 -11 3
J 600 527 274 182 257 188 -7 3
K 247 107 196 128 194 127 -1 -1
L 654 569 301 163 272 151 -11 -8

Values represent the minimum misfit for the region for each of the four inversion cases. Percent difference illustrates the decrease in
misfit attained by including the nonlinear terms. Misfit is reduced by up to 30% by including the higher-order effect in areas with large
variance in topography, but misfit increases by up to 10% in areas where the variance is small.

*Percent decrease in minimum rms by including nonlinear terms [(linear-nonlinear)/linear *100].
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Figure 8. Real versus predicted bathymetry for region G. Predicted bathymetric values (calculated with 7,=11 km
and p,=2800 kg m™) for each point along tracks in the grid (993 points) are plotted versus their respective ship
value. All ship data have been high-pass-filtered to remove the mean value of the region. The dashed line indicates
the 1:1 exact fit value. Stars represent high-pass-filtered ship bathymetry. Crosses represent ship values that have
also been bandlimited as discussed in the text. For both the (a) nonlinear and (b) linear inversions the band-limited
comparison confines the points closer to the 1:1 line. However, for large features the linear inversion overpredicts
the bathymetry, signifying a T, value that is too low. The best fit value for the linear case in this region is 14 km.

of 0.86 km (median of 0.50 km) for unfiltered bathymetry and a
mean of 0.61 km (median of 0.50 km) for filtered bathymetry.
The largest discrepancies between the linear and nonlinear
estimates (2-3 km) occurred in the middle to southern end of the
chain where there are isolated, short-wavelength seamounts on
younger, thinner crust than in the northwest.

Figures 8a and 8b show the correlation between the real
bathymetry and the predicted bathymetry for region G, which
contains circular, short-wavelength features. In Figure 8a, the
nonlinear estimate, predictions are well correlated with both the
unfiltered bathymetry (stars) as well as with the band-passed
bathymetry (crosses), with the latter case showing an improved
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match over the former. The same holds true in general for the
linear method (Figure 8b), but we see that for large features on the
seafloor (> 2 km) the predicted bathymetry is too high, signifying
an elastic thickness value which is too low. Thus the linear
method within this region yields a best fitting T, which is ~3 km
greater than that by the nonlinear method.

As mentioned previously, the correlation improves for the
comparison with band-pass-filtered topography, but the actual
effect of filtering on the elastic thickness estimate is quite small,
with the filtered T, greater than the unfiltered value by a mean of
0.61 km (median of 0.50 km) for the nonlinear case and a mean of
0.32 km (median of 0.25 km) for the linear case. This difference
is not dependent on location along the chain.

5. Conclusions

Including the nonlinear terms in our inversion improved our
elastic thickness fit, reducing the minimum rms misfit by 1-30%
in areas with a large standard deviation of topography (see Table
2). In the southeast region, however, where the variance in depth
for the region is not as great, the linear estimate actually had a
somewhat lower minimum rms misfit than the nonlinear when the
predictions were compared to the unfiltered bathymetry. The
resultant effect of including the nonlinear terms in the estimation
of elastic thickness was small, with ~1-2 km greater value for the
linear estimates than for the nonlinear determinations.

In contrast, the dimensionality of the features in question
appears to have a large effect on elastic thickness determination in
flexure studies. Since there is a higher percentage of depth
soundings over the broad flanks than the narrow peaks, the
dimensionality issue was emphasized and could assist in
explaining some of the disparity between our study and previous,
two-dimensional ones [Cazenave and Dominh, 1984; Watts et al.,
1988]. It also provides a viable reason for the low values of
elastic thickness in Figure 6, when compared with the T, versus
age relationship of other Pacific seamounts.

This approach is particularly effective for estimation of elastic
thickness in regions where ship tracks do not cross seamount
peaks or where data are sparse. However, our elastic thickness
estimates should be considered lower bounds rather than absolute
values, as the upper limits can be very difficult to define due to
the asymptotic behavior of the misfit for large T, (see Figure 5).
Therefore the best constraint for a reasonable upper bound would
usually be found using the age of the crust at the time of loading

Acknowledgments. The authors would like to thank Peter Lonsdale
for providing information on the crustal ages and spreading history of the
Louisville region. We also thank R. L. Parker for his questions and
constructive comments on the first draft of this manuscript. Many of the
figures were created using the GMT software of Wessel and Smith [1991].
Reviews and suggestions by M. Diament, C. Ebinger, and P. Wessel led to
a considerably improved final version of this paper. This work was
supported by a Department of Defense, National Defense Science and
Engineering Graduate Fellowship (S.N. Lyons), National Science
Foundation grant OCE-9521518, and NASA grant NAG5-5176.

References

Banks, R.J., R.L. Parker, and S.P. Huestis, Isostatic compensation on a
continental scale: Local versus regional mechanisms, Geophys. J. R.
Astron. Soc., 51, 431-452, 1977.

Baudry, N., and S. Calmant, 3-D modelling of seamount topography from
satellite altimetry, Geophys. Res. Lett., 18,1143-1146, 1991.

Burov, E.B., and M. Diament, The effective elastic thickness (T.) of
continental lithosphere: what does it really mean?, J. Geophys. Res.,
100, 3905-3927, 1995.

Calmant, S., J. Francheteau, and A. Cazenave, Elastic layer thickening

13,251

with age of the oceanic lithosphere: A tool for prediction of the age of
volcanoes or oceanic crust, Geophys. J. Int., 100, 59-67, 1990.

Cazenave, A., and K. Dominh, Geoid heights over the Louisville Ridge
(South Pacific), J. Geophys. Res., 89, 11,171-11,179, 1984.

Dixon, T.H., M. Naraghi, M.K. McNutt, and S.M. Smith, Bathymetric
prediction from Seasat altimeter data, J. Geophys. Res., 88, 1563-1571,
1983.

Dorman, L.M., and B.T.R. Lewis, Experimental isostasy, 1, Theory of the
determination of the Earth's isostatic response to a concentrated load,
J. Geophys. Res., 75, 3357-3365, 1970.

Goodwillie, A.M., Short-wavelength gravity lineations and unusual
flexure results at the Puka Puka volcanic ridge system, Earth Planet.
Sci. Lett., 136,297-314, 1995.

Hébert, H., B. Villemant, C. Deplus, and M. Diament, Contrasting
geophysical and geochemical signatures of a volcano at the axis of the
Wharton fossil ridge (N-E Indian Ocean), Geophys. Res. Lett., 26,
1053-1056, 1999.

Kogan, M.G., M. Diament, A. Bulot, and G. Balmino, Thermal isostasy in
the South Atlantic Ocean from geoid anomalies, Earth Planet. Sci.
Lett., 74, 280-290, 1985.

Lewis, B.T.R., and L.M. Dorman, Experimental isostasy, 2, An isostatic
model for the United States derived from gravity and topographic
data, J. Geophys. Res., 75, 3367-3386, 1970.

Lonsdale, P., A multibeam reconnaissance of the Tonga Trench axis and
its intersection with the Louisville Guyot Chain, Mar. Geophys. Res.,
8, 295-327, 1986.

Lonsdale, P., Geography and history of the Louisville hotspot chain in the
southwest Pacific, J. Geophys. Res., 93,3078-3104, 1988.

Lonsdale, P., An incomplete geologic history of the southwest Pacific
basin, Geol. Soc. Am. Abstr. Programs, 29 (5), 25, 1997.

Mammericx, J., S.M. Smith, L.LL. Taylor, and T.E. Chase, Bathymetry of
the South Pacific, / M R TR-45 Sea Grant Publ. 12, Scripps Inst. of
Oceanogr., La Jolla, Calif., 1974.

McConathy, D.R., and C.C. Kilgus, The Navy Geosat mission: An
overview, Johns Hopkins APL Tech. Dig., 8, 170-175, 1987.

McKenzie, D., and C. Bowin, The relationship between bathymetry and
gravity in the Atlantic Ocean, J. Geophys. Res., 81, 1903-1915, 1976.

McNutt, M.K., Compensation of oceanic topography: an application of the
response function technique to the Surveyor area, J. Geophys. Res., 84,
7589-7598, 1979.

McNutt, M.K., and R.L. Parker, Isostasy in Australia and the evolution of
the compensation mechanism, Science, 199, 773-775, 1978.

Moore, J.G., Relationship between subsidence and volcanic load, Hawaii,
Bull. Volcanol., 34, 562-576, 1970.

Mueller, R.D., W.R. Roest, J.-Y. Royer, L.M. Gahagan, and J.G. Sclater,
Digital isochrons of the world’s ocean floor, J. Geophys. Res., 102,
3211-3214, 1997.

Oldenburg, D.W., The inversion and interpretation of gravity anomalies,
Geophysics, 39, 526-536, 1974.

Parker, R.L., The rapid calculation of potential anomalies, Geophys. J. R.
Astron. Soc., 31, 447-455, 1973. :

Parsons, B., and J.G. Sclater, An analysis of the variation of ocean floor
bathymetry and heat flow with age, J. Geophys. Res., 82, 803-827,
1977.

Ribe, N.M., On the interpretation of frequency response functions for
oceanic gravity and bathymetry, Geophys. J. R. Astron. Soc., 70, 273-
294, 1982.

Ribe, N.M. and A.B. Watts, The distribution of intraplate volcanism in the
Pacific Ocean basin: A spectral approach, Geophys. J. R. Astron. Soc.,
71,333-362, 1982.

Sandwell, D.T., Thermomechanical evolution of oceanic fracture zones, J.
Geophys. Res., 89, 11,401-11,413, 1984.

Sandwell, D.T., and W.H.F. Smith, Marine gravity anomaly from Geosat
and ERS-1 satellite altimetry, J. Geophys. Res., 102, 10,039-10,054,
1997.

Sandwell, D. T., E.L. Winterer, J. Mammericx, R.A. Duncan, M.A.
Lynch, D. Levitt, and C. Johnson, Evidence for diffuse extension of
the Pacific Plate from Pukapuka Ridges and cross-grain gravity
lineations, J. Geophys. Res., 100, 15,087-15099, 1995.

Sichoix, L., and A. Bonneville, Prediction of bathymetry in French
Polynesia constrained by shipboard data, Geophys. Res. Lett., 23,
2469-2472, 1996.

Smith, W.H.F., and D.T. Sandwell, Bathymetric prediction from dense
satellite altimetry and sparse ship bathymetry, J. Geophys. Res., 99,
21,803-21,824, 1994.



13,252

Smith, W.H.F., and D.T. Sandwell, Global seafloor topography from
satellite altimetry and ship depth soundings, Science, 277, 1956-1962,
1997.

Suyenaga, W., Isostasy and flexure of the lithosphere under the Hawaiian
Islands, J. Geophys. Res., 84, 5599-5604, 1979.

Vening Meinesz, F.A., Gravity over the Hawaiian Archipelago and over
the Madeira area: Conclusions about the Earth’s crust, Proc. K. Ned.
Akad. Wet., 44, 1, 1941.

Walcott, R.I., Flexure of the lithosphere at Hawaii, Tectonophysics, 9,435-
446, 1970.

Watts, A.B., An analysis of isostasy in the world’s oceans, 1, Hawaiian-
Emperor seamount chain, J. Geophys. Res., 83, 5989-6004, 1978.

Watts, A.B., On geoid heights derived from Geos 3 altimeter data and
flexure along the Hawaiian-Emperor seamount chain, J. Geophys. Res.,
84, 3817-3826, 1979.

Watts, A.B., and J.R. Cochran, Gravity anomalies and flexure of the
lithosphere along the Hawaiian-Emperor Seamount Chain, Geophys. J.
R. Astron. Soc., 39, 119-141, 1974.

Watts, A.B., and N.M. Ribe, On geoid heights and flexure of the
lithosphere at seamounts, J. Geophys. Res., 89, 11,152-11,170, 1984.
Watts, A.B., and U.S. ten Brink, Crustal structure, flexure, and subsidence
history of the Hawaiian islands, J. Geophys. Res., 94, 10,473-10,500,

1989. '

Watts, A.B., J.R. Cochran, and G. Selzer, Gravity anomalies and flexure
of the lithosphere: A three-dimensional study of the Great Meteor
seamount, northeast Atlantic, J. Geophys. Res., 80, 1391-1398, 1975.

LYONS ET AL.: THREE-DIMENSIONAL ELASTIC THICKNESS UNDER LOUISVILLE

Watts, A.B., J.H. Bodine, and N.M. Ribe, Observations of flexure and the
geological evolution of the Pacific Ocean basin, Nature, 283, 532-537,
1980.

Watts, A.B., J.K. Weissel, R.A. Duncan, and R.L. Larson, Origin of the
Louisville Ridge and its relationship to the Eltanin Fracture Zone
system, J. Geophys. Res., 93,3051-3077, 1988.

Wessel, P., Thermal stresses and the bimodal distribution of elastic
thickness estimates of the oceanic lithosphere, J. Geophys. Res., 97,
14,177-14,193, 1992.

Wessel, P., A reexamination of the flexural deformation beneath the
Hawaiian Islands, J. Geophys. Res., 98, 12,177-12,190, 1993.

Wessel, P., and W.H.F. Smith, Free software helps map and display data,
Eos Trans. AGU, 72, 441, 445-446, 1991.

S. N. Lyons and D. T. Sandwell, Scripps Institution of Oceanography,
UCSD, MC0225, La Jolla, CA 92093-0225. (slyons@radar.ucsd.edu,
sandwell@geosat.ucsd.edu)

W. H. F. Smith, NOAA Laboratory for Satellite Altimetry, E/OC2,
SSMC3, Room 3620, Silver Spring, MD 20910-3282.
(wsmith@nodc.noaa.gov)

(Received August 12, 1999; revised January 21, 2000;
accepted February 24, 2000.)



	a: 
	aa: 


