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DART is a public domain ensemble
assimilation facility.
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Ensemble Filter Carview.
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Ensemble Filter Carview.

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.
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Ensemble Filter Carview.

3. Getobserved valuandobservational error distribution

from observing system.
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Ensemble Filter Carview.

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).
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Ensemble Filter Carview.

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.
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(Theory: impact of
observation increments on
each state variable can be
handled sequentially!
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Ensemble Filter Carview.

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Important Features of Ensemble Filters

1. Fully multivariate: all observations impact all related state variables.
Tracer observations impact tracer and meteorological state.
Meteorological observations impact tracer state, too.

2. Tracers are modeled and assimilated ‘on-line’.

3. Complex forward operators (e.g. radiances) can be used.
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It's Easy to Add N& Models (TFacers) to BRT

Uses set of well-defined interfaces.
Adding tracer to large model can be trivial.
Can add new tracer to CAM (global climate model) at runtime.
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It's Easy to Add N& Obsenrations, too.

Requires only forward operator. maps state to expected observation.
No linear tangents or adjoints.

Small amount of additional coding in well-defined framework.
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5. Ground-based GPS.
6. Scatterometer winds.

Impact of assimilating GPS radio occulZ- Retrievals from orbiting radiometers.
tation soundings on WRF ensemble fofe-Development underway for radiances.
casts of probability of heavy

precipitation over Taiwan for typhoon
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What's in DART?

1. Variety of ensemble filter flavors:
EnKF (perturbed obs.); EAKF (deterministic square root);
Nongaussian, Kernel.

2. Comprehensive tutorial and example models.

3. Diagnostic output in netCDF and custom observation format.

4. Diagnostic visualization tools (used for all figures here).
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DART Has Additional Algorithms for Enhanced Performance

These are especially helpful for using small (~20) ensembles.

1. Adaptive inflation;
Corrects for model and filter errors by increasing variance.

2. Hierarchical filter / adaptive localization;
Reduces filter sampling error,
Detects noise in observation/state relation and reduces weight.

3. Adaptive thinning of dense observations;
Increased efficiency and reduced filter sampling error.
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Hierarchical Filter / Adapte Localization

Most dfeclve locdizaton canbe comph cated.
Appropriate values may not be knoarmpriori for tracers.
DART has tools to help estimate localization.
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DART Runs on May Compilers / Platforms

Platforms:

IBM Power6 and Power5 supercomputers,
SGl Altix supercomputers,

Linux clusters (many types),

Apple Mac PowerPC, Apple Mac Intel,
Windows (cgywin).

Compilers:

Intel ifort (Linux, Mac Intel, SGI altix),

Absoft f90 (Mac PowerPC/Intel),

PGI pgf90 (Linux, Mac PowerPCl/Intel),
gfortran (Linux, Mac PowerPC/Intel, cgywin),
g95 (Linux, Mac PowerPC),

IBM xIf (IBM Power 5/6),

PathScale pathf90 (Linux),

Lahey If95 (Linux).
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DART Parallel Algorithms

Generic parallel scaling.
Works out-of-the-box on parallel architectures noted above.
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Scaling of DART/CAM assimilation (not including model
advance) on NCAR’s Bluefire. For this model scales well
past 96 processes.
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DART User Support

The DART team supports high-impact
applications like:

WRF, CAM, CAM/CHEM and WRF/
CHEM.

Chris Snyder's MMM group also supports DART/WRF.
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Want to try it out?

DART software, documentation, and model interfaces available at:

www.image.ucar.edu/DAReS/DART.

Data
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