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Abstract

Post-Covid inflation pressures call for quantifying the cost-push effect of

large sectoral shocks within observed inflation. This paper examines how state-

dependent pricing shapes cost-push inflation in a New-Keynesian Production

Network model, extended with tractable state-dependent price rigidity varying

with shock size. I find that state dependence is particularly strong in sectors

with inherently higher price rigidity, affecting both the magnitude and direction

of the cost-push effect, especially during crises. Overall, state dependence more

than doubles the contribution of cost-push factors to observed inflation.
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1 Introduction

The recent inflation surge, fueled by Covid and the energy crisis, highlights the chal-

lenge that sectoral shocks create for monetary policy in balancing demand and infla-

tion stabilization. This challenge calls for accurately quantifying the cost-push effect

of sectoral shocks within observed inflation. The standard New-Keynesian frame-

work attributes cost-push inflation to the imperfect relative price adjustments across

sectors, influenced by sectoral price rigidities and the input-output structure (Aoki,

2001; Rubbo, 2023). A key limitation of this framework is its assumption of constant

price rigidity over time, which becomes especially pertinent during large shocks like

Covid, when affected sectors engage in faster price adjustments. In this regard, state-

dependent pricing models–where price rigidity varies with the shock size–provide a

more accurate representation of pricing behavior and relative price dynamics.

Against this background, I study the role of state-dependent pricing in shaping

cost-push inflation in a multi-sectoral economy. For this, I extend a state-of-the-

art New-Keynesian Input-Output Network model of La’O and Tahbaz-Salehi (2022);

Rubbo (2023) with tractable state-dependent price rigidity. This rigidity results from

firms’ heterogeneous inattention to fluctuations in a network-based sectoral state vari-

able. My contribution is two-fold. First, I derive a model-based empirical specification

enabling me to estimate sector-specific state dependence across highly disaggregated

sectors using detailed sectoral price and quantity data. Second, I provide a theoretical

and quantitative analysis of the role of state-dependent pricing in shaping the cost-

push effect, showing that it can alter both the size and sign of cost-push inflation.

Intuitively, state dependence shapes inflation by inducing strong price adjustments in

sectors most impacted by the shock, and not those with unconditionally more flexible

prices.

My main result is that state dependence varies strongly across sectors and is gener-

ally larger in sectors with inherently more rigid prices, which substantially influences

the U.S. cost-push effect, especially during crises. In the post-Covid episode, the

state-dependent model attributes nearly the entire inflation increase to the cost-push

effect, compared to only half in the non-state-dependent model. Following the Ukraine

war, the state-dependent model shows a positive, gradually increasing cost-push infla-

tion, contrasting with a consistently negative effect in the non-state-dependent model.

Overall, the state-dependent model attributes 45% of overall inflation fluctuations to

the cost-push effect versus 20% in the non-state-dependent model, and significantly

outperforms the non-state-dependent model in predicting observed inflation.
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The defining feature of my state-dependent New-Keynesian Network model is its

analytical tractability, allowing me to isolate the effects of state-dependent pricing

by directly comparing the model to its non-state-dependent counterpart. I intro-

duce state-dependent pricing as information friction, combining the sticky informa-

tion model of Mankiw and Reis (2002) with a heterogeneous inattention framework.

As a result of inattention, firms react to large changes in the economic environment

while ignoring small changes. In my setup, firms’ inattention in each sector is tied

to a sector-specific state variable that combines the impact of sectoral shocks on

marginal cost occurring either directly or through the production network. This ap-

proach reduces a complex multidimensional state to a single sector-specific factor

and ensures model tractability. My tractable setup enables a three-step analysis of

state-dependent pricing in this paper: 1) empirical estimation of the extent of state-

dependent pricing across sectors in the U.S. economy, 2) theoretical examination of

the role of state dependence in shaping the cost-push effect, and 3) quantitative as-

sessment of the impact of state-dependent pricing on the cost-push effect in the U.S.

To examine the importance of state-dependent pricing across sectors, I estimate

sector-specific price flexibility and its sensitivity to economic conditions by fitting my

model to sector-level price and quantity data for the U.S. economy. The model de-

fines price flexibility in each sector through two parameters: average price flexibility

reflecting each sector’s inherent, time-invariant flexibility, and state-dependence pa-

rameter indicating how price flexibility responds to fluctuations in the sector-specific

state variable. To estimate these parameters, I derive the model’s response of sec-

toral prices to innovations in the sector-specific state variable, as price response to

marginal cost shocks naturally informs about price flexibility—where a stronger re-

sponse implies greater flexibility and a non-linear response indicates state-dependent

adjustment. I construct monthly observations of sector-specific state variables from

the observed sectoral data and obtain estimates of the average price flexibility and

state-dependence parameters for 370 sectors of the U.S. economy from model-based

sector-specific IV regressions.

The key empirical contribution of this paper is a set of highly disaggregated sector-

specific estimates of state dependence of pricing friction. I find statistically significant

evidence of state dependence in 70% of U.S. sectors, with substantial heterogeneity

in both state dependence and average price flexibility across sectors, only the latter

of which has been previously documented in the literature. Notably, while average

price flexibility tends to increase with sector-specific state volatility, the degree of

state dependence exhibits the opposite relationship, indicating that sectors with more
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stable economic conditions tend to have a higher degree of state-dependent pricing.

To theoretically analyze how state-dependent pricing impacts cost-push inflation I

derive an aggregate Phillips curve for consumer price index inflation, where the resid-

ual captures the cost-push effect. This residual depends on sectoral price flexibilities,

the structure of the production network, and sectoral price gaps – differences between

the observed sector-specific prices and their natural counterparts, which reflect the

adjustments in a counterfactual flexible-price economy. To address the complex inter-

action between price rigidity and the production network, I use a decomposition that

separates the direct effect, which accounts for the propagation of shocks through the

network but abstracts from rigidity propagation, from the additional effect arising

due to rigidity propagation. This allows me to establish my main theoretical result:

state-dependent pricing can significantly alter the magnitude and even the direction of

the cost-push effect, particularly when large shocks hit sectors with low average price

flexibility and high state dependence. This result intuitively relies on the direction of

relative price adjustment following a sectoral shock, influenced by the differences in

price flexibility across sectors. State dependence allows prices to adjust in line with

the needs of the most affected sector, as its relative price rigidity drops in response

to the shock.

Building on the empirical evidence of state-dependent pricing and its theoretical

importance, I assess its quantitative impact on the cost-push effect in the U.S. over

time. Using the model-based Phillips curve residual, I compute the monthly cost-push

effect, calibrating sector-specific pricing parameters to the estimates of price flexibility

and state dependence from the empirical analysis. I also construct a counterfactual

cost-push effect by setting the state-dependent component of price flexibility to zero

across sectors. I find that state-dependent pricing produces a more volatile cost-

push effect over time compared to a non-state-dependent model, with its role varying

significantly across historical periods. For example, following the Great Recession,

state dependence amplifies a positive cost-push effect driven by an increase in oil

prices. By contrast, in the post-Covid period, state dependence often reverses the

sign of the cost-push effect. Additionally, I show that the cost-push effect from the

state-dependent model offers significant explanatory power for aggregate inflation in a

Phillips curve regression, surpassing common proxies like oil price inflation as well as

the cost-push effect from a non-state-dependent model. Notably, a subset of service-

related sectors, representing less than 25% of the consumption basket, accounts for

the bulk of the difference between state-dependent and non-state-dependent cost-push

effects.
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The paper proceeds as follows. Section 2 reviews the relevant literature. Section 3

develops the New-Keynesian input-output model with state-dependent price rigidity.

Section 4 presents a log-linearized version of this model, which serves as the foun-

dation for subsequent analysis. Using the log-linear model alongside disaggregated

sectoral data, Section 5 examines sector-specific degrees of price flexibility and state

dependence within the U.S. economy. Section 6 then investigates the theoretical role

of state-dependent pricing in influencing cost-push inflation. Building on the empir-

ical findings from Section 5 and the theoretical implications for cost-push effects in

Section 6, Section 7 provides a quantitative analysis of how state dependence impacts

U.S. cost-push inflation over time. Finally, Section 8 concludes the paper.

2 Related literature

This paper relates to the literature on the cost-push effect and the monetary pol-

icy trade-offs in multi-sector economies. Aoki (2001) study a two-sector horizontal

economy and show that with one sticky and one flexible sector, cost-push inflation

arises in response to sector shocks. Erceg et al. (2000) show that upstream rigidity

(sticky wages) results in a monetary policy trade-off in a two-sector vertical econ-

omy. More recently, La’O and Tahbaz-Salehi (2022) and Rubbo (2023) showed that

monetary policy trade-off arises in a more general production network economy un-

der information-related price rigidity and Calvo-type price rigidity respectively. The

common feature of this literature is the time-constant degree of price rigidity in each

sector. However, Ball and Mankiw (1995) argue that cost-push inflation arises due

to a combination of state-dependent price rigidity with asymmetric distribution of

desired relative price changes. Building on Ball and Mankiw (1995) conceptual in-

sight, I extend the New-Keynesian production network model to include analytically

tractable state-dependent pricing, which allows me to analyze the importance of state

dependence for cost-push inflation in a production network economy.

The paper relates the macroeconomic literature on production networks. Seminal

contributions include Long Jr and Plosser (1983) and Acemoglu et al. (2012) who

develop the framework for efficient production network economies and Baqaee and

Farhi (2020), Bigio and La’o (2020) who contribute to the analysis of inefficient

network economies with exogenous markups. Similarly to monetary models of La’O

and Tahbaz-Salehi (2022) and Rubbo (2023), I endogenize markups by introducing a

price rigidity framework. However, in contrast to these papers, I use a price rigidity

mechanism based on the combination of the sticky information model and ad-hoc
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heterogeneous inattention, which allows modeling state-dependent price rigidity at a

sectoral level.

The empirical evidence of state-dependent pricing is extensive. Nakamura and

Steinsson (2008) show that the frequency of price increases positively depends on

inflation in the micro-data underlying the U.S. CPI index. Eichenbaum et al. (2011)

and Campbell and Eden (2014) report evidence of the state-dependent frequency of

price changes in the U.S. scanner data. Cavallo and Rigobon (2016) report a bi-modal

distribution of price changes in online price data, consistent with state-dependent

models. Carvalho and Kryvtsov (2021) find evidence of strong selection effect into

price adjustment in the micro-data underlying CPI of the U.K., Canada, and the U.S.

I contribute to the existing evidence of state-dependent price adjustment by providing

sector-specific measures of state-dependence. While existing evidence largely relies

on micro-level data, my estimation method relies on a production network model

combined with sectoral price and quantity data.

In terms of the approach towards modeling state-dependent price rigidity, my pa-

per belongs to sticky information literature by Mankiw and Reis (2002) as well as be-

havioral inattention literature, see Gabaix (2019) as my state-dependent price rigidity

combines these two approaches. Compared to the two conventional rationality-based

frameworks – the menu-cost approach of Dotsey et al. (1999), Caballero and Engel

(2007) and rational inattention approach of Sims (2003), Reis (2006) – my model

remains analytically tractable due to simplifying behavioral assumptions.

This paper broadly relates to the literature on money non-neutrality. Nakamura

and Steinsson (2010) show that intermediate inputs can fix the weak money non-

neutrality feature of menu-cost models brought up by Caplin and Spulber (1987),

Golosov and Lucas Jr (2007). The ability of intermediate inputs to increase money

non-neutrality by affecting the slope of the Phillips curve has also been documented

for production network models with a heterogeneous but time-invariant degree of

price rigidity by Shamloo (2010), Bouakez et al. (2014) and Pasten et al. (2020).

In contrast to this literature, the main focus of this paper is on the role of state-

dependent pricing for cost-push inflation rather than aggregate demand. However,

I briefly investigate the quantitative importance of state dependence in shaping the

slope of the Phillips curve.

Finally, this paper relates to the literature on the propagation of shocks in multi-

sector monetary economies. The importance of the production network for shock

propagation in such economies has been investigated by Ozdagli and Weber (2017);

Ghassibe (2021) for monetary shocks, and Pasten et al. (2021); Ruge-Murcia and
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Wolman (2022); Ferrante et al. (2023) for sectoral shock. In contrast to this literature,

I focus on the role of state-dependent pricing in the propagation of sectoral shocks.

3 Model description

In this section, I present the framework employed throughout the paper – a New-

Keynesian input-output network model in the spirit of La’O and Tahbaz-Salehi (2022)

and Rubbo (2023). My version of the model has two distinguishing features compared

to previous literature: 1) sector-specific labor, allowing sector-specific wages, and 2)

state-dependent price rigidity framework. My pricing framework combines the sticky

information model of Mankiw and Reis (2002) with behavioral inattention, enabling

an analytically tractable approach to state-dependent price rigidity and facilitating

comparison with a corresponding non-state-dependent pricing model. Next, I describe

the model setup.

3.1 Firms

The production side of the economy consists of N sectors. In each sector, there is

a continuum of monopolistically competitive firms indexed by k ∈ [0, 1]. Sectoral

output and price indices are the CES sums across all firms within a sector given by

Yt,i =
(∫ 1

0
Y

ϵ−1
ϵ

t,i,k di
) ϵ

ϵ−1

and Pt,i =
(∫ 1

0
P 1−ϵ
t,i,kdi

) 1
1−ϵ

respectively where Yt,i,k and Pt,i,k

are k-th firm output and price respectively and ϵ is the elasticity of substitution

between firm-specific goods within a sector. The firm-specific demand is given by

Yt,i,k =

(
Pt,i,k

Pt,i

)−ϵ

Yt,i (1)

Production technology is sector-specific, has constant returns-to-scale, and is given

by

Yt,i,k = At,iL
αi
t,i,k

∏
j

X
ωij(1−αi)
t,ij,k

where At,i is sector-specific productivity, Lt,i,k is the amount of labor used by firm k

of sector i, Xt,ij,k is the amount of input from sector j used by firm k in sector i; αi

corresponds to the labor share in the total production costs; ωij corresponds to the

share of input j in the intermediate input costs.

The optimal combination of inputs in each sector is chosen to minimize the unit

cost of production, given input prices. Let MCt,i be the marginal cost in sector i,
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which is the same for all firms within a sector. Cost-minimizing resource allocation

yields sectoral labor demand and intermediate input demand given by

Wt,iLt,i = αi ·MCt,iYt,i (2)

Pt,jXt,ij = (1− αi)ωij ·MCt,iYt,i (3)

where Wt,i is the sector-specific wage. Then, the marginal cost of production in sector

i is given by

MCt,i =
Āi

At,i

·Wαi
t,i

∏
j

P
ωij(1−αi)
t,j (4)

where Āi =
1

α
αi
i

∏
j
(ωij(1−αi))

ωij(1−αi)
.

Firms have imperfect information about their true marginal costs. Let me denote

the marginal cost belief of firm k in sector i as M̃Ct,i,k. The description of the

information structure shaping this belief is postponed until the next subsection. Given

this belief, firm sets its price Pt,i,k to maximize its perceived profits

Pt,i,kYt,i,k − (1− τ̄)M̃Ct,i,kYt,i,k

subject to the demand constraint (1). Here τ̄ = 1
ϵ
is a standard subsidy correcting the

inefficiency stemming from monopoly power and ensuring that information-induced

price rigidity is the only source of inefficiency in this economy. The price set by the

firm k equals the perceived marginal cost

Pt,i,k = M̃Ct,i,k

This price can be expressed as as a function of true marginal cost as Pt,i,k =
M̃Ct,i,k

MCt,i
MCt,i

where undesired firm-specific markup
M̃Ct,i,k

MCt,i
results from the information friction. Let

me denote by Mt,i the average sector-specific markup in sector i such that

Pt,i = Mt,i ·MCt,i (5)

Sector-specific markups capture the sectoral inefficiencies present in this model.

3.2 Information structure

Information updating by firms relies on a sticky information framework of Mankiw

and Reis (2002) extended with ad-hoc heterogeneous inattention across firms. This
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extension allows for state-dependent intensity in information updating, which in turn

results in state-dependent price flexibility.

3.2.1 Sticky information

Let Ft,i be the share of firms in sector i that update their information in period t.

Accordingly, the share of firms that last updated their information one period ago is

Ft−1,i · (1−Ft,i). The share of firms that last updated h periods ago is Ft−h,i ·
h−1∏
s=0

(1−

Ft−s,i). Firms that update their information in period t observe the true sectoral

marginal costs MCt,i and set their prices to Pt,i|t = MCt,i. Those who last updated

their information h periods ago set their prices based on the perceived marginal costs

according to information that is h periods outdated: Pt,i|t−h = Et−hMCt,i. The

average price in sector i is a composite of the individual prices set by firms, each

reflecting the information available at the time of their last update

P 1−ϵ
t,i = Ft,i · (MCt,i)

1−ϵ +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−s,i)

]
· Ft−h,i · (Et−hMCt,i)

1−ϵ

}
(6)

3.2.2 Inattention

In a conventional sticky information model, the share of firms updating their infor-

mation remains constant over time. In contrast, my model assumes that this share

varies with fluctuations in the underlying sector-relevant state variable si,t. Changes

in this sector-relevant state variable lead to time-varying intensity in information ac-

quisition. I select an appropriate state variable for each sector based on the log-linear

characterization of the model equilibrium. Therefore, I postpone the precise definition

of st,i until the next section. Now I describe the inattention framework.

Let firms in sector i exhibit heterogeneous degrees of inattention. Specifically, in

each period, the degree of inattention of firm k in sector i is drawn from a sector-

specific distribution x ∼ Fi. Firms monitor the absolute size of fluctuations in the

sector-relevant state variable |∆st,i|, where ∆st,i = st,i − st−1,i. Only firms with a de-

gree of inattention x that is less than |∆st,i| update their information. Consequently,

the share of firms updating their information in sector i is given by

Ft,i = Pr{x < |∆st,i|} = Fi(|∆st,i|) (7)

Large changes in the sector-relevant state encourage more firms to update their in-

formation. Consequently, the time-varying share of firms updating their information
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in each sector corresponds to the state-dependent sectoral price flexibility. This ap-

proach enables the study of state-dependent pricing while maintaining the model’s

tractability.1

It’s worth noticing that my inattention model aligns with behavioral inattention

frameworks, such as those by Gabaix (2019), rather than with the rational inatten-

tion models such as Sims (2003); Reis (2006); Maćkowiak and Wiederholt (2009)

among others. This choice prioritizes analytical tractability over fully capturing the

specifics of the inattention mechanism. In doing so, the non-state-dependent ver-

sion of my model closely resembles a Calvo-type price stickiness model, except for

the expectation formation, which is orthogonal to my analysis of the Phillips curve’s

cost-push term. This setup allows for a direct comparison between the predictions of

the state-dependent model and a non-state-dependent one keeping in mind that the

latter mimics the standard Calvo framework.

3.3 Households

A representative household decides on its final consumption good Yt and the number

of hours worked Lt,i in each sector in each sector to maximize its expected lifetime

utility, given the budget constraint. The expected lifetime utility of the household is

given by

E0

∞∑
t=0

δt

{
log(Yt)−

∑
i

eχt,i · (Lt,i)
1+γ

1 + γ

}
The final consumption Yt good is a combination of sector-specific consumption goods

Ct,i given by

Yt =
∏
i

C
βt,i

t,i (8)

with
∑
i

βt,i = 1. The parameters for sectoral labor and consumption preferences,

denoted as χt,i and βt,i, may exogenously vary over time, as indicated by the subscript

t.2 The household’s budget constraint is as follows

PtCt +QtBt = Bt−1 +
∑
i

Wt,iLt,i + Tt

1A similar technique for modeling partial adjustment within a group has been applied in general-
ized menu-cost models. In these models, the cost of price adjustment is heterogeneous across firms,
which results in partial price adjustment (Caballero and Engel (2007)).

2This time variability introduces additional sources of fluctuations into the model, beyond those
induced solely by sectoral productivity shocks. This allows for the inclusion of more data in the
model-based empirical analysis discussed in the next section, helping to assess the robustness of the
baseline results.
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where Pt is the consumer price index, Bt is a riskless discount bond which trades at

price Qt, and Tt are net transfers, including lump sum taxes and subsidies as well as

profits from firm ownership. Optimal allocation of consumption across sectors yields

sectoral consumption demand

Pt,iCt,i = βt,i · PtYt (9)

with the consumer price index given by Pt =
∏
i

(
Pt,i

βt,i

)βt,i

. Optimal consumption-

leisure trade-off yields sectoral labor supply

Wt,i = eχt,i · Lγ
t,iPtYt (10)

3.4 Monetary policy

Monetary policy controls aggregate nominal spending by controlling money supply,

that is3

Pt · Yt = Mt (11)

3.5 Equilibrium

In a competitive equilibrium, all markets clear, given the optimal behavior of firms

and households. Product market clearing in sector i implies that the product of sector

i is either consumed or used as an intermediate input, that is

Yt,i = Ct,i +
∑
j

Xt,ji (12)

4 Log-linear model

I log-linearize the model around the efficient steady state. An efficient steady state

is a time-invariant equilibrium in which markups are Mi = 1 for every sector i.

Let me define the cost-based input-output matrix Ω such that its ij-the element

Ωij is a share of input j in the total cost of producing output i, Ωij = (1 − αi)ωij.

Then L = (I − Ω)−1 denotes the corresponding Leontief inverse matrix, see Baqaee

and Farhi (2020). Throughout the paper, I denote column vectors [X1, ..., XN ]
′ with

3This condition can be also interpreted and a cash in advance constant imposed on a demand
side, see La’O and Tahbaz-Salehi (2022).
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corresponding bold letters X. Log-deviation of X from the steady state is denoted

by small x, that is x = log(X)− log(X̄).

Next, I present the key log-linear equations used in the subsequent analysis. De-

tailed derivations can be found in Appendix A. The model consists of two conceptual

blocks of equations: the demand block and the supply block. The demand block

is independent of the price-setting framework and price flexibility, while the supply

block is influenced by the price-setting framework.

4.1 Sectoral demand system

Log-linear systems of sectoral consumption demand and sectoral labor supply are

obtained from Equations (9) and (10) and given by

pt + ct = bt + (pt + yt) · 1 (13)

wt = χt + γ · lt + (pt + yt) · 1 (14)

where pt + yt = mt is aggregate nominal spending, bt = log(βt) − log(β̄t) captures

sectoral consumption demand shifts, and χt captures sectoral labor supply shifts; 1

is the vector of ones. As described above, bold letters represent column vectors (pt

is vector of sectoral prices, ct sectoral consumptions, wt sectoral wages, lt sectoral

hours worked).

Sectoral wages. The system of equations describing the log-linear link between

wages and markups is obtained by combining the product market clearing condition

(12) with the conditions for the optimal input allocation (2)-(3), the link between

sectoral prices and marginal costs (5), and the log-linear consumption demand and

labor supply systems (13)-(14). The resulting system of equations is given by

wt = (pt + yt) · 1+
1

1 + γ
· χt +

γ

1 + γ
I−1
ξ L′Iβ · bt −

γ

1 + γ
I−1
ξ L′Iξ · µt (15)

where µt is a vector of log-deviations of sectoral markups, L = (I − Ω)−1 is the

Leontief inverse of the input-output matrix Ω, Iξ = diag{ξ} is the diagonal matrix

with sectoral steady-state Domar weights ξi on the diagonal.4

4Domar weights quantify the size of a sector based on its sales share relative to total final sales.
Specifically, the Domar weight for sector i is given by ξi =

PiYi

PC , as detailed in Baqaee and Farhi
(2020). I compute Domar weights ξi at the efficient steady state, where the cost-based and revenue-
based Domar weights are equivalent.
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Sectoral prices. The system of equations describing the log-linear link between

sectoral prices and sectoral markups is obtained by combining sectoral marginal cost

equations (4), log-linear wage equations (15) and the definition of sectoral markups

(5). The resulting system of equations is

pt = (pt + yt) · 1+ L̃µt +

[
−Lat +

1

1 + γ
LIα · χt +

γ

1 + γ
LIαI

−1
ξ L′Iβ · bt

]
(16)

where L̃ = L(I− γ
1+γ

IαI
−1
ξ L′Iξ), Iα = diag{α} is diagonal matrix with labor shares in

sectoral costs αi on the diagonal. Aggregating the above system with the steady-state

consumption weights β, I obtain aggregate final output

yt = ξ′ · at +
1

1 + γ
ξ′Iα · χt −

1

1 + γ
ξ′ · µt (17)

where the first two terms yet = ξ′ · at +
1

1+γ
ξ′Iα · χt constitute the efficient output

and the third term ỹt = − 1
1+γ

ξ′ · µt represents the output gap arising due to non-

zero markups (this consumption-based combination of markups captures the standard

aggregate demand arising in New-Keynesian models).

4.2 Sector-relevant state definition

From the sectoral price system (16), the sectoral marginal cost obtains as mct,i =

pt,i − µt,i, which in vector form yields the following system of equations

mct = (pt+yt)·1+(L̃−I)·µt+

[
−Lat +

1

1 + γ
LIα · χt +

γ

1 + γ
LIαI

−1
ξ L′Iβ · bt

]
(18)

In the system (18), the term in square brackets represents the equilibrium effect of

exogenous sector-specific shocks on the sectoral marginal cost, given a fixed level of

money supply and sectoral markups.These shocks can stem from changes in sectoral

productivity at, sectoral consumption demand bt, or sectoral labor supply χt. I use

this term in square brackets to define the sector-relevant state variable st,i for every

sector. The corresponding sector-relevant state vector is

st = −Lat +
1

1 + γ
LIα · χt +

γ

1 + γ
LIαI

−1
ξ L′Iβ · bt (19)

Definition 1 (Sector-relevant state). Sector-relevant state for sector i, denoted as

st,i, is a linear combination of sectoral productivities, sectoral consumption demand
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shifters, and sectoral labor supply shifters. In this combination, each sector is weighted

according to the strength of its impact on the marginal costs in sector i.

Note that the weights are related to the Leontief inverse matrix. Intuitively, if

sector i is strongly connected to sector j within the input-output network, then the

changes in sector j will impact the marginal cost in sector i. This means that shocks

in sector j are relevant for the marginal cost in sector i.

The change in the relevant state over time is given by

∆st = st − st−1 (20)

and the sectoral price flexibility depends on the absolute size of this change, that is

Ft,i = Fi(|∆st,i|), as described in the previous section.

Finally, I assume that all exogenous forces in the model follow random walks, that

is, at = at−1 + ϵat , bt = bt−1 + ϵbt , and χt = χt−1 + ϵχt . Then, the change in the

sector-relevant state constitutes an innovation, that is Cov(∆st,i, st−1,i) = 0.

4.3 Sectoral supply system

The price-setting behavior subject to information friction yields the log-linear supply-

side link between sectoral prices and sectoral markups, as derived from Equations

(6)-(5). In this derivation, I use partial log-linearization, treating all Ft−s,i as time-

varying coefficients.5 The resulting system of equations is

(I − Ft) · (pt − pt−1) = −Ft · µt + (I − Ft) · et−1 (21)

where Ft is a diagonal matrix with sectoral flexibililities Ft,i on the main diago-

nal (the parameters governing Ft,i are estimated in the next section); et−1 is vec-

tor collecting past expectations about the present marginal cost growth, such that

et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{
Ft−1−h,i ·

[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Et−1−h∆mct,i

}
is pre-

determined in period t, ∆mct,i = mct,i − mct−1,i. The sequence {Fh,i}th=−∞ of past

and present shares of information updating firms is treated as given in this log-

linearization.6 The system of equations (21) provides the equilibrium price-markup

5This approach is possible because Ft−s,i depend solely on the past or present realized sector-
relevant state variables which are fully exogenous.

6Note that in the sticky information framework, prices depend not on current expectations about
the future, but on the past expectations about the present. This means that the sequence of past price
flexibility, rather than the expected sequence of future price flexibility, influences the equilibrium
prices.
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link through which sectoral markups are made endogenous.

5 Empirical evidence of state-dependent pricing

In this section, I estimate the sector-specific price flexibility and its state depen-

dence for the U.S. economy. To do this, I parameterize sector-specific price flexibility

Fi(|∆st,i|) to include both non-state-dependent and state-dependent components. I

then derive the model’s response of sectoral prices to sector-relevant state innovations.

This response reveals the properties of price flexibility: a strong response indicates

more flexible prices, while a non-linear response indicates state dependence. Since

the sector-relevant state variable is unobserved, I construct it from the demand block

of the model using the observed monthly series for sectoral price and quantity data.

By estimating the model’s price response to sector-relevant state innovations, I ob-

tain estimates for price flexibility and its state dependence in each sector. Next, I

describe the methodology, data construction, and estimation process. Then I present

the estimation results.

5.1 Methodology

This subsection lays out the derivation of the econometric specification based on the

model price response to sector-relevant state innovation. From the demand system

(16), the sectoral price vector is related to the sector-relevant state vector as st as

pt = mt · 1+ L̃ · µt + st

The above system implies that the contemporaneous response of sectoral prices to

sector-relevant state innovations, ∆st, includes both a direct effect and the indirect

effects through changes in sectoral markups and monetary policy, with changes in

markups arising due to the presence of price rigidity. Combining the demand system

(16) with the supply system (21) we obtain the link between sectoral price changes

∆pt = pt − pt−1 and sector-relevant state innovations ∆st given by

(I + L̃F−1
t (I − Ft)) · (∆pt − et−1) = ∆st + ṽt (22)

where ṽt = mt · 1+ st−1 − pt−1 − et−1. See Appendix C for derivations. Note, that

the term ṽt contains only predetermined variables pt−1, st−1, et−1 and monetary

policy variable mt, and, hence, is independent of ∆st as long as the monetary policy
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does not react to ∆st within one month period (I use monthly data for estimation).

Even if sector-relevant state innovations ∆st were observed, estimating the price

flexibility parameters contained in the matrix Ft from the system (22) is a non-

trivial task since this system consists of N equations intertwined by the presence of

production network. To see how the production network affects the system (22), con-

sider a special case of a quasi-horizontal production structure without cross-sectoral

input-output links (L̃ = I). In this case, the system (22) can be re-written as

∆pt = Ft ·∆st + vt (where vt = Ft · ṽt + et−1). Since the matrix of sectoral price

flexibilities Ft is diagonal, the system turns into a system of independent equations,

which can be estimated equation-by-equation – one equation for each sector (that is,

∆pt,i = Ft,i · ∆st,i + vt,i). The response of sector i price to sector i relevant-state

innovation captures the sectoral price flexibility in sector i.

Now I build a similar system of independent sector-specific equations for the gen-

eral case (L̃ ̸= I). Rearranging the terms in the system (22) yields the following

system of independent sector-specific equations

∆pt = Ft · [L̃−1∆st + (I − L̃−1)∆pt] + vt (23)

where vt = Ft · [L̃−1ṽt − (I − L̃−1)et−1] + et−1. Since the matrix Ft is diagonal with

sectoral price flexibilities Ft,i = Fi(|∆st,i|) on the main diagonal, i-th equation in the

above system contains only sector i price flexibility parameters, meaning that this

system can be estimated equation-by-equation, with one equation per sector.

I impose a linear functional form on sectoral price flexibility such that it consists

of the non-state-dependent and state-dependent components

Fi(|∆st,i|) = F̄i + fi · log
|∆st,i|
E|∆st,i|

(24)

where E|∆st,i| is the average absolute size of the relevant productivity state fluctu-

ations (relevant state volatility). With this functional form, the parameter F̄i cor-

responds to the average price flexibility over time in sector i, that is, the degree of

price flexibility under the average size of sector-relevant state fluctuations in sector

i. The parameter fi measures the degree of state dependence in price adjustment.

This parameter shows how much price flexibility varies with the size of the absolute

changes in the sector-relevant state. The goal of the empirical exercise is to estimate

the average price flexibility F̄i and the degree of state dependence fi for each sector

of the U.S. economy. For an economy with N sectors, there are 2×N parameters to
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be estimated.

Returning back to the system of independent equations (23), let us denote its

left-hand-side variables as yt = ∆pt and the corresponding right-hand-side variables

as xt = L̃−1∆st + (I − L̃−1)∆pt. Using the parameterized function Fi, I obtain N

sector-specific equations of the form

yt,i = F̄i · xt,i + fi · log
|∆st,i|
E|∆st,i|

xt,i + vt,i (25)

These equations can be estimated independently from each other. The only complica-

tion is that xt,i is endogenous as it contains the (endogenous) sectoral price changes.

At the same time, the sector-relevant state changes ∆st,i are exogenous and can serve

as an instrument for xt,i. In Appendix C, I formally show that ∆st,i is not correlated

with the residual vt,i and hence is a valid instrument for xt,i.

Estimating N sector-specific equations (25) using IV approach yields a set of

average sectoral flexibilities {F̄i}Ni=1 measuring non-state-dependent price flexibility,

and a set of sensitivities to sector-relevant state changes {fi}Ni=1 measuring the degree

of state-dependence of price flexibility in each sector. Since vt,i is heteroskedastic

and autocorrelated I use consistent standard errors to determine estimate statistical

significance.

5.2 Constructing sector-relevant states

The empirical method described above requires a set of sector-relevant state innova-

tions ∆st which I construct from the demand block of the model using the observed

monthly price and quantity data. Next, I lay out the details of this construction.

First, let us assume that sectoral productivity changes are the only driving force in

the economy, that is bt,i = 0 and χt,i = 0 for all sectors. In what follows I refer to such

specification of the model as “baseline”. In the “baseline” model, we can compute

sectoral markups µt from the system (15) and then use them to compute sector-

relevant state variables st from the system (16), as long as we observe sectoral wages

wt, sectoral prices pt, as well as aggregate consumer price pt and final consumption

yt. This is a minimal possible set of the data needed for estimation.

Accounting for the possible additional presence of sectoral consumption demand

shocks and sectoral labor supply shocks (bt,i and χt,i) requires more data on sectoral

quantities. Sectoral demand shifts bt can be computed from sectoral consumption

demand equations (13), as long as we additionally observe sectoral consumption ct.
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Sectoral labor supply shifts χt can be computed from sectoral labor supply equations

(14), as long as we additionally observe sectoral hours worked lt. I employ this

extended specification together with these additional monthly quantity series to test

the robustness of the “baseline” results to the model specification.

When constructing the relevant-state measures, the caveat is that some sectors

are missing in the data and the number of missing sectors changes over time. Hence

for any t, I compute sectoral markups µt and corresponding sector-relevant states st

only for those sectors for which both wages and prices are observed. The details of

these computations are provided in Appendix C.

5.3 Data

The data used in this analysis can be divided into two broad groups: the data used

for model calibration and the sectoral and aggregate monthly time-series data used

for estimating price flexibility.

Model calibration. To compute the intermediate goods, labor, and consumption

shares in each sector, I employ the 2007 “Use table” from the BEA (US Bureau of

Economic Analysis) inputs-outputs account data. In this table, sectors are classified

using BEA codes. In what follows I bring all the sector-specific series to this classifi-

cation to make them compatible with the available production network structure. I

assume that each sector produces only one commodity, and remove those commodities

that do not have a sector correspondence and vice-versa. Further, I remove sectors

related to government spending, non-comparable imports, and the rest of the world

adjustment. I also remove sectors for which the sum of intermediate and labor costs

is zero. I compute labor shares in each sector as a ratio of labor costs to total costs.

I compute intermediate input share as a ratio of a given intermediate input cost to

the total cost. Finally, I compute consumption shares as the ratio of consumption

expenditure in a given sector to the total consumption expenditure. I set the Frisch

labor supply elasticity to 1.

Sectoral/aggregate time series. To construct model-implied sector-relevant state

series in the “baseline” model, I employ monthly time series for sectoral wages and

prices, and the aggregate prices and consumption indices. Monthly wages by sector

are available from the “Current Employment Statistics” (CES) from the U.S. BLS

and classified with a specific CES classification. Monthly sectoral producer price

indices are from the U.S. BLS and classified according to the NAICS classification.
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Since the BEA input-output matrix uses BEA sector classification codes, I convert

the wage and price data to the BEA classification to match the sectors of the input-

output matrix. The details are provided in Appendix C. The aggregate consumption

spending and its price index are from BEA.

The extended specification of the model also requires sectoral consumption and

hours worked data. I take the former from the BEA database and the latter from the

CES database.

Figure 1 plots the number of sectors for which both prices and wages are available

in a given year and month (left Panel) and the consumption share coverage (right

Panel) for each year and month. The data availability improves over time and starts

covering the majority of sectors by 2007. Due to this data availability constraint, my

analysis focuses on the period after 2007. For this period ∼370 sectors are available

covering ∼80% of consumption basket.

Figure 1: Availablility of sectoral price and wage data
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Left Panel: number of sectors for which price and wage observations are available in a given month.
Right Panel: share of consumption covered by the available sectors in a given month. Vertical
dotted lines mark the period for which the large and stable number of sectors is available (2007-
2023).

5.4 Estimation results

The estimation procedure yields two sets of sectoral parameters: sectoral average price

flexibility measures F̄i and sectoral state dependence of price flexibility fi. These pa-

rameters determine sectoral price flexibility Ft,i at time t according to Equation (24).

Table 1 shows the share of sectors with statistically significant parameter estimates.

Around 85% of sectors have a statistically significant degree of average price flexibil-

ity, suggesting that even within a short one-month period most sectoral prices react

to shocks to a certain extent. Around 70% sectors have a statistically significant
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degree of state dependence, meaning that the majority of sectors in the U.S. economy

(weighted by consumption share) feature some degree fo state dependence in price

adjustment.

Table 1: Share of statistically significant estimates

signif. at 90% level signif. at 95% level
Average flex. (F̄i) 0.85 0.84
State-dep. param. (fi) 0.70 0.64
Note: Sectors are weighted by their corresponding consumption shares βi

Table 2 plots a summary of the cross-sectoral distribution of estimated parame-

ters. The estimates of average price flexibility vary between 0 and 1 with a median

of around 0.27, which means that in the median sector around 27% of firms reset

their information within one month period; in other words, in the median sector,

prices remain unchanged at least for four months, which corresponds to the evidence

of Bils and Klenow (2004) who report median price duration of 4.3 months. How-

ever, the range of the average price flexibility estimates across sectors is quite broad.

The distribution of state dependence parameters suggests the median degree of state

dependence of 0.19, which means that a sectoral shock of size exceeding the average

size by 1 standard deviation, leads to an additional increase in sectoral price response

of 19 percent compared to a non-state-dependent pricing framework.

Figure 2 Panel (a) plots the histogram of the average price flexibility estimates in

each sector. The pattern of average price flexibility suggests that commodity-related

and upstream sectors such as oil and metals have more flexible prices, while various

downstream manufacturing and services sectors have less flexible prices. Figure 2

Panel (b) plots the histogram of the cross-sectoral distribution of state dependence

estimates. Sectors with both low and high degrees of state dependence include man-

ufacturing and services, hence this histogram does not reveal any obvious pattern for

the link between state dependence and the broad type of sector.

Table 2: Distribution of statistically significant estimates

Min. 1st Qu. Median Mean 3rd Qu. Max.
Average flex. (F̄i) 0.052 0.177 0.277 0.349 0.473 0.989
State-dep. param. (fi) 0.013 0.092 0.189 0.203 0.293 0.663

Note: Only sectors with statistically significant estimates at 90% level.
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Figure 2: Price flexibility estimates

(a) Average price flexibility
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 Most flexible: 
 - Copper, nickel, lead, and zinc mining 
 - Alumina refining 
 - Soybean and other oilseed processing 
 - Petroleum refineries 
 - Oil and gas extraction
 Least flexible: 
 - Concrete pipe, brick manufacturing 
 - Construction machinery manufacturing 
 - Lighting fixture manufacturing 
 - Sign manufacturing  
 - Other plastics product manufacturing

(b) State-dependence of price flexibility
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 Most state-dep.: 
 - Boat building 
 - Doll, toy, and game manufacturing 
 - Motorcycle, bicycle, and parts manufacturing 
 - Offices of physicians 
 - All other transportation equipment manufacturing 
 - Home health care services
 Least state-dep.: 
 - Insurance agencies, brokerages 
 - Valve and fittings other than plumbing 
 - Industrial process furnace and oven manufacturing 
 - Material handling equipment manufacturing 
 - Printing

Histogram of average price flexibility estimates F̄i (a) and state-dependence parameter estimates
fi (b) across 364 sectors; sectors are weighted by consumption shares βi; variation is plotted only
for 90%-level significant estimates; estimates insignificant at 90% level are forced to zero;
interpretation of state-dependence parameter fi: 1.p.p. increase in |∆st,i| above its time average
leads to price flexibility increase of 0.01 · fi.

The state-dependent pricing literature emphasizes the positive link between price

flexibility and economic volatility, see Vavra (2014). Next, I analyze how my av-

erage price flexibility and the state dependence parameters estimates relate to the

volatility of the sector-relevant state. Figure 3 plots the parameter estimates against

the corresponding relevant state volatilities. From Panel (a) we see that the higher

average volatility in a sector is associated with higher average price flexibility and

the cross-sectoral correlation is 0.43. This suggests that sectors with more volatile

conditions have higher price flexibility on average. From Panel (b) we see that the

higher volatility in a sector is associated with a lower degree of state dependence with

a cross-sectoral correlation of -0.24, suggesting that more volatile sectors have less

state dependence in their price adjustment. This result implies that the less volatile

(and hence less flexible on average) sectors tend to change their price flexibility more

due to unexpectedly large or small shocks.

20



Figure 3: Relevant state volatility and price flexibility

(a) Average price flexibility
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(b) State-dependence of price flexibility
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Average price flexibility estimates F̄i and state-dependence parameter estimates fi are plotted
against the time average volatility of sector-relevant productivity state E|∆si|; sectors are weighted
by consumption shares βi; estimates insignificant at 90% level are forced to zero; red lines correspond
to linear regressions within the group of significant estimates; correlation coefficient for Panel
(a) is 0.43 and correlation coefficient for Panel (b) is -0.24.

Additional exercises. I also estimate the parameters of price flexibility using the

model with more shocks (and employing sectoral consumption and labor data). In

Appendix C I compare the corresponding price flexibility estimates as well as sector-

relevant state volatility to the baseline estimates and find that they are strongly

correlated. In the subsequent quantitative analysis, I check the robustness of the

baseline results about the cost-push inflation against the alternative results obtained

using the alternative price flexibility and state dependence estimates.

My estimates of sector-specific average price flexibility have a conceptual counter-

part of Calvo parameters in the literature. In Appendix C I compare my estimates

to the model-free estimates of the average frequency of price adjustment by Pasten

et al. (2020) and obtain a reasonable degree of correlation equal to 0.53.7

6 Phillips curve and cost-push inflation

Given the significant empirical role of state dependence in price adjustments across

most U.S. sectors, I now turn to the central question of this project: How does

state-dependent pricing shape cost-push inflation? To address this question theoret-

ically, I derive the Phillips curve for consumer price inflation. The Phillips curve

7I am thankful to the authors for providing me their estimates for comparison.
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residual captures the aggregate cost-push effect within the model. I then provide a

decomposition of this residual, which is particularly useful for analyzing the impact

of state-dependent pricing.

6.1 Phillips curve

I derive the Phillips curve where cost-push inflation (the Phillips curve residual)

is expressed in terms of production network parameters, sectoral price flexibilities,

and relative price gaps. Relative price gaps, defined in the spirit of the menu-cost

literature, measure the difference between efficient prices and actual prices from the

previous period. These price gaps represent the desired price adjustments within each

sector from the perspective of a social planner. Next, I provide a formal definition of

the relative price gaps.

Definition 2 (Sectoral relative price gaps). Let the efficient price in sector i, p⋆t,i

be a counterfactual price that is obtained under zero markups (all µt,i = 0). Vector

of sectoral price gaps π⋆
t is the difference of the current efficient prices p⋆

t and the

previous period true prices pt−1, that is π⋆
t = p⋆

t − pt−1. Then, the relative price

gaps denoted as π̂⋆
t , represent price gaps measured relatively to the corresponding

aggregate consumer price gap π̂⋆
t =

∑
i

βiπ̂
⋆
t,i, that is π̂

⋆
t = π⋆

t − π̂⋆
t · 1.8

Given the definition of the relative price gap, the following proposition establishes

the model-based Phillips curve for consumer price inflation. This curve expresses

consumer price inflation as the sum of demand inflation, cost-push inflation, and

expectations-driven inflation.

Proposition 1. (Consumer price inflation Phillips curve). The Phillips curve for

consumer price inflation is

πt = κt · ỹt︸ ︷︷ ︸
demand inflaton

+(1− κt) · β′MtFt · π̂⋆
t︸ ︷︷ ︸

cost inflation

+(1− κt) · β′MtFt · ẽt−1︸ ︷︷ ︸
expectations inflation

(26)

where π̂⋆
t is a vector of relative sectoral price gaps, κt =

β′MtFt1
1−β′MtFt1

is the slope of the

Phillips curve with Mt = (I + L̃F−1
t (I − Ft))

−1F−1
t , ẽt−1 = L̃F−1

t (I − Ft)et−1 is the

vector of expectation-related terms.

8Note that from the system (16), the efficient prices are related to the sector-relevant states as
p⋆
t = mt · 1+ st.
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See proof in Appendix B. The first term in the Phillips curve (26) relates inflation

to the output gap and corresponds to a demand component of inflation. The second

term corresponds to the cost-push inflation. The third term contains predetermined

past expectations about the marginal cost growth rate. In the remainder of this

section, I focus on the properties of the Phillips curve residual term, which I define

as ut = β′MtFtπ̂
⋆
t .

9

6.2 Cost-push effect: main and input-output components

Price rigidity in a multisectoral input-output network economy prevents prices from

adjusting to their efficient levels through two channels. The first channel is that price

rigidity within a sector prevents prices from matching the marginal cost. The second

channel is that price rigidity in input sectors causes the marginal cost itself to deviate

from the efficient level, meaning that even firms that adjust their prices cannot set

them to the efficient level. Both channels contribute to shaping cost-push inflation.

To separate these two channels I decompose the cost-push inflation ut into two

components, labeled the “main” and the “input-output” components. The main com-

ponent captures the effect of heterogeneous price rigidity across final goods sectors,

assuming that marginal costs are at their efficient level. The input-output com-

ponent captures the effect of price rigidity propagation through input-output links,

which leads to the deviation of marginal costs (and consequently reset prices) from

their efficient levels.

Proposition 2. (Phillips curve residual decomposition). Cost-push effect ut =

β′MtFtπ̂
⋆
t can be decomposed into the sum of the main component and the input-

output component

ut = β′Ft · π̂⋆
t︸ ︷︷ ︸

main component = um
t

−β′(I −Mt)Ft · π̂⋆
t︸ ︷︷ ︸

i-o component = ui−o
t

(27)

See proof in Appendix B. To understand the nature of the above decomposition

consider a vector of sectoral reset prices (prices set by those firms who reset their

price in period t). The reset prices are equal the marginal cost and, using marginal

9I drop (1 − κt) from cost inflation to focus on sectoral distortions for a given slope of Phillips
curve κt.
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cost expression in the system (18), are given by

preset
t = mct = p⋆

t︸︷︷︸
efficient price

+ (L̃− I)µt︸ ︷︷ ︸
markup effect

The reset prices consist of the efficient prices and the effect of sectoral markups. The

main component of the decomposition in Proposition 2 describes the residual that

arises when all reset prices are set to their efficient levels. The input-output compo-

nent captures the effect of inefficiencies propagating through input-output links.

6.3 Main component

Now I focus on the properties of the main component of the cost-push effect and

analyze the role of state-dependent pricing in shaping the size and sign of this com-

ponent.10 The main component can be interpreted as the covariance between sectoral

price flexibilities and sectoral price gaps, taken with the consumption weights

um
t = β′Ft · π̂⋆

t = covβ(Ft,i, π⋆
t,i)

which follows form the covariance definition and the fact that β′π̂⋆
t = 0.

Let price flexibility in each sector consist of the non-state-dependent and state-

dependent parts: Ft,i = F̄i + ∆Ft,i the non-state-dependent part is different across

sectors but does not change over time. The state-dependent part fluctuates depending

on the shocks that hit the economy. Then, the main component can be written as a

sum of two covariances

um
t = covβ(F̄i, π⋆

t,i)︸ ︷︷ ︸
Non-st.-dep. pricing

+ covβ(∆Ft,i, π⋆
t,i)︸ ︷︷ ︸

St.-dep. pricing

where the first term captures the cost-push effect created by non-state-dependent

price rigidity through the heterogeneous degree of price rigidity across sectors. The

second term captures the cost-push effect created by state-dependent pricing.

Under state-dependent pricing, price flexibility generally depends on the size of

the desired price adjustment measured by the price gap π⋆
t .

11 To build intuition, let

10In the quantitative section, I show that the main component is quantitatively more important
in shaping the cost-push effect than the input-output component.

11The price gaps can be related to the corresponding relevant state change. To see this consider
an economy, being in an efficient equilibrium in period t− 1, such that pt−1 = mt−1 ·1+st−1. The
vector of efficient prices is p⋆

t = mt · 1 + st. As long as the money supply remains constant, the
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this dependence take the simplest possible form ∆Ft,i = k · |π⋆
t |, k > 0. Then, the

main component of the cost-push effect can be written as

um
t = covβ(F̄i, π⋆

t,i)︸ ︷︷ ︸
Non-st.-dep. pricing

+ k · covβ(|π⋆
t,i|, π⋆

t,i)︸ ︷︷ ︸
St.-dep. pricing

The non-state-dependent and state-dependent components of the above expression

can have opposite signs. The sign of the non-state-dependent component depends on

whether the largest price gap occurs in a sector with high or low price flexibility. For

example, if the largest positive price gap occurs in a sector with low price flexibility,

the non-state-dependent pricing might result in a negative cost-push effect due to a

negative correlation between price flexibility and price gaps. In contrast, the sign of

the state-dependent component depends on whether the largest price gap is positive

or negative. Under state-dependent pricing, the sector with the largest price gap tends

to have the most flexible prices. Therefore, when the largest price gap is positive,

the state-dependent cost-push effect will also be positive, which can contrast with

the non-state-dependent part of the cost-push effect. In summary, state-dependent

pricing can alter both the magnitude and the sign of the cost-push effect.

Figure 4 provides a simple three-sector example illustrating the possible implica-

tions of state-dependent pricing for cost-push inflation. The grey bars represent price

gaps, which show the desired price adjustments in each sector. Under non-state-

dependent pricing, the degree of price flexibility in each sector is predetermined. For

example, let Sector 1 have fully flexible prices, while Sectors 2 and 3 have fully rigid

prices. In this scenario, only Sector 1 adjusts its prices, as indicated by the green bars.

This results in a negative cost-push effect driven by the downward price adjustment

in Sector 1. In contrast, with state-dependent pricing, the degree of price flexibility

varies according to the size of the desired price change. In this case, only Sector 3

adjusts its prices, as indicated by the blue bars, because it has the largest desired

price change. This leads to a positive cost-push effect, driven by the upward price

adjustment in Sector 3.

This example shows that, for a given distribution of desired price changes, non-

state-dependent pricing leads to cost-push deflation driven by Sector 1, while state-

dependent pricing results in cost-push inflation driven by Sector 3. Therefore, the

sign of cost-push inflation depends on the pricing framework.

vector of price gaps is π⋆
t = ∆st.
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Figure 4: Three-sector economy: non-state-dependent and state-dependent pricing

Sector 1 Sector 2 Sector 3

Non-state-dep.
pricing

State-dep. pricing

flexible

rigid rigid

rigid rigid

flexible

deflation!

inflation!

Threshold for state-dep. adjustment

π̂i denote actual price adjustment in each sector.

6.4 I-O structures with a single effect

Next, I analyze the properties of production structures that result in either the main

component or the input-output component of the cost-push effect. Specifically, I

identify the structures needed to feature only one of these components while elimi-

nating the other. This analysis is based on Proposition 2. I begin by characterizing

an economy that features only the input-output component of the cost-push effect.

Corollary 1. (Single final good economy – only I-O component). Consider an econ-

omy with a single final good where the consumption shares are β1 = 1 and βi = 0 for

all i ̸= 1. In this economy, only the input-output component of the cost-push effect

is present, meaning um
t = 0. Furthermore, if the only sector with rigid prices is the

final good sector, the cost-push effect is zero, ut = 0.

See proof in Appendix B. In an economy with a single final good, the only source

of the cost-push effect is a distortion in the marginal cost of this final good caused
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by upstream price rigidity. This resulting cost-push effect is entirely captured by the

input-output component. Without upstream price rigidity, sectoral shocks do not

create any cost-push inflation in a single final good economy.12

Therefore, the presence of multiple consumption goods is necessary for having the

main component of the cost-push effect. The main component captures the fact that

for a given marginal cost distribution, the marginal cost of the final consumption

basket may be inefficiently high or low because prices of different consumption goods

have different degrees of price flexibility. Indeed, if price flexibilities are the same

across sectors: Fi,t = F for all i, the main component disappears.13 Most production

structures exhibit both main and input-output components of the cost-push effect.

However, it is instructive to characterize an economy that features only the main

component of the cost-push effect.

Corollary 2. (Quasi-horizontal economy – only main component). Consider an econ-

omy with multiple final good sectors and no vertical links except the roundabout

production in each sector (meaning that each sector uses the part of its own output

as its intermediate input) such that labor shares are αi =
1

1+γ
for all i, and the input-

output matrix is Ω = I − Iα. Such economy features only the main component of the

cost-push effect, that is ui−o = 0.

See proof in Appendix B. Note that the production structure needed to exclude

the input-output component is not purely horizontal; it involves a specific amount

of roundabout production in each sector. This is because sectoral markups affect

marginal cost in two ways: through intermediate input prices and labor costs. On one

hand, larger markups increase the marginal cost by increasing the intermediate input

prices. On the other hand, larger markups result in lower wages in equilibrium, which

decreases marginal cost. Remember, that the main component captures the cost-push

effect under the efficient marginal cost. Therefore, a particular degree of roundabout

production is needed to keep the marginal cost at its efficient level, ensuring that the

decrease in marginal cost due to inefficient changes in labor costs is exactly offset by

the increase in marginal cost due to inefficient changes in intermediate input prices.14

12For this reason, productivity shocks in a one-sector New Keynesian (NK) model with flexible
wages do not create any cost-push effect. However, in a one-sector economy with sticky wages
(rigidity in marginal costs), a cost-push effect does emerge, as discussed by Gaĺı (2015).

13If Fi,t = F for all i we have um
t = Fβ′π̂⋆

t = 0 because the consumption-weighted sum of relative
price gaps is zero.

14Note that in a purely horizontal economy with no roundabout production (such that the Leontief
inverse is L = I), the input-output component still exists because the cost of labor input still becomes
distorted in equilibrium.
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6.5 Commodity shock examples

The cost-push effect is often linked to commodity shocks, such as those in the oil

sector. Next, I provide several simple examples to illustrate how a commodity shock

impacts cost-push inflation across different input-output (I-O) structures and how

state-dependent pricing influences this effect. I show that state-dependent pricing

may amplify the cost-push effect in vertical chain economies—where the cost-push

effect is driven solely by the input-output component—but does not reverse its sign

compared to a non-state-dependent framework. In contrast, in an economy with

multiple final goods, state-dependent pricing can reverse the sign of the cost-push

effect of a commodity shock, with this reversal occurring through the main component

of the cost-push effect.

Figure 5: Example economies with commodity sectors
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Example 1: Two-sector vertical chain. Consider a two-sector vertical chain

economy in which the upstream sector is the Oil sector and the downstream sector be

Final good sector (Figure 5a). The oil sector has fully flexible prices FO = 1 (in line
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with empirical evidence) while the final good sector has partially rigid prices F F ≤ 1.

Let this economy be initially at a steady state and the productivity shock in the oil

sector ϵOil occurs. The corresponding cost-push effect is

ut =
1 + γ

D
· 1− FO

FO
· (1− αF )αF · ϵOil

where D = (1 + γ + fO) · (1 + γ + fF ) − (1 − αF )γfO · fF > 0 and fF = 1−FF

FF ,

fO = 1−FO

FO .15 For derivation see Appendix B.

As long as Oil sector has fully flexible prices FO = 1, the Oil shock does not

cause a cost-push effect since there is no distortion in the marginal cost of production

(ut = 0), see Corollary 1.

Example 2: Intermediate good. Consider a three-sector vertical chain with an

intermediate good sector (Figure 5b). Oil sector has fully flexible prices FOil = 1 as

before but the intermediate sector has partially rigid prices F I ≤ 1. Price distortion

in the intermediate good sector creates cost distortion in the final good sector. The

cost-push effect of Oil productivity shock is

ut =
1 + γ

D
· 1− F I

F I
· (1− αF )αF · ϵOil

where D = (1+γ+f I) ·(1+γ+fF )−(1−αF )γf I ·fF > 0 and fF = 1−FF

FF , f I = 1−F I

F I .

For derivation see Appendix B.

When productivity in Oil sector goes down (ϵOil < 0) we have a cost-push defla-

tion. State-dependent pricing (the fact that F I and F F depend on the shock size)

may affect the size of the cost-push effect of the shock but cannot reverse its sign.

The negative cost-push effect from a negative commodity shock might seem coun-

terintuitive, as one would normally expect such a shock to increase production costs

and cause cost-push inflation. However, this example is useful for understanding why

the cost-push effect can manifest in this way. After an adverse oil shock, the cost of

oil rises. Since the intermediate sector uses oil as an input, the price of intermediate

goods should also increase. However, because prices in the intermediate sector are

sticky, they rise by less than the efficient level. As a result, the marginal cost in the

final sector is lower than it should be, leading to a negative cost-push effect.

15In the examples of this section I make a technical assumption that (1− αF )γ < 1 where αF is
labor share in final production. This assumption ensures that intermediate input is an important
factor of production.
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Example 3: “Sticky wages” economy. Consider a vertical chain economy where

the most upstream sector has partially rigid prices, while the intermediate sector has

fully flexible prices. In this setup, the upstream sector can be seen as the sticky wages

sector, the intermediate sector as the oil sector, and the final sector as the consumption

goods sector (Figure 5c). The corresponding price flexibilities are FO = 1, FW ≤ 1

and F F ≤ 1. The cost-push effect resulting from an oil productivity shock is

ut = −1 + γ

D
· 1− FW

FW
· (1− αF ) · ϵOil

where D = (1 + γ + fW ) · (1 + γ + fF ) − (1 − αF )γfW · fF > 0 and fF = 1−FF

FF ,

fW = 1−FW

FW . For derivation see Appendix B.

In this economy, a decline in oil productivity leads to cost-push inflation, which

aligns with the intuition that a negative productivity shock in the oil industry should

create a positive cost-push effect. When oil productivity falls, production decreases,

and less labor is needed. Consequently, wages should ideally decrease. However,

because wages are sticky, they remain too high. This results in a higher-than-efficient

marginal cost for producing oil and, ultimately, for producing final goods. This

inefficiently high marginal cost leads to positive cost-push inflation. Similar to the

previous example, state-dependent pricing may influence the magnitude of the cost-

push effect but cannot change its sign.

Example 4: Multiple inputs. Consider an economy where a single final good is

produced using two material inputs: oil and an intermediate good (Figure 5d). In

this setup, the oil sector has fully flexible prices (FOil = 1), while the intermediate

good sector has partial price flexibility (F I ≤ 1)). For simplicity, I assume that the

final good sector also has fully flexible prices (F F = 1). After an oil shock (ϵOil), the

cost-push inflation is

ut = −αI(1− αI) · (1− F I) · ϵOil

where αI share of input I in good F. For derivation see Appendix B.

Similar to the previous example, a negative oil productivity shock leads to positive

cost-push inflation. The state-dependence of price flexibility can influence the magni-

tude of the cost-push effect by altering F I , but not its sign. However, the mechanism

driving the cost-push effect of the oil shock in this case differs somewhat from the

mechanisms in the earlier examples.

In this economy, a negative oil productivity shock increases the marginal cost of

producing the final good and decreases the demand for intermediate inputs, provided
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that the substitutability between oil and intermediate goods is not too high. Ide-

ally, the price of intermediate goods should decrease in response. However, due to

price rigidity in the intermediate goods sector, prices do not adjust as they should.

Consequently, the price of intermediate goods remains inefficiently high, leading to an

inefficiently high marginal cost for producing the final good, which results in cost-push

inflation.

In examples 1-4, adjustment of price flexibility due to state-dependent pricing

could affect the size of a cost-push effect but never change its sign. Next, let us

consider an example, in which the same shock can lead to the opposite sign of the

cost-push effect if pricing is state-dependent. This example involves extending the

economy ti have multiple final goods, which introduces the main component of the

cost-push effect.

Example 5: Two-commodity economy. In examples 1-4, adjustments in price

flexibility due to state-dependent pricing can affect the magnitude of the cost-push

effect but not its direction. Next, we will consider an example where state dependence

can lead to a reversal in the sign of the cost-push effect. This example involves

multiple final goods, which introduces the main component of the cost-push effect.16

Consider an economy consisting of two upstream goods (Oil and Grain) and two

final goods (Oil-intensive and Grain-intensive) with equal shares in consumption. Oil-

intensive final good uses oil as input while grain-intensive final good uses grain as input

(Figure 5e). Upstream commodity sectors have fully flexible prices FOil = FGrain = 1

and final good sectors have partially rigid prices F FO ≤ 1 and F FG ≤ 1. As before, the

economy is initially at a steady state and is perturbed by one of the two commodity

shocks - oil or grain shocks ϵOil, ϵGrain. The corresponding cost-push effect is

ut = −1

4
· (F FO − F FG) · (ϵOil − ϵGrain)

For derivation see Appendix B.

Assume first that price rigidity is non-state-dependent, with F FO > F FG, meaning

that the oil-intensive final good always has more flexible prices compared to the

grain-intensive final good. In this case, a negative oil shock leads to a positive cost-

push effect, while a negative grain shock results in a negative cost-push effect. This

outcome may seem counterintuitive because there is no obvious reason why a shock

in one commodity sector would cause cost-push inflation, while a similar shock in

16To focus on the main component, I assume a specific degree of roundabout production required
by Corollary 2, see Appendix B for details.
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another sector would lead to cost-push deflation.

But what if price flexibility is state-dependent? In this case, price flexibility

ranking differs depending on the type of shock: F FO > F FG for an oil shock and

F FG > F FO for a grain shock. Thus, under state-dependent pricing, a negative shock

in either commodity sector results in a positive cost-push effect. This is because state-

dependent pricing causes the prices in the affected sector to become more flexible.

This price flexibility adjustment reverses the sign of the cost-push effect for the grain

shock compared to the non-state-dependent pricing case.

The mechanism behind the cost-push effect of an oil shock in this economy is as

follows: When a negative oil shock occurs, oil prices rise, leading to higher prices for

oil-intensive goods and reducing household real income. With lower income, house-

holds also reduce their demand for grain-intensive goods (assuming these goods are

not “inferior” goods). This reduced demand should ideally cause the prices of grain-

intensive goods to drop. However, due to price rigidity in the grain-intensive sector,

these prices do not decrease as they should. As a result, the relative price of grain-

intensive goods remains higher than optimal, leading to an inefficiently high cost of

final consumption. This, in turn, results in cost-push inflation.

7 Quantitative analysis

The above theoretical analysis demonstrates that state-dependent pricing can signifi-

cantly influence cost-push inflation in multi-sector economies, altering its magnitude

or even its direction compared to a non-state-dependent pricing model. Additionally,

my empirical analysis indicates that most sectors in the U.S. exhibit evidence of state

dependence in their price adjustments. Motivated by these findings, I will now eval-

uate the quantitative role of state-dependent pricing in shaping the cost-push effect

in the U.S. over time. The following section describes the quantitative analysis and

its results.

7.1 Cost-push effect and state-dependence

I compute the model-based monthly cost-push effect in the U.S. using the theoretical

Phillips curve residual expression derived in Section 6. For this, I calibrate each sec-

tor’s price flexibility and state dependence based on the estimates obtained in Section

5.17 To compute sectoral relative price gaps, I use the monthly sector-relevant state

17The rest of the model is calibrated as described in Section 5.
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series constructed in Section 5, along with the observed sectoral prices. The pres-

ence of both non-state-dependent and state-dependent components in price flexibility

allows me to evaluate the quantitative role of state dependence. I achieve this by

constructing a counterfactual cost-push effect based on non-state-dependent pricing,

which is obtained by setting all state-dependence parameters to zero (fi = 0 for all

i).

Figure 6 shows the resulting cost-push effect under state-dependent pricing (blue

line) and the counterfactual cost-push effect under non-state-dependent pricing (green

line). Overall, the empirically plausible degree of state dependence in each sector

results in a more volatile cost-push effect compared to the non-state-dependent pric-

ing model. State dependence plays different roles during different historical periods.

For instance, in 2009, just after the Great Recession when oil prices increased sub-

stantially, both state-dependent and non-state-dependent pricing models produced a

positive spike in the cost-push effect, with state dependence merely amplifying the

effect.

In contrast, starting from the Covid crisis in 2019, the state-dependent model of-

ten yields a cost-push effect with a different sign compared to the non-state-dependent

model. The state-dependent model shows a negative cost-push effect at the start of

the Covid crisis, followed by a positive cost-push effect just after the crisis when the

supply chain disruption began. Subsequently, since the full-scale Russia-Ukraine war

broke out in 2022, the state-dependent pricing model shows a positive and growing

cost-push effect. In contrast, the non-state-dependent pricing model gives quite dif-

ferent predictions: a positive cost-push effect during the Covid crisis, followed by

negative cost-push inflation after the start of the Ukraine war.

Note that neither model predicts a long-lasting positive cost-push effect during the

post-Covid period when observed inflation was persistently high (observed inflation is

plotted as a grey line). While the state-dependent pricing model generates a transitory

positive cost-push effect around the supply chain crisis, this effect quickly disappears

in 2021, even as observed inflation remains high during this period. This suggests

that the persistent post-Covid inflation cannot be entirely attributed to cost-push

factors but instead has demand-driven or expectation-driven features.

Finally, historical decomposition over the observed period suggests that the state-

dependent pricing model attributes about 45% of overall inflation fluctuations to the

cost-push effect of shocks, while the non-state-dependent model – only 20%. Note

also that the cost-push effect and demand effect in the model are often negatively

correlated – positive cost-push effect is often accompanied by the suppressed demand.
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Figure 6: Cost-push inflation and state-dependent pricing
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Grey line plots observed CPI inflation; blue line plots the Phillips curve residual implied by the
model under the empirical degree of price flexibility; dashed green line plots the Phillips curve
residual when the effect of state-dependent pricing is absent (all fi = 0).

Additional exercises. In Appendix D, I perform the robustness check of the base-

line model specification. For this, I compute the altrnative state-dependent and

non-state-dependent residual based on the model specification with more shocks and

using the corresponding price flexibility and relevant-state estimates (see Section 5

for details). The specification with more shock produces results similar to the base-

line specification. Additionally, in Appendix D I compute the main component of

the cost-push effect given by the decomposition in Proposition 2. Quantitatively, the

bulk of fluctuations in the cost-push effect is attributed to the main component.

7.2 Slope of the Phillips curve

State-dependent pricing may imply a time-varying slope for the Phillips curve. To

explore this, I compute the slope of the Phillips curve implied by my state-dependent

pricing estimates over time, as shown in Figure 7. Generally, the slope of the Phillips

curve under the state-dependent pricing model remains fairly constant, with the ex-

ception of the Covid period. During this period, the slope exhibits two notable peaks

in 2020 and 2021. These spikes are primarily driven by the 2-digit sectoral group

representing the Finance and Insurance sectors (see sectoral analysis below).18

18The model-free evidence of an increase and a subsequent decrease of the Phillips curve slope
around the Covid period were also found by Cerrato and Gitti (2022).
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Figure 7: Slope of the Phillips curve
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7.3 Phillips curve fit

I now investigate whether the Phillips curve residual implied by the state-dependent

model provides a better explanation of observed inflation compared to its non-state-

dependent counterpart in a conventional Phillips curve regression. To do this, I regress

CPI inflation on standard Phillips curve variables: unemployment, expected and

lagged inflation, and oil prices. I then sequentially add both the non-state-dependent

and state-dependent residuals computed from the model to the regression. Table 3

presents the regression results. The regression using the non-state-dependent residual

performs better than one using only oil price inflation. However, incorporating the

state-dependent residual further improves the fit. Additionally, the effect of the state-

dependent residual remains statistically significant even when accounting for the non-

state-dependent residual.

35



Table 3: Phillips curve estimation with model implied residual

Dependent variable:

CPI inflation

(1) (2) (3) (4)

Unempl. 0.0001 −0.0003∗ −0.0002 −0.0005∗∗∗

(0.0001) (0.0002) (0.0002) (0.0002)

Lagged infl. 0.172∗∗ 0.169∗∗ 0.158∗∗ 0.159∗∗∗

(0.068) (0.065) (0.063) (0.059)

Expected infl. 0.001 0.001 0.001∗∗ 0.001∗∗

(0.001) (0.001) (0.001) (0.001)

Oil infl. 0.028∗∗∗ 0.023∗∗∗ 0.023∗∗∗ 0.030∗∗∗

(0.003) (0.003) (0.003) (0.003)

u(non-st.-dep.) 0.282∗∗∗ 0.124 0.190∗∗∗

(0.073) (0.087) (0.063)

u(st.-dep.) 0.162∗∗∗ 0.076∗∗

(0.052) (0.034)

Constant −0.001 0.004∗ 0.001 0.003∗

(0.001) (0.002) (0.002) (0.002)

Observations 156 156 156 187
R2 0.440 0.491 0.522 0.508
Adjusted R2 0.425 0.474 0.503 0.492

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
The period used in the estimation (1)-(3) is 2007M1-2019M12 to exclude the period of the non-stable
slope of the Phillips curve; The period of estimation in (4) includes a full sample.

7.4 Analysis by sector

Next, I analyze how specific sectors contribute to the difference between the state-

dependent and non-state-dependent pricing cost-push effects. To do this, I group

the disaggregated sectors into 2-digit BEA-coded groups. Table 4 lists the resulting

sector groups.

First, I assess the marginal importance of each 2-digit sector group in explaining
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Table 4: 2-digit BEA sector names

2-digit BEA Sector description
11 Agriculture, Forestry, Fishing and Hunting
21 Mining, Quarrying, and Oil and Gas Extraction
22 Utilities
23 Construction
31 Manufacturing (non-durable goods)

32-33 Manufacturing (durable goods)
42 Wholesale Trade

44 - 45 Retail Trade
48 - 49 Transportation
51 Information
52 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scientific, and Technical Services
55 Management of Companies and Enterprises
56 Administrative and Support and Waste Management and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
92 Public Administration

the cost-push effect. To do this, I compute the counterfactual residual by excluding

the contributions of sectors within that group. I then compare this new residual with

the full residual by regressing the full residual on the new residual. The importance

of each sector group is quantified as 1−R2 from this regression, which represents the

loss of fit compared to the full residual. Figure 8 illustrates the importance of each

sector group in three contexts: consumption (panel A), production (panel B), and

explaining the Phillips curve residual (panel C). Panel C highlights the five sector

groups with the largest contributions to the cost-push effect. It is important to note

that these key sector groups, identified in panel C, do not necessarily have the largest

consumption or sales shares, as shown in panels A and B.
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Figure 8: Most important sector groups
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(c) Cost-push effect
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 Most important 2-digit groups: 
 - 21: Mining, Quarrying, and Oil and Gas Extraction 
 - 32: Manufacturing (durable goods) 
 - 52: Finance and Insurance 
 - 53: Real Estate and Rental and Leasing 
 - 72: Accommodation and Food Services 

Panel (a): sum of sectoral consumption shares within each group; Panel (b): sum of sectoral Domar
weights (shares in total use) within each group; Panel (c): the share of Phillips curve residual
explained by a given 2-digit BEA sector group; computed by forcing the shocks in a given sector
of interest to zero and calculating the (1- r-squared) from a total Phillips curve residual regression
on the resulting counterfactual Phillips curve residual; blue highlights the group of sectors most
important in explaining the dynamics of cost-push inflation.

Next, I disable state-dependent pricing in the selected sectoral groups to as-

sess their contribution to the difference between the non-state-dependent and state-

dependent Phillips curve residuals. In Figure 9, I plot the counterfactual residual with

state dependence removed for three of the five most important sectoral groups. The

results indicate that state dependence in these three service-related groups accounts

for most of the impact of state-dependent pricing. Note that these three groups

represent approximately one-quarter of the overall consumption basket.

Figure 9: Contribution of state-dependence in selected sector groups
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Additional exercises. In Appendix D I calculate the cost-push effect attributable

exclusively to the most important sectoral groups over time. The combined effect of

these five key sectoral groups accounts for the majority of fluctuations in the cost-push

effect throughout the observed period. Additionally, I analyze the cost-push effect

attributed to sectors that were most influential during three significant historical

periods: the Great Recession, the Covid crisis, and the Ukraine war. Each period is

characterized by distinct sectoral groups that contribute most to the cost-push effect.

8 Conclusions

This paper explores the impact of state-dependent pricing on cost-push inflation

within a multi-sectoral New Keynesian economy with a production network. I em-

pirically estimate the degree of state dependence for various sectors in the U.S. and

examine both the theoretical and quantitative roles of state-dependent pricing in

influencing the cost-push effect.

My empirical approach involves estimating the sector-specific price flexibility and

its degree of state dependence using detailed sectoral price and quantity data, along

with a calibrated input-output network model. The estimates show that most sectors

in the U.S. economy exhibit a statistically significant degree of state dependence.

Theoretically, I demonstrate that state-dependent pricing can result in cost-push

inflation with differing magnitude and even the opposite sign compared to a non-

state-dependent pricing framework. This significant implication holds even when the

effects of inefficiency propagation through the production network are excluded.

In a model incorporating a realistic degree of state dependence, the effect of state

dependence on cost-push inflation varies across different historical periods in the

U.S. After the Great Recession, state dependence intensified the positive cost-push

effect. Conversely, following the Covid crisis, it often led to a reversal in the sign

of cost-push inflation compared to predictions from a non-state-dependent pricing

model. Furthermore, state dependence within a particular subgroup of service sectors

explains most of the differences between cost-push effects in state-dependent and non-

state-dependent models.
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Appendices

A Model log-linearization

A.1 Sectoral wages

The product market clearing condition in sector i (12) can be written as Pt,iYt,i =

Pt,iCt,i+
∑
j

Pt,iXt,ji. Using the conditions for optimal input allocation (2), (3), and the

link between sector price and sector marginal cost (5), we get
Pt,iXt,ij

MCt,i·Yt,i
=

Mt,iPt,iXt,ij

Pt,i·Yt,i
=

(1 − αi)ωij, we have Pt,jXt,ji = (1 − αj)ωji
Pt,jYt,j

Mt,j
. Substituting this result into the

market clearing condition

Pt,iYt,i = Pt,iCt,i +
∑
j

(1− αj)ωji
Pt,jYt,j

Mt,j

(A.1)

Consumption shares and Domar weights are connected through a well-known link

(see Baqaee and Farhi (2020)).

Proposition (Consumption shares to Domar weights link). ξ = L′β.

Proof. First, let us compute (A.1) at the efficient steady state and divide by P̄ Ȳ .

We have the P̄iȲi

P̄ C̄
= P̄iC̄i

P̄ C̄
+
∑
j

(1− αj)ωji
P̄j Ȳj

P̄ C̄
. Then, the steady state product market

clearing condition can be expressed as ξi = βi +
∑
j

(1 − αj)ωjiξj, or in matrix form

ξ = β+W ′ξ. This gives us the link between consumption shares and Domar weights:

ξ = L′β.

Log-linearizing (A.1) and dividing by P̄ Ȳ yields

ξi(pt,i + yt,i − µt,i) = βi(pt,i + ct,i)− ξiµt,i +
∑
j

(1− αj)ωjiξj(pt,j + yt,j − µt,j)

The demand for i-th sector consumption is pt,i + ct,i = pt + yt. Hence, we have

(pi + yi − µi) =
1

ξi

∑
j

lji(βj(pt + yt)− ξjµj) = pt + yt −
1

ξi

∑
j

ljiξjµj (A.2)

where lij is (i, j)-th element of matrix L.

Labor demand in log-deviations is wt,i + lt,i = pt,i + yt,i − µt,i and labor supply is

wt,i = pt + yt + γlt,i. Combining labor demand and labor supply, we get the following
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expression for equilibrium wage

wt,i =
1

1 + γ
(pt + yt) +

γ

1 + γ
(pt,i + yt,i − µt,i) (A.3)

Combining (A.2) and (A.3) yields

wt,i = pt + yt −
γ

1 + γ

1

ξi

∑
j

ljiξjµt,j (A.4)

which in vector form gives equation 15.

A.2 Sectoral prices

From (4) log-linear marginal cost deviation is sector i is

mct,i = −at,i + αiwt,i + (1− αi)
∑
j

ωijpt,j (A.5)

The link between sector price and sector marginal cost is pt,i = µt,i+mct,i. Combining

these two results yields the following system of equations for sector prices

pt,i = µt,i − ai + αiwt,i + (1− αi)
∑
j

ωijpt,j (A.6)

This system of price equations can be written in matrix form as

pt = µt − at + Iαwt +Wpt (A.7)

Substituting wage (15) into (A.7), moving parts containing pt to the left side and

multiplying by matrix L = (I −W )−1 gives

pt = Lµt − Lat + (pt + yt) · Lα− γ

1 + γ
LIαI

−1
ξ L′Iξµt (A.8)

Next, I establish a link between labor shares vector and Leontief inverse matrix.

Proposition (Labor shares and Leontief inverse.). Lα = 1.

Proof. Indeed, Lα = 1 ⇔ (I−W )−1α = 1 ⇔ α = (I−W )·1 = 1−(1−α) = α.

Then, the system of price equations can be expressed as

pt = (pt + yt) · 1− Lat + L̃µt (A.9)
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where L̃ = L(I − γ
1+γ

IαI
−1
ξ L′Iξ).

A.3 Final output

Log-linearization of consumer price index yields pt =
∑
i

βipt,i = β′ · pt. Multiplying

both sides of price equations (16) by vector β′ and noticing that β′ · 1 =
∑
i

βi = 1,

we get

0 = yt − β′ · L · at + β′L̃ · µt (A.10)

Next, as shown shown before β′L = ξ′. Then, β′L̃ = ξ′ − γ
1+γ

ξ′IαI
−1
ξ L′Iξ = ξ′ −

γ
1+γ

α′L′Iξ = ξ′ − γ
1+γ

1′ · Iξ = 1
1+γ

ξ′, where in the third step I use the previous result

that Lα = 1. Hence, we have the expression for output as a function of productivities

and markups.

yt = ξ′ · at −
1

1 + γ
ξ′ · µt (A.11)

A.4 Price-markup link

Log-linearizing Equation (21), while treating all Ft−s,i as time-varying coefficients

pt,i = Ft,i ·mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−s,i)

]
· Ft−h,i · Et−hmct,i

}
(A.12)

Let mct,i = mct−1,i +∆mct,i. Then, we can write

pt,i = Ft,imct,i+(1−Ft,i)

[
Ft−1,iEt−1mct,i +

∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,imct,i

}]
=

= Ft,imct,i + (1− Ft,i)pt−1,i + (1− Ft,i)et−1,i

where et−1,i = Ft−1,iEt−1∆mct,i +
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,i∆mct,i

}
is prede-

termined at period t. Markup is µt,i = pt,i − mct,i. Hence, the price-markup link

is

(1− Ft,i) · (pt,i − pt−1,i) = −Ft,iµt,i + (1− Ft,i)et−1,i (A.13)
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B Theoretical appendix

B.1 Phillips curve

Proof of Proposition 1 (Consumer price inflation Phillips Curve). Rewriting

price equations (16) in terms of sectoral inflations gives

πt = −pt−1 + pt−11+ (πt + yt)1− Lat + L̃µt

where L̃ = L(I − γ
1+γ

IαI
−1
ξ L′Iξ).

On the other hand, the markup-inflation link through price prigdity (21) can be

written as

(I − Ft)πt = −Ftµt + (I − Ft)et−1

where Ft = diag{Ft,i}, et−1 is such that

et−1,i = Ft−1,iEt−1∆mct,i+
∞∑
h=1

{[
h−1∏
s=0

(1− Ft−1−s,i)

]
· Ft−1−h,i∆mct,i

}
is predetermined

at period t.

Efficient relative prices are

p̂⋆
t = p⋆

t − p⋆t · 1 = yet · 1− L · at

In terms of price gaps π̂⋆
t = p̂⋆

t − p̂t−1, price equation can be rewritten as

πt − πt · 1 = ỹt · 1+ π̂⋆
t + L̃ · µt

Substituting markup-rigidity link into the previous equation and rearranging, we

get

Ft(I + L̃F−1
t (I − Ft))πt − Ft1πt = Ft1ỹt + Ftπ̂

⋆
t + L̃F−1

t (I − Ft)et−1

Let M−1
t = Ft(I + L̃F−1

t (I − Ft)). Multipling previous equation by Mt and then by

β′, we get Phillips curve

πt(1− β′MtFt1) = β′MtFt1ỹt + β′MtFtπ̂
⋆
t + β′MtFtL̃F

−1
t (I − Ft)et−1

Let κt =
β′MtFt1

1−β′MtFt1
. Then, Phillips curve takes the form stated in proposition.
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B.2 Cost-push effect decomposition

Proof of Proposition 2 (Phillips curve residual decomposition). Absence of

input-output effect in price setting means that firms set their prices ignoring the

inefficient component of their marginal costs. Instead they consider marginal costs

being equal to the efficient prices p⋆
t . Hence, the resulting sector prices are pt = Ft ·

p⋆
t+(I−Ft)(pt−1+et−1), which yields (I−Ft)·(pt−pt−1) = Ft·(p⋆

t−pt)+(I−Ft)·et−1.

Since p⋆
t −pt = −L̃ ·µt, we have (I−Ft) · (pt−pt−1) = −FtL̃ ·µt+(I−Ft) ·et−1.

Under this link between inflation and markups, the Phillips curve is

πt(1− β′Ft1) = β′Ft1ỹt + β′Ftπ̂
⋆
t + β′FtL̃F

−1
t (I − Ft)et−1

and the Phillips curve residual not-related to inefficiency in marginal cost is uh
t =

β′Ftπ̂
⋆
t

Proof of Corollary 1 (Single final good economy(only I-O component)). Let

π⋆
t be desired price changes. β′π⋆

t = π⋆
1,t is the desired consumer price change. Then,

price gaps (relative desired price changes) are π̂⋆
t =

[
0, π̂⋆

2,t, ..., π̂⋆
N,t

]
. As a result

uh
t = β′Ftπ̂

⋆
t = 0

If F1,t < 1 and Fi,t = 1 for all i ̸= 1 then we have [F−1
t (I − Ft)]1,1 ̸= 0 and

[F−1
t (I −Ft)]i,j = 0 otherwise. Then MtFt = [I + L̃F−1

t (I −Ft)]
−1 is such that it has

non-zero first column, ones on the diagonal and zeros otherwise. Then β′MtFt is a

row vector with the first element being the only non-zero element. Hence, we have

β′MtFtπ̂
⋆
t = 0 since π̂⋆

1,t = 0.

Proof of Corollary 2 (Quasi-horizontal economy (only horizontal component)).

If L̃ = I the net effect of markups on marginal cost is zero as intermediate cost ef-

fect exactly compensates the labor cost effect. In this case, Mt = (I + L̃F−1
t (I −

Ft))
−1F−1

t = I and the vertical component disappears.

In the case described by corollary, Leontief inverse is L = I−1
α , which gives L̃ =

1
1+γ

I−1
α . To eliminate vertical component we need to have αi =

1
1+γ

for all sectors

i.

B.3 Illustrative examples derivations

B.3.1 Vertical chain economies

Consider a general case of a two-sector vertical chain. U - upstream sector, D -

downstream sector. FU - upstream price flexibility, FD - downstream price flexibility.
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The share of upstream input in downstream production is w. Let productivity vector

be a′ = [ϵU , ϵD]. Price flexibility matrix is Ft =

(
FU 0

0 FD

)
. I-O matrix is W =(

0 0

w 0

)
. Leontief inverse is L =

(
1 0

w 1

)
. Consumption shares are β′ = [0, 1] and

Domar weigths are ξ′ = β′L = [w, 1]. Labor shares α′ = [1, (1 − w)]. Phillips

curve residual is ut = β′MtFtπ̂
⋆
t where MtFt = (I + L̃F−1

t (I − Ft))
−1 and L̃ =

1
1+γ

·

(
1 −γ

w 1

)
.

MtFt = 1+γ
Det

·

(
1 + γ + fD γfD

−wfU 1 + γ + fU

)
where fU = 1−FU

FU , fD = 1−FD

FD and

Det = (1+γ+fU) · (1+γ+fD)−wγfU ·fD > 0. β′MtFt =
1+γ
Det

· [−wfU , 1+γ+fU ].

Desired price changes are π̂⋆
t = −[(1− w)ϵU − ϵD, 0]′. Then, Phillips curve residual

ut =
1 + γ

Det
· w((1− w)ϵU − ϵD) · 1− FU

FU
(A.14)

Example 1: two-sector vertical chain. In this example Oil sector is Upstream

and Final good sector is Downstream. We have FU = FO = 1, ϵU = ϵO and ϵD = 0.

As a result we have u = 1+γ
Det

· w((1− w)ϵO) · 1−FO

FO = 0.

Example 2: Intermediate good. Consider a three-sector vertical chain Oil →
Intermediate good → Final good. Assume that intermediate good uses only oil and

no labor. Let price flexibilities be FO = 1, F I < 1 and F F < 1. Then, Oil and

Intermediate good can be combined in one Upstream sector such that FU = F I and

FD = F F . Under the oil shock ϵO, we have ϵU = ϵO and ϵD = 0. Then, the residual

is is u = 1+γ
Det

· w(1 − w) · ϵO · 1−F I

F I . When oil productivity goes down (oil price goes

up), Phillips curve residual also goes down (consumer prices go down).

Example 3: “Sticky wage” economy. Consider a three-sector vertical chain Labor

sector→ Oil→ Final good. Assume that final good uses only oil and no labor. Let

price flexibilities be FL < 1, FO = 1 and F F < 1. Then, Oil and Final good can be

combined in one Downstream sector such that FU = FL and FD = F F . Under the oil

shock ϵO, we have ϵU = 0 and ϵD = ϵO. Then, the residual is is u = 1+γ
Det

·−wϵO · 1−FL

FL .

When oil productivity goes down (oil price go up), Phillips curve residual goes up

(consumer prices go up).
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B.3.2 Multiple input/goods economies

Next, consider a two-sector horizontal economy with good 1 (G1) and (G2) such that

only labor and own output is used for production of each good. Then production

network is W = I − Iα, L = I−1
α , L̃ = I and Mt = I which eliminates vertical

component of cost-push inflation. The shares of each good in consumption are s1

and s2 such that s1 + s2 = 1. Let each of these sectors be hit by a respective

shock ϵ1 and ϵ2 and the respective price flexibilities be F1 and F2. Then Lat =

[(1 − α1)
−1 · ϵ1, (1 − α2)

−1 · ϵ2]′. Then, π̂⋆
t = −[s2((1 − α1)

−1 · ϵ1 − (1 − α2)
−1 ·

ϵ2), −s1((1− α1)
−1 · ϵ1 − (1− α2)

−1 · ϵ2)]′. Then cost-push inflation is u = −s1 · s2 ·
(F1 − F2) · ((1− α1)

−1 · ϵ1 − (1− α2)
−1 · ϵ2).

Example 4: Multiple inputs economy. Consider an economy where single final

good is produced using two inputs Oil and Intermediate good. If price flexibility

in final good sector is 1 and no labor is used in this sector, then this economy is

a special case of a horizontal economy described above. We have F1 = FO = 1,

F2 = F I , s1 = 1 − αI , s2 = αI , α1 = α2 = 1 and ϵ1 = ϵOil, ϵ2 = 0. As a result we

have cost-push effect u = −αI(1− αI) · (1− F I) · ϵOil.

Example 5: Two-commodity economy. Consider an economy consisting of two

commodities: Oil and Grain and two final goods: Oil-intensive final good and Grain-

intensive final good. Commodity sectors have fully flexible prices, while final good

sectors have partially rigid prices. If final goods sectors do not use any labor and

use only respective commodities, then this economy can be represented as a special

case of a two-sector horizontal economy described above with Oil commodity and Oil

intensive final good representing the first sector and Grain commodity and Grain-

intensive final good representing the second sector. Then, we have F1 = F FO, F2 =

F FG, α1 = α2 = 1, s1 = s2 = 0.5 are consumption shares, ϵ1 = ϵOil and ϵ2 = ϵGrain.

Then, cost-push effect is u = −1
4
· (F FO − F FG) · (ϵOil − ϵGrain)

C Empirical appendix

C.1 Methodology appendix

C.1.1 Derivations

Combining the demand system (16) with the supply system (21) we obtain the follow-

ing system of equations linking sectoral markups µt and sector-relevant state changes
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∆st as

(L̃+ (I − Ft)
−1 · Ft) · µt = −∆st + [pt−1 + et−1 −mt · 1− st−1] (A.15)

On the other hand, the price change can be expressed from the demand system (16)

as

∆pt = mt · 1+ L̃ · µ+∆st + st−1 − pt−1 (A.16)

Expressing markups from (A.15), substituting into (A.16), and rearranging the terms

yields the link between sectoral price changes and sector-relevant state innovations

(I + L̃F−1
t (I − Ft)) · (∆pt − et−1) = ∆st + ṽt (A.17)

where ṽt = mt · 1+ st−1 − pt−1 − et−1.

The rearranged diagonal system for sectoral markups is

∆st + L̃µt = Ft ·
[
∆st + (L̃− I)µt

]
− (I − Ft) · ṽt

Substituting (A.16) into the above system we get the diagonal system in the main

text.

C.1.2 Computing sector relevant states and markups

Let all industies be indexed by i ∈ {1, ..., N}. At any period t the available k sec-

tors have indices {i1, ..., ik} ⊆ {1, ..., N}. I construct N × k selection matrix S, such

that S[ij, j] = 1 and zero otherwise. Note, that STS = I. Then transformation Su

transforms k-sized vector u to N -sized vector with zeros for unavailable sectors; STv

transforms N -sized vector v to k-sized, by choosing only elements for available indu-

stires. Hence, we can write a system of k equations for k markups and productivities

in terms of k wages and prices

µ =
1 + γ

γ
· ST (I−1

ξ LT Iξ)
−1S · ((p+ y)·1−w) (A.18)

s = p− ST (L̃S · µ+ (p+ y)·1) (A.19)

C.1.3 Instrument validity

Proof. Note that ṽt,i is independent of zt,i as long as monetary policy does not react

within a month to a productivity shock. Furthermore, Fi(|zt,i|)zt,i has mean zero,
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since zi,t is zero mean normally distributed. Hence, we have

Cov(Fi(|zt,i|)zt,i, Fi(|zt,i|)ṽt,i) = E(Fi(|zt,i|)2zt,iṽt,i) =

=

∫ ∫
Fi(|zt,i|)2zt,iṽt,ifzfṽdzdṽ =

∫
ṽ

[∫
z

Fi(|zt,i|)2zt,ifzdz
]
ṽt,ifṽdṽ = 0

The last equality follows as inner integral equals to zero due to zero mean symmetric

distribution of zi,t. Hence, instruments constructed in this matter are valid.

C.2 Dataset construction

This Appendix describes the construction of BEA-coded sectoral prices and wages.

Sectoral wages (from CES to NAICS). Sectoral wages are initially classified

with CES codes, with available correspondence from CES to NAICS codes. So first

I transform the wages classification to NAICS-based. The main complication is that

CES to NAICS mapping is not one-to-one as at least for some NAICS codes more than

one CES sector exists.To overcome this complication I compute the weighted average

wage for each NAICS sector as wNAICS =
∑

αiw
CES
i where wCES

i are CES-sector

wages corresponding to a given NAICS sector code. Each weight αi is computed as

a ratio of the number of workers employed in sector i to the total number of workers

in all CES sectros corresponding to a given NAICS sector. The number of employed

workers is taken form the same CES dateset as the average number for the year 2012,

to correspond to the year of the Input-Output table used.

NAICS to BEA concordance. The producer prices data is classified by NAICS

codes as well as wages data (after the transformation from CES to NAICS described

above). To apply this data to the available input-output tables I convert NAICS

based sectoral data to BEA based sectoral data. BEA Bridge tables have a rough

BEA-NAICS code correspondence, from which I make use to establish a concordance

between NAICS codes and BEA codes. The problem is that the BEA-NAICS codes

correspondence is not one-to-one. For those cases when one BEA code corresponds to

several NAICS codes I need weights to evaluate the BEA-based price as a weighted

average of the NAICS based prices. For this I need to compute the relative sector size

of each NAICS sector withing a given BEA sector. The primary data source I use

to compute NAICS sector sizes is the Annual survey of manufacturers from the US

Census. I use the corresponding ”Shipment value” quantities for the survey of 2012.

The secondary data source is the Current Employment Survey. I use the number of

employed people as an sector size variable, translated from CES into NAICS codes
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in the same manner as wages. First I try to compute NAICS sector weights in each

BEA code using ASM data. If ASM data is unavailable, I use CES data. For those

sectors, that are not covered by either dataset I use the uniformal weights.

NAICS to BEA matching procedure. Having constructed the mapping from

NAICS to BEA codes with corresponding weights, I convert the NAICS data into

the BEA data. I want to find a corresponding NAICS code for as many NAICS

sectors from the NAICS-BEA mapping as possible. First, I find the the NAICS

codes in the data that have the identical NAICS codes in the NAICS-BEA mapping.

For the remaining NAICS codes from the BEA-NAICS mapping I try to find the

correspondence at the more aggregated level. I subsequently remove 1,2 and 3 last

digits of NAICS codes form the mapping and try to find the corresponding more

aggregated sector in the data.

C.3 Additional results

Figure C.1: Baseline estimates vs. model with more shocks
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Correlation of average flexibilities is 0.83; state-dependence parameters - 0.45; average state volatil-
ities - 0.96.
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Figure C.2: Baseline estimates vs. Pasten et al. (2020) estimates
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D Quantitative appendix

D.1 Model with more shocks

To check the robustness of baseline cost-push effect computations I now compute the

alternative cost-push effect from the model with more shocks. In this computations,

sector-relevant states are computed using more sectoral data and the parameters of

price flexibility and state-dependence are estimated based on this alternative sector-

relevant state.
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Figure D.3: Phillips curve residual in model with more shocks
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D.2 Cost-push effect decomposition

Now, I look into the quantitative importance of the main component of the cost-push

inflation by applying the decomposition form Proposition 2. Figure D.4 shows that

the main component largely shapes the fluctuations of the cost-push effect implying

that the input-output component merely plays an amplifying/dampening role during

different episodes. Hence, the theoretical results importance of the state dependence

in shaping the main component of the cost-push effect apply to the large share of the

cost-push inflation.
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Figure D.4: Cost-push inflation and main component
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Grey line plots CPI inflation; blue line plots the Phillips curve residual implied by the model
under estimated degree of price flexibility; dashed black line plots the main component of Phillips
curve residual. CPI inflation and residual series are smoothed with a 3-month moving average.

D.3 Most important sectoral groups contribution

For these five most important groups, I compute counterfactual cost-push effects

generated exclusively by fluctuations in sectors belonging to these groups. Figure

D.5 panel A plots the residual induced by sector group 21 (Mining, Quarrying, and

Oil and Gas Extraction) and indicates that this sector group alone can partially

explain the cost-push effect of 2009 but does not explain any other episode. Adding

other important groups 52, 53 (Finance and Insurance, Real Estate, and Rental and

Leasing) on panel B, and 32, 72 (Manufacturing of durable goods, Accommodation,

and Food Services) on panel C, improves the fit to full residual - many fluctuations

can be attributed to these most important sectors.

55



Figure D.5: Cost-push inflation due to 2-digit sector groups
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Red dashed line plots counterfactual residuals computed by shutting down the shocks in all sectors
except a given 2-digit sector group.

D.4 Sectoral contribution during particular episodes

Now, I investigate which sectors have contributed the most during three impor-

tant historical episodes: the post-Great Recession, the post-Covid episode, and the

Ukraine war. For this, I find the largest-seized elements of the sum constituting

the main component of the cost-push effect within each episode of interest. Then, I

compute counterfactual residual by switching off these sectors.

In 2009, a lot of cost-push effect was attributed to the “Petroleum refineries”

sector alone. Figure D.6 (panel A) shows that switching off this sector substantially

reduces the 2009 cost-push effect. The Covid and post-Covid episode was not at-

tributed to any particular sector but rather to several groups simultaneously 52, 62,

22, 33 (Finance and Insurance, Health Care and Social Assistance, Utilities, Man-

ufacturing (durable goods). Figure D.6 (panel B) shows that these groups explain

most of the cost-push effect in 2020-2021. The 2022 surge of the cost-push effect is
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largely attributed to sector groups 53 and 72 (Real Estate and Rental and Leasing,

Accommodation and Food Services) as shown on Figure D.6 (panel C).

Figure D.6: Cost-push inflation due to 2-digit sector groups
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(b) disable Covid crisis sec-
tors
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(c) disable Ukraine war sec-
tors
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