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Ensemble Filter Overview.

Ensemble state
estimate after using
previous observation
(analysis).

Ensemble state at
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vation (prior).
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Ensemble Filter Overview.

2. Get prior ensemble sample of observation, y
applying forward operator h to each ensemble m
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Ensemble Filter Overview.

3. Getobserved valueandobservational error distr
from observing system.

y

*
*
*
*

h h
h



12/30/08D

mble
ation errors).

y

ents many
is step.
Anderson: : Data Assimilation in WRF-Chem   6 January 2009 5

Ensemble Filter Overview.

4. Findincrement for each prior observation ense
(this is a scalar problem for uncorrelated observ
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Ensemble Filter Overview.

5. Use ensemble samples of y and each state v
regress observation increments onto state varia
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Ensemble Filter Overview.

6. When all ensemble members for each state 
have a new analysis. Integrate to time of next o
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Important Features of Ensemble

1. Fully multivariate: all observations impact all 
Tracer observations impact tracer and mete
Meteorological observations impact tracer s

2. Tracers are modeled and assimilated ‘on-line

3. Complex forward operators (e.g. radiances) c
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It’s Easy to Add New Models (Tracers) 

Uses set of well-defined interfaces.
Adding tracer to large model can be trivial.

Can add new tracer to CAM (global climate 

Some DART Complian

1. CAM, CAM/CHEM.
2. WRF.
3. GFDL AM2.
4. NCEP GFS (old ver
5. MIT Ocean Model.
6. Navy COAMPS Atm
7. ROSE middle atmo

DART CAM/CHEM assimilation (Ave)
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It’s Easy to Add New Observations,

Requires only forward operator: maps state to e
No linear tangents or adjoints.

Small amount of additional coding in well-define

Impact of assimilating GPS radio occul-
tation soundings on WRF ensemble fore-
casts of probability of heavy
precipitation over Taiwan for typhoon
Shanshan.

Some DART Observation 

1.T, winds, moisture from
2. Satellite drift winds.
3. Doppler radar velocity
4. GPS radio occultation
5. Ground-based GPS.
6. Scatterometer winds.
7. Retrievals from orbitin
8. Development underwa
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What’s in DART?

1. Variety of ensemble filter flavors:
EnKF (perturbed obs.); EAKF (deterministic
Nongaussian;                Kernel.

2. Comprehensive tutorial and example models

3. Diagnostic output in netCDF and custom obs

4. Diagnostic visualization tools (used for all fig
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DART Has Additional Algorithms for Enhan

These are especially helpful for using small (~2

1. Adaptive inflation;
Corrects for model and filter errors by inc

2. Hierarchical filter / adaptive localization;
Reduces filter sampling error,
Detects noise in observation/state relatio

3. Adaptive thinning of dense observations;
Increased efficiency and reduced filter sa
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Adaptive Inflation

Adaptive inflation in CAM
improves forecast fit to radiosonde
T observations, increases spread to
more appropriate levels, reduces
number of observations rejected.

Inflation can 
tially-varying:
and observat
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Hierarchical Filter / Adaptive Localiz

Most effective localization can be complicated.
Appropriate values may not be knowna priori for 
DART has tools to help estimate localization.

Computed localization for surface press
impacting v wind in GFDL AM2 GCM.
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DART Runs on Many Compilers / Pla

Platforms:
IBM Power6 and Power5 supercomputers,
SGI Altix supercomputers,
Linux clusters (many types),
Apple Mac PowerPC, Apple Mac Intel,
Windows (cgywin).

Compilers:
Intel ifort (Linux, Mac Intel, SGI altix),
Absoft f90 (Mac PowerPC/Intel),
PGI pgf90 (Linux, Mac PowerPC/Intel),
gfortran (Linux, Mac PowerPC/Intel, cgywin),
g95 (Linux, Mac PowerPC),
IBM xlf (IBM Power 5/6),
PathScale pathf90 (Linux),
Lahey lf95 (Linux).
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DART Parallel Algorithms

Generic parallel scaling.
Works out-of-the-box on parallel architectures n

Scaling of DART/CAM assimilation (not i
advance) on NCAR’s Bluefire. For this m
past 96 processes.
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DART User Support

Chris Snyder’s MMM group also supports DART

The DART team supports high-impact
applications like:

WRF, CAM, CAM/CHEM and WRF/
CHEM.
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Want to try it out?

DART software, documentation, and model inte

www.image.ucar.edu/DAReS/DART.


