<u>ROcky Mountain Atmospheric Nitrogen and Sulfur study</u> (ROMANS)

Rocky Mountain National Park (ROMO) is experiencing a number of deleterious effects due to atmospheric nitrogen and sulfur compounds. These effects include visibility degradation, changes in ecosystem function and surface water chemistry from atmospheric deposition, and human health concerns due to elevated ozone concentrations

ROMANS OBJECTIVES

- Characterize the atmospheric concentrations of sulfur and reactive nitrogen species in gaseous, particulate and aqueous phases along the east and west sides of the Continental Divide
 - GAS: SO₂ NH₃, NO_X(NO+NO₂), NO_Y(HNO₃, PAN, etc), Amines-?
 - PARTICLE: NH₄, SO₄, NO₃, Organic Nitrogen?
 - WET: NH₄, SO₄, NO₃, Organic Nitrogen
- Identify the relative contributions to atmospheric sulfur and nitrogen species in RMNP from within and outside of the state of Colorado.
- Identify the relative contributions to atmospheric sulfur and nitrogen species in RMNP from more emission sources along the Colorado Front Range versus other areas within Colorado.
 Identify the relative contributions to atmospheric sulfur and nitrogen species from mobile sources, agricultural activities, large and small point sources within the state of Colorado.

What isn't measured in routine deposition monitoring networks? NH₃

 Organic nitrogen either in wet or dry (gas or particle phase) in its reduced, oxidized or biological forms

– NO₂, peroxyacetyl nitrate (PAN) and related alkyl nitrates etc

Aliphatic amines etc

- Proteins, amino acids, etc

MATRIX OF MEASUREMENT NEEDS

	WET	GAS	PARTICLE	Temporal scale (gas/particle)
SO ₂ /SO ₄ -2	****	****	****	Min/hr/day/week
NO ₂ /HNO ₃ ⁻ /NO ₃ ⁻	***	****(***CASTNET)	****(***CASTNET)	Min/hr/day/week
NH ₃ /NH ₄ -	***	***	***	Min/hr/day/week
Total ON	***	*	*	Integrated sample/event based
ON _r	* (markers)	*	* (markers)	?
ON _o	* (markers)	***	***	Min/hr/day/week (gas/part) Event for markers
ON _b	* (markers)	**	*	Integrated samples

- ***** Measure with high degree of accuracy
 - ** Measure with reasonable accuracy
 - * Measure with low accuracy
- * Research monitoring
 - Currently cannot do

Note: measurements should be event based for wet deposition and gases and particles measured at least on a 24 hr schedule.

Core site in RMNP

Particle, gas, wet deposition,
meteorology measurements
High time resolution
Secondary sites

- Lyons and Gore Pass
- Daily time resolution
- Characterize air masses on east and west slopes

Additional daily monitoring sites

- Within RMNP
- Near state boundaries
- Weekly NH3 monitoring sites

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
3*S	0.83	0.22	0.05	0.35	1.62	31
SO4I	0.68	0.17	0.03	0.27	1.21	31
SO4U	0.65	0.17	0.03	0.28	1.20	31
SO4PIL	0.84	0.20	0.04	0.39	1.47	31

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
NH4I	0.23	0.08	0.01	0.11	0.44	31
NH4U	0.33	0.14	0.02	0.12	0.78	31
NH4PIL	0.23	0.11	0.01	0.04	0.56	31

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
NO3I	0.13	0.12	0.02	0.03	0.41	31
NO3U	0.15	0.14	0.02	0.03	0.52	31
NO3PIL	0.19	0.15	0.02	0.04	0.57	31

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
3*S	0.56	0.30	0.09	0.13	1.40	31
SO4I	0.49	0.28	0.08	0.11	1.28	31
SO4U	0.51	0.27	0.07	0.11	1.27	31
SO4PIL	0.57	0.40	0.16	0.12	1.81	31

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
NH4I	0.19	0.13	0.02	0.04	0.52	31
NH4U	0.30	0.14	0.02	0.13	0.65	31
NH4PIL	0.23	0.25	0.06	0.00	0.80	31

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
NO3I	0.23	0.29	0.08	0.01	1.28	31
NO3U	0.28	0.32	0.10	0.01	1.48	31
NO3PIL	0.22	0.34	0.11	0.00	1.53	31

spring

Summer pils and URG SO4

Summer pils and URG NO3

Summer pils and URG NH4

summer ammonia PPB

Summer

Summer

IMPROVE and DMA (SUMMER)

SPRING

Species Mass (ug/m³)

SPRING

SPRING

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
EFF	2.26	0.45	0.20	1.28	3.84	572
BNEPH	9.30	10.64	113.30	-1.00	83.00	737
BDMAF	4.78	6.07	36.87	0.23	47.35	572
BCM	2.42	2.23	4.99	0.04	15.67	635
BTOT	7.28	7.18	51.54	0.55	63.02	572
BSO4	2.58	2.83	7.99	0.07	16.81	572
BNO3	1.14	2.69	7.23	0.00	16.55	572
BPOM	2.49	3.71	13.74	-1.45	68.54	572

Variable	Mean	Std_Dev	Variance	Minimum	Maximum	Valid
EFFS	2.93	0.29	0.08	2.11	3.66	532
BABS	0.01	0.01	0.00	0.00	0.12	532
BNEPH	20.59	14.02	196.65	0.00	135.00	723
BDMAF	17.45	9.74	94.93	0.67	74.89	532
BCM	6.14	4.37	19.13	0.19	26.72	574
BTOT	23.71	12.86	165.31	0.86	92.52	532
BSO4	3.50	1.39	1.92	0.44	10.02	532
BNO3	0.75	1.21	1.47	0.00	11.78	532
BPOM	14.33	8.56	73.27	0.22	62.20	532

PRELIMINARY DEPOSITION RESULTS

- Total N deposition was about twice (2) as high during the summer vs spring.
- About 45% of N deposition is not being measured in the current monitoring programs (NAPD & CASTNET).
- Deposition of N is about 2/3 wet (rain and snow) and 1/3 dry (particles and gases).
- Organic N may be about 30% of total deposition and is not currently being measured.

SUMMER

Total Dep = 6228 ug/m^2

SPRING Total Dep=3326 ug/m²

Spring pils and urg NO3

