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Quantification of Airborne Dusts From Powders 

1 Introduction 
If powders become airborne as a dust within the workplace, they may pose significant 
health or safety implications. The relative ease or propensity with which a powder 
becomes airborne from an external stimulus may be quantified or measured. This 
attribute may be defined by the term dustiness.  

This chapter can serve as a helpful guide for industrial and occupational hygienists, 
safety professionals, environmental health and safety (EHS) managers, EHS 
investigators, product manufacturers, process engineers, and scientific instrument or 
equipment manufacturers. This guidance may also be useful to labs focusing on 
analytical, powder characterization, and process safety. Professionals may find this 
information helpful both in exploring the value of dustiness testing and in selecting the 
most appropriate test method for their application.  

This chapter briefly discusses how dustiness information may be used to develop low-
dust products, inform exposure estimation, and execute risk mitigation, for example, 
through control banding. The content covers the development of test systems for 
quantifying dust release from bulk-powdered solids. The various test configurations are 
categorized according to their underlying dust generation mechanisms: gravity-induced, 
rotating, fluidization, and aerodynamic. The historical development of the more widely 
used and standardized test systems is also covered. This information highlights the 
multiple steps (in some instances) taken to develop and standardize test methods, 
making this information more readily accessible to the reader. Finally, criteria that need 
to be considered to evaluate or improve existing test methods or to develop new 
methods are described, particularly with respect to workplace inhalation exposures.  

a. Powders, dusts, and aerosols 
Powders, granules, flakes, chips, and pellets are either divided solids, finely divided 
solids, or particulate solids. These types of divided solids may be created or used across 
many different industrial sectors. Some are naturally occurring, such as those derived 
from agriculture, forestry, or through minerals extraction, for example. Others are 
synthetically manufactured or processed, such as pigments, pharmaceuticals, polymers, 
resins, or additive manufacturing feedstocks. Powders are the most finely divided solid 
form. The term “powders” is used more consistently throughout this discussion, but 
granules, flakes, and pellets may also apply in certain situations. A powder may be 
defined as finely divided matter or a preparation in the form of fine particles. Powders 
may therefore be considered as prepared or manufactured (i.e., deliberate or 
intentional). Conversely, dusts may be considered as waste or having less value. 
Airborne dust generation is typically unintentional.  

The International Standards Organization [ISO 2020] defines dust as “small solid 
particles, conventionally taken as those particles below 75 μm [micrometer] in diameter, 
which settle out under their own weight, but which may remain suspended for some 
time.” The International Union of Pure and Applied Chemistry [IUPAC 1990] defines dust 
as “small, dry, solid particles projected into the air by natural forces… and by mechanical 
or man-made processes. Dust particles are usually in the size range from about 1 to 100 
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μm in diameter and settle slowly under the influence of gravity.” The World Health 
Organization [WHO 1999] defines dusts as “solid particles, ranging in size from below 1 
μm up to at least 100 μm, which may be airborne or become airborne.” Dust particles 
with dimensions below 1 µm are often encountered and particles greater than 100 µm 
may also become airborne [WHO 1999]. The U.S. National Fire Protection Association 
(NFPA) defines dust as any finely divided combustible solid, less than 500 μm (0.5 mm, 
or those particles passing a 35 U.S.-mesh sieve), as a potential combustible hazard 
[NFPA 2022]. Therefore, from the broad occupational health and safety perspective, dust 
may span a particle size range from below 1 µm through 500 µm. 

The scientific and universal term “aerosol” may be defined as a disperse system of liquid 
or solid particles suspended in a gas, usually air [ACGIH 1999; Hinds 1999; Vincent 
1995, 2007]. Aerosol may describe dispersed liquid particles, such as mists or sprays 
[Vincent 1995]. This can include newly condensed particles from a gas or vapor, more 
commonly referred to as fumes [Hinds 1999]. We will not consider mists, sprays, and 
fumes any further in this discussion.  

When a powder or dust becomes airborne, the resulting suspension is an aerosol. 
Aerosol is the correct scientific term, but we use the terms dusts or airborne dusts more 
consistently in this chapter as they are in wider general usage outside of the scientific 
research community. 

b. Dust generation from powders 
A powder will remain at rest or at a stable equilibrium until some external stimulus is 
applied. This situation differs from an analogy sometimes made with vapors that result 
from volatile liquids, for example, where vaporization is a spontaneous process. Within a 
liquid at rest, sufficient internal energy exists to facilitate vapor release from the liquid 
surface into air. For a finely divided solid at stable equilibrium, the energy required to 
release particles into air, and overcome interparticle attractive forces, must come 
externally. 

For powder to become an airborne dust, there needs to be a coupling of at least two 
phases. At a minimum, this involves the mixing of powder and air. In further instances, 
the interaction of a powder, air, and a solid surface (a bench or floor for example) 
contributes to generating airborne dust. The stimuli can be applied in many ways. 
Gravity acting on the powder can result in some portion of the powder becoming 
airborne if the powder is set in motion. For example, an unstable powder pile (at 
unstable equilibrium), initially at rest, may cascade down, a portion of which may be 
entrained within the resulting displaced air. In another example, a poured powder can 
produce turbulent air currents as it displaces air, entraining and dispersing particles as 
it does. The impact of a bolus of falling powder with a solid surface can also result in 
some fraction of the powder being entrained. The dry sweeping of a spilled powder, 
perhaps with a brush or broom, would also likely result in some fraction of the powder 
becoming airborne. As the bristles move, they stir and agitate both the powder and air. 
These examples would generally be considered mechanical stimuli. 
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One further noteworthy scenario is the induced movement of air over a finely divided 
solid or powder. This may be the result of wind (i.e., an Aeolian process) [Bagnold 1941; 
Cowherd 1981; Gillette et al. 1974; Visser 1992] or forced mechanical ventilation. Air 
movement might also result from fast-moving and energetic compressed air used during 
industrial processes, materials conveyance, cleaning operations, or pneumatically 
powered equipment operations, for example. These examples are considered 
aerodynamic stimuli, resulting from some fraction of the powder breaking away from 
the bulk and becoming entrained within the induced airflow. 

Other airborne dust-generation mechanisms exist that are not discussed further in this 
chapter but may be the result of direct comminution (size reduction) from bulk solids. 
Comminution of parent bulk materials may include, for example, crushing, machining, 
grinding, drilling, sanding, scraping, etc. From the perspective of this discussion, 
airborne dust generation is the conversion of some fraction of the powder into an 
airborne dust. 

c. Dustiness 
The physical properties of a powder may influence the quantity of airborne dust 
liberated and can be considered a source strength factor [Lidén 2006]. The term 
“dustiness,” first used by Powell and Russell [1933] to describe the dust-generating 
ability of coal and coke, was undefined. The term dustability was used briefly [Bransby 
1977; Schofield et al. 1978], but dustiness has seen far wider usage, both historically and 
geographically. We continue here with the dustiness terminology.  

An early definition of dustiness was “the tendency of dry materials to liberate dust into 
the air when handled under specified conditions” [BOHS 1985]. This definition referred 
to materials transfer and processing operations, but notably did not include the (direct) 
generation of particles during deliberate comminution [BOHS 1985], noted in the 
previous section. A further step could be added to this definition that addressed 
handling the collected dust generated from comminution.  

Chung and Burdett [1994] argued that there was no unique definition of dustiness, as all 
dustiness measures were empirical and method dependent. Lyons and Mark [1994] 
defined dustiness as the “propensity of materials to form airborne dust,” and Lidén 
[2006] defined it as the “propensity of a material to generate airborne dust during its 
handling.”  

Boundy et al. [2006] defined dustiness as the “tendency of a powder to form an aerosol 
after it receives a given energy input.” The finely divided solid or powder, as discussed 
earlier, requires an external mechanical or aerodynamic stimulus to produce the 
airborne dust, and at least two (or even possibly three) phases are required. An inclusive 
definition of dustiness, therefore, may be the following: the propensity of a finely 
divided solid to form an airborne dust (aerosol) by a mechanical or aerodynamic 
stimulus. 

Chung and Burdett [1994] and Lidén [2006] noted that dustiness is not an intrinsic 
powder property but is influenced by the selected test method. While not an intrinsic 



 

 

NIOSH Manual of Analytical Methods  5th Edition  Chapter AD January 2024 Page AD-5 of AD-61 

 

Quantification of Airborne Dusts From Powders 

material property, dustiness is a property of a given powder that should be quantifiable 
and reproducible under a given controlled testing protocol [Evans et al. 2013]. With the 
many dustiness techniques developed, one simple approach to comparing results is 
through standardization, as noted by Chung and Burdett [1994].  

Standardization from an occupational inhalation exposure perspective was proposed as 
early as 1980 [Hammond 1980]. The British Occupational Hygiene Society (BOHS) 
formed a technical working group in 1980 to review available test methods and 
recommend a standard dustiness approach [BOHS 1985]. It is now well recognized that 
different test configurations (i.e., different underlying dust generation mechanisms with 
varying particle sampling arrangements) will provide different dustiness results. For 
example, of the two standardized test configurations described in the European 
Standard EN15051, “Workplace atmospheres—Measurement of the dustiness of bulk 
materials” [CEN 2013b,c], powders tested under each configuration do not consistently 
rank in a similar manner [e.g., Pensis et al. 2010]. 

1) Primary particles, aggregates, and agglomerates 
Powders are comprised of primary particles, which in some instances may be further 
aggregated, fused, or sintered together very strongly. These strongly bonded particle 
assemblies are sometimes referred to as aggregates or hard agglomerates [Friedlander 
2000]. Primary particles (or aggregates, if present) may be further held together by 
relatively weak adhesive particle interactions (e.g., van der Waals, electrostatic, 
capillary, and morphological interlocking). These latter loosely held structures are 
generally referred to as agglomerates [Nichols et al. 2002].  

Although it is relatively easy to break up the loose agglomerates, breaking up aggregates 
into their primary particles often requires considerable mechanical action (ball-milling, 
for example). The fracture or further comminution of primary particle size can only be 
achieved with extreme difficulty. In dustiness testing, the energy supplied is insufficient 
to divide primary particles or break up strongly bound aggregates/hard agglomerates 
made up of primary particles [Evans et al. 2013]. However, the energy supplied may be 
enough to overcome interagglomerate adhesion and separate some fraction of the 
agglomerates from the bulk powder. The deagglomeration of a fraction of the loosely 
held agglomerates, which constitutes the bulk powder, is responsible for airborne dust 
generation. 

2 Powders and dusts in the workplace 
If powders, dusts, or finely divided solids are permitted to become airborne, forming an 
aerosol, they may potentially pose a health hazard or a safety hazard or both in 
workplaces across multiple industrial sectors. 

a. Relevance of airborne dusts to occupational health 
Airborne dusts or aerosols in a broader context, can be inhaled and enter the respiratory 
system as an inhalation exposure. Particle penetration and deposition within the 
respiratory system are largely influenced by particle size or aerodynamic particle 
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diameter. The particle health-based size fractions, inhalable, thoracic, and respirable, 
provide information on where particles are capable of penetrating and further 
depositing within the respiratory system [ACGIH 1999]. 

Inhalable (~PM100) particles are those that may enter the mouth or nose; thoracic 
(~PM10) particles pass the larynx and into the conducting airways; and respirable 
(~PM4) particles may penetrate the unciliated or gas-exchange regions of the 
respiratory system [ACGIH 1999; CEN 1993; ISO 1995]. The health-based particle 
penetration curves and their mathematical approximations are discussed in ACGIH 
[1999], Hinds [1999], and Vincent [2007]. They are also shown in Figure 1. The U.S. 
Environmental Protection Agency (EPA) ambient air quality particulate matter fractions 
for PM10 and PM2.5, which were developed independently of ACGIH [1999], CEN 
[1993], and ISO [1995], are included for comparison [Hinds 1999]. 

Figure 1. The inhalable, thoracic, respirable, PM10, and PM2.5 particle 
penetration curves [Hinds 1999; Vincent 2007].  

Inhalation exposure is of particular concern when considering the potential health 
hazards of airborne dusts. Occupational lung disease has declined globally from 2000 
through 2016, but inhalation exposure to silica, asbestos, and particulate matter are still 
responsible for more than 700,000 deaths and 16 million disability-adjusted life years in 
2016 [WHO/ILO 2021]. Airborne particles may also enter the mouth (ingestion), the 
eyes (ocular), or deposit on the skin (dermal).  
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The adult human respiratory system offers about 70 square meters (m2) of surface area 
[Hasleton 1972]. By some estimates, the respiratory system is twice the surface area of 
the digestive system, thirty times the surface area of the skin, and arguably more 
susceptible to the outside environment [Combs and Dickson 2020]. Depending on size, 
chemical composition, morphology (shape), and concentration, dusts resulting from 
powders may be characterized as nuisance, irritant, toxic, or carcinogenic. In 
pharmaceutical manufacturing or dispensary environments, airborne dusts may be 
highly pharmacologically potent [Champmartin and Clerc 2014; Fent et al. 2014; Gold et 
al. 1973]. 

b. Relevance of airborne dusts to occupational safety 
Airborne dust generation from a process, activity, or spill can result in an increased risk 
of slips and falls. Some materials can reduce the friction between a worker’s footwear 
and that of the floor, stairs, ladders, for example. Powders that are used for their 
lubricant or glidant properties are particularly noteworthy, even in small quantities. 
Excessive dust generation (a nuisance dust, for example) can result in decreased 
visibility within the workplace, potentially causing other accidents. Materials that are 
electrically conducting can lead to electrical short circuiting [OSHA 2005]. Short 
circuiting can damage equipment or electrical infrastructure, and become a source of 
ignition, causing a fire [NFPA 2021, 2022]. 

Materials that are capable of being oxidized in air, themselves a potential fuel, can pose a 
fire and explosion risk. These materials are commonly referred to as combustible dusts 
and can be a considerable hazard within the workplace [NFPA 2019]. An ignition source, 
the powder (fuel), combined with oxygen in the air, may be capable of supporting 
combustion as a powder fire. By further dispersing the powder in air, either as part of a 
process or inadvertently, a sufficiently strong ignition source (hot surface, flame, spark, 
electrical arc, etc.) can result in a flash fire. When coupled with confinement, 
combustible dusts can lead to dust explosions [Cashdollar 2000; CSB 2006, 2018; 
Eckhoff 2003]. Confinement can result from containing process equipment, pneumatic 
conveyance systems, or dust control or collection systems. On a larger scale, it can be the 
walls of a structure or the entries within a mine. 

These risks and their potential consequences are well documented in coal mining, 
manufacturing, agriculture, food processing, and other industrial environments. The 
reader is encouraged to seek expert guidance in analyzing the risks and adopting 
appropriate mitigation measures [CSB 2006, 2018; Eckhoff 2003; HSE 2003; NFPA 2019, 
2020; OSHA 2005, 2020]. 

c. Economic considerations resulting from airborne dusts 
During materials manufacturing and processing, potential loss of product or degradation 
in product quality creates a potential loss in revenue. Preventing or controlling dust 
emissions is therefore economically prudent. Where multiple product lines are situated 
close together, the potential exists for cross contamination of both equipment and 
product. Therefore, a decrease in product quality could occur with airborne dust from 
one source possibly contaminating another. Cross contamination may also have 
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consumer health or regulatory implications, particularly in food processing or 
pharmaceutical manufacturing [e.g., Gold et al. 1973]. Equipment contamination can 
lead to premature wearing and failure of critical moving parts. In addition, there are 
costs associated with dust cleanup (housekeeping).  

One further aspect is using potentially costly engineering dust-controls. The system size, 
possibly amplifying the capital investment and operating costs, must be considered. 
Often, manufacturers desire a process, product, or intermediate that does not require 
the use of ventilation, dust capture, containment, or filtration systems, or perhaps 
requires scaled-down versions of these systems. 

d. Factors influencing exposure 
Many factors can influence whether workers will be exposed to aerosolized particles 
from powders and to what extent. Possible factors include the following: 

• Type of operation or task (from low to high energy processes or activities, for 

example) 

• Quantities of materials (mass or volume) 

• Proximity of the worker to the emission source 

• Ventilation in general (dilution) 

• Presence of any engineered exposure controls (enclosures, local exhaust ventilation, 

etc.) 

• Leaks in process equipment 

• Worker technique with respect to manual handing scenarios 

• Physical properties of the powders themselves 

From an occupational or industrial hygiene perspective, when material flow is followed 
within the workplace, transfer points stand out as emission sources. These transfer 
points have the potential for elevating worker exposures. Examples might include 
removing lids, emptying containers or bags of feedstocks, scooping manually, weighing 
out, pouring, dumping, conveying, transferring from conveyor, stockpiling, reducing 
aggregate size, classifying size (e.g., sieving), bagging and packing of product, harvesting 
product from reactors, unmolding, maintaining systems, spilling accidents, cleaning 
equipment, disposing of bags, etc. [e.g., Cheng 1973; Dahm et al. 2012; Dennis and 
Bubenick 1983; Evans et al. 2008; Evans et al. 2010; Hammond 1980; Heitbrink et al. 
1992; Heitbrink et al. 1989; HSE 2013; Lundgren 1986; NIOSH 2014a, 2018b; Petavratzi 
et al. 2007; Ribalta et al. 2019a; Sutter et al. 1982; Visser 1992]. 

Task-based, short-term, or direct-reading sampling [NIOSH 2021b] in these situations 
may be particularly useful for identifying and quantifying these exposure-prone 
activities. The use of video exposure monitoring (VEM), whereby video footage of tasks 
or operations are overlayed with aerosol concentration data from a direct reading 
instrument, can be used to identify key events that contribute to a worker’s exposure 
[e.g., NIOSH 2014b]. VEM can also be a powerful tool in the subsequent training of 
workers [Rosén et al. 2005]. A fine dust cloud can be visualized directly and coupled 
with photography or video footage.  
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The “dust lamp” is another dust visualization tool that uses a strong, carefully positioned 
light to exploit the Tyndall effect, which is the scattering of light by particles [HSE 2015]. 
Exposure-prone activities, even for short durations (i.e., less than 15 minutes), can also 
be drivers of time-weighted exposure concentrations when averaged over an entire 
working shift of 8 to 10 hours.  

e. Relating dustiness to inhalation exposure 
The best available worker inhalation exposure information is through exposure 
assessment, where air sampling is conducted within the personal breathing zone of the 
worker [Vincent 2007]. This can be done on a short-term, task-based, or long-term (full 
shift) basis. However, where inhalation exposure information is incomplete, dustiness 
information may be used to fill knowledge gaps based on potential source strength (dust 
yield). For example, it may not be feasible to concurrently sample for all particle size 
fractions (inhalable, thoracic, and respirable) on a worker. Dustiness information could 
potentially be used in historical worker exposure reconstruction if existing exposure 
information was rudimentary, incomplete, or lacking. 

Cowherd et al. [1989b] studied the dust emissions from 3.8 liter (L) (1-gallon) volumes 
of finely divided powders transferred to 23 L (6-gallon) containers within an 
experimental room. Test powders consisted of talc, sodium chloride, Portland cement, 
and a Direct Yellow 4 dyestuff. Emission factors, especially those at a 25-centimeter (cm) 
drop height, compared well with dustiness indices resulting from the Midwest Research 
Institute (MRI) dustiness test configuration described later (see Section 3.b.2). Emission 
factors for scooping and dumping were the same as the emission factors for pouring at a 
given drop height. Therefore, drop height was determined as an important experimental 
variable. 

Heitbrink et al. [1989] found a significant correlation between dustiness tests and 
worker exposure during the bagging of powdered acrylic resins at an industrial facility. 
Investigators used the Heubach (Type I) rotating drum (see Section 3.c) and the MRI 
dustiness test configurations (see Section 3.b.2) to assess workers for total dust 
exposure. They noted that addressing material dustiness is important for predicting and 
controlling worker dust exposure.  

In later work, Heitbrink et al. [1990] compared MRI test results with that of task-based 
worker exposure measurements (total dust) from four work sites while workers 
performed bag dumping, bag packing, or tank charging with acrylic resins, crystalline 
silica, titanium dioxide, talc, and lead chromate. Dust controls were described as 
“minimally effective.” At two of the sites, dustiness measurements provided the relative 
exposure potential of the materials used. However, at two other sites, an inconsistent 
relationship was found, presumably with other exposure factors playing a more 
significant role. 

Brouwer et al. [2006] compared the dustiness of magnesium stearate, aluminum oxide, 
and calcium carbonate obtained in the EN15051-2 rotating drum [CEN 2013b] with 
operator exposures from semi-controlled dust-handling experiments within a room. 
Ventilation and environmental variables were controlled during scooping, weighing, 
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adding, and dry clean-up tasks (brushing, scooping, discarding waste) from both bench 
and floor surfaces. Dustiness was found to be the major exposure determinant, 
contributing to ~70% of the exposure variance. Furthermore, the ratios of respirable 
and inhalable fractions, as determined by dustiness tests, were comparable with the 
ratios observed for the exposure measurements. The results emphasized the relevance 
of dustiness as a parameter for exposure potential. 

Ribalta et al. [2019b] found a high degree of correlation (R2 = 0.77–0.97) between 
dustiness indices from the EN15051-2 rotating drum and EN15051-3 continuous drop 
test configurations [CEN 2013b,c] and inhalable exposure concentrations measured 
during high- and low-energy materials-handling experiments. Five ceramic test 
powders, which included silica sand, three quartz powders, and kaolin, were handled in 
2-kg batches. Researchers suggested that dustiness could be considered a relevant 
predictor for workplace exposure. 

Dustiness is a major determining factor in the concentration of worker inhalation 
exposures. Therefore, dustiness may be used to provide inhalation exposure estimates 
based on the quantities of materials used in the workplace. For example, considering the 
milligrams of dust generated per kilograms of material used or “dust yield.” Tests that 
provide the inhalable, thoracic, and respirable particle size fractions are best suited for 
this purpose. Particle size fractions of exposure need to be measured within the worker 
breathing zone and compared with that measured during dustiness testing if the 
relationship between exposure and dustiness is being investigated. Improved control of 
external variables (humidity, air flow, etc.) in the experimental design may result in a 
stronger relationship between dustiness and worker exposure when future dustiness-
exposure studies are conducted. The relative anticipated ratios of the particle size 
fractions may also be estimated from dustiness experiments.  

f. Controlling exposures through the hierarchy of controls 
The first and most basic step in the control of hazards is recognizing them [WHO 1999]. 
Traditionally, a hierarchy of controls has been used as a way to implement feasible and 
effective controls [NIOSH 2023]. Following the hierarchy normally leads to 
implementing inherently safer systems, ones where the risk of illness or injury has been 
substantially reduced. In order from the most effective to the least effective control is 
elimination, substitution, engineering controls, administrative controls, and personal 
protective equipment.  

Elimination would be an example of removing a hazard in its entirety from the 
workplace. This may be difficult to achieve if the hazardous product has unique and 
desirable physical properties that are required for the product/process. Substitution 
might be possible through replacing a hazardous product with one that was less 
hazardous or possibly the same material in a less hazardous form. For example, a form 
that produces much less airborne dust. Bakeries used this approach where they 
increased vegetable oil content from 2% to 4% within an improver mix. This reduced 
airborne dust allergen content and the potential for worker exposure by 77% [HSE 
2010]. 
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Engineering controls remove hazardous conditions (e.g., local exhaust ventilation that 
captures and removes airborne emissions) or place a barrier between the worker and 
the hazard (e.g., containment). Well-designed and implemented engineering controls can 
be highly effective in protecting workers. These actions should be passive, that is, 
independent of worker interactions [NIOSH 2014a]. Engineering controls should not 
hinder workers’ productivity or make work more difficult to do. NIOSH provides 
strategies and guidance on applying engineering controls to the processes and 
downstream handling of nanoscale materials [NIOSH 2014a, 2018b]. These strategies 
may also apply to other industrial scenarios besides nanoscale manufacturing. 

Administrative controls could involve training of employees, perhaps in applying 
techniques that generate less airborne dust. It may involve restricting access or limiting 
shifts to a dust-generating area or process to only those workers who need to be 
present. A last resort would be using personal protective equipment, such as a 
respirator [NIOSH 2018a], to address the potential for worker exposure. 

In the United States, workers are required to be trained, fit-tested, and medically cleared 
for certain types of respirators as part of a formal Respiratory Protection Program (CFR 
1910.134) [OSHA 1998]. Similar requirements can apply in other countries. For a 
comprehensive discussion of the use of ventilation, enclosures, and other approaches in 
controlling dust exposures, readers are encouraged to consult AIChE [2005], ACGIH 
[2020, 2023], and HSE [2013, 2017a, 2022]. For specific guidance and examples for 
mining or minerals processing, see the NIOSH Dust Control Handbook for industrial 
minerals mining and processing [NIOSH 2019] or the NIOSH Best Practices for Dust 
Control in Coal Mining [NIOSH 2021a]. For pharmaceutical containment, look to the 
International Society for Pharmaceutical Engineering [ISPE 2012] for good practice 
guidance.  

g. Control banding 
The traditional approach to protecting worker health is to measure worker exposures to 
potentially hazardous agents, compare them with occupational exposure limits (OELs), 
and then determine if existing control measures provide adequate protection [NIOSH 
2009]. However, relying on this approach has become increasingly difficult due to the 
growing number of potentially hazardous materials in the workplace that do not have 
OELs [Garrod and Rajan-Sithamparanadarajah 2003]. The EPA reports that the Toxic 
Substances Control Act Chemical Substance Inventory contains over 86,000 chemical 
substances [EPA 2023], yet only about 1,000 chemical substances have been assigned at 
least one authoritative (government, consensus, or peer reviewed) OEL. In addition, 
small- and medium-sized enterprises may employ a large proportion of the workforce 
yet may not possess occupational safety and health expertise [HSE 2017b; Zalk and 
Nelson 2008].  

Consequently, control banding (CB) strategies have been proposed to make engineering 
control decisions for general chemical substances without OELs or perhaps without 
expert guidance [NIOSH 2009; Zalk and Nelson 2008]. Typically, CB strategies consist of 
two main components: (1) hazard bands and (2) exposure (or emission potential) 
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bands. These qualitative bands rank substances based on their hazardous properties 
and their production/use, which range from low to high levels of hazard and/or 
exposure potential. The combination of the hazard and exposure bands is used to derive 
the exposure control band and associated engineering control options for a given 
task/process.  

CB takes a pragmatic approach in that many previous worker-exposure problems have 
solutions, and only limited control options are generally applied in practice. Risks can 
therefore be grouped or banded. In ascending order, control measures could include, at 
a minimum, good industrial hygiene practice coupled with general ventilation (dilution), 
the use of fume hoods or local exhaust ventilation, containment, enclosure, isolation, and 
last, expert guidance [Brouwer 2012; Maynard 2007; Paik et al. 2008; Zalk and Nelson 
2008]. 

Exposure or emission potential bands are qualitative descriptors of potential exposure 
levels, given the factors that may influence exposure such as dustiness, type of process 
or task performed, and the amount of material being handled (ISO 12901-2) [ISO 2014]. 
The standardized dustiness test configurations (i.e., continuous drop and rotating 
drum), described in EN15051 [CEN 2013a–c] and discussed later in Sections 3.b.2.A and 
3.c.2, provide threshold dustiness values to which a tested product may be compared. 
Values can ultimately be designated for each of the health-based particle size fractions, 
such as very low, low, medium, or high dustiness (exposure potential). Those products 
with higher dustiness, and therefore exposure potential (depending on hazard), may 
require more stringent control measures. Dustiness values, as we will see later, may 
range by several orders of magnitude. A dustiness parameter, where available, is a 
useful input into CB tools. Further guidance on control banding may be found in NIOSH 
[2009], ISO [2014], and HSE [2017b]. 

h. How dustiness testing may be used 
A major reason for work-related ill health and disease is airborne dust that results from 
the dustiness of a powder [Burdett et al. 2000]. Dustiness testing data may be used in a 
myriad of ways. In this chapter, we will not cover all ways in which data can be used. We 
will provide the reader with some perspective on the possibilities with respect to 
occupational safety and health. The strong correlations generally observed between 
dustiness and inhalation exposure, and which are used as an exposure potential input in 
control banding, are discussed in Sections 2.e and 2.g. 

In product and process engineering, dustiness information may inform the development 
of less dusty products or forms of the same material. Efficacy of dust suppression 
additives, such as moisture or oil, for example, may inform a substitution control. Less 
dusty (reduced dustiness) products can greatly benefit downstream users. The selection 
of appropriate surrogate powders (e.g., lactose, mannitol, and naproxen sodium) for 
assessing exposure control performance in pharmaceutical manufacturing can be based 
off dustiness performance data of the active pharmaceutical ingredient (API) or 
formulations containing the API. The use of dustiness information (with reference to the 
method used) can be included with safety data in communicating hazards (health or 
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safety) to downstream users about the potential for dust generation through handling of 
a product. Data derived from experimental test systems, which emulate the dispersion 
characteristics of propagating coal dust explosions, may be used in selecting effective 
mitigating products [Perera et al. 2016]. 

The dustiness of a new or unknown powder may be compared with that of a more 
familiar powder. This could be done through laboratory dustiness tests of both powders 
and through workplace inhalation exposure measurements, typically conducted in the 
worker breathing zone. The effect on inhalation exposure measurements in the 
workplace may then be directly related back to the differences in powder properties. 
One may also compare a new or previously unknown powder to the threshold dustiness 
values included in EN15051-2 and EN15051-3 [CEN 2013b,c] (and see Sections 3.b.2.A 
and 3.c.2), if these test configurations are used. Dustiness comparisons can help identify 
improvements needed in manufacturing equipment design and exposure controls before 
the new powder goes into full scale production. These are examples of exposure 
prevention through design [ANSI/ASSP 2021].  

A further use of dustiness test systems is to compare aerosol sampler or instrument 
performance [e.g., Dahm et al. 2019; Evans et al. 2010] from a well-mixed contaminant 
atmosphere or perhaps to further method development and validation [e.g., Baron et al. 
2008; Neu-Baker et al. 2019]. In this application, dustiness test systems provide a 
realistic source of contaminant dust, one that might be encountered in the workplace, 
for example. 

3 Dustiness test methods 

a. Classification of methods 
It is useful to classify the various dustiness test systems by the mechanism used to 
generate airborne dust. Lyons and Mark [1992] noted that one must consider the way 
dust is dispersed and sampled when designing a dustiness test method. A number of 
dustiness test configurations have been described in the past. When initially classifying 
different dust generation testing methods, BOHS and others categorized them into three 
main methods: gravity (drop methods), mechanical dispersion (including rotating 
drums in this case), and gas dispersion (aerated fluidization) [BOHS 1985; Chung and 
Burdett 1994].  

The goal of all dustiness methods is to produce results that relate the mass of airborne 
dust produced to the mass of the original powder [Boundy et al. 2006; Burdett et al. 
2000]. The more widely used examples are discussed here, however, readers can find 
less notable examples in other sources [e.g., BOHS 1985; Hamelmann and Schmidt 2003, 
2004].  

For a historic view, BOHS [1985] reviewed 18 dustiness test devices that existed at the 
time, and Hamelmann and Schmidt [2004] documented more than 65 devices. Over the 
intervening years, as of 2023, many more devices have been developed. In further 
sections, test configurations described are categorized into gravity-induced methods, 
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rotating methods (closely affiliated with gravity-induced methods), fluidization 
methods, and aerodynamic methods. These categories are used because they more 
appropriately describe the underlying material-dispersion processes. 

b. Gravity-induced test configurations 
A falling powder within the workplace is a very common mechanism of airborne dust 
generation, whether part of a materials transfer processes, activity, or an accidental 
spill. It is no coincidence that many historical dustiness test configurations are within 
this category. Falling powder test systems can use one of three different methods: a 
single drop type, where a powder sample is dropped as a single bolus and impacts with a 
solid surface; multiple drop types (such as rotating test configurations discussed in 
Section 3.c); or continuous falling types, where a continuous stream of powder winnows 
down a test chamber.  

Some test configurations include the contribution from the powder impacting the solid 
surface, yet others do not [e.g., Heitbrink et al. 1992]. As noted by BOHS [1988], when 
comparing dustiness devices, continuous falling methods generally provide more 
consistent results than single drop methods. Although with notable exceptions, the 
majority of falling powder configurations have been of the single drop type. 

1) Single drop configurations 
An early test device to quantify dust release from coal and coke was developed in 1928 
[Powell and Russell 1933]. This device was the first reported quantitative dustiness test 
configuration and used the single drop method. The investigators were motivated as 
dustless or low-dust domestic solid fuel products became commercialized. They realized 
that an empirical method was needed to quantify dust release so the effectiveness of 
dust suppression (laying) additives could be assessed.  

A metallic dust-tight enclosure, which was 1,520-millimeters (mm) or 5-feet (ft) high 
and 457-mm or 18-inches (in) wide and deep, incorporated three horizontal slides and a 
305-mm (12 in) deep drawer. A large upper slide inserted 305 mm (12 in) below the top 
of the cabinet formed the base of the initial test powder compartment. In here, a massive 
25 kilogram (kg) or 55 pounds (lb) of the dried test sample was loaded. Two polished, 
passive settling slides (one situated above the other), inserted 610 mm (24 in) above the 
base of the sample receiving drawer, were used to collect the settled dust. The dried test 
powder was loaded with the upper sample compartment slide inserted, whereas the 
lower settling slides were initially withdrawn.  

The test began by a rapid withdrawal of the upper slide, t = 0 second (s), allowing the 
25-kg test sample to fall into the receiving drawer at the base of the enclosure. The 
resulting dust cloud, presumably generated during both the powder fall and the impact 
with the receiving drawer, was allowed to settle under gravity. At t = 5 s, the two settling 
slides were inserted into the enclosure. Following 2 minutes of settling (t = 125 s), the 
upper (coarse dust) sampling slide was withdrawn, and the lower (fine dust) slide 
remained. After another 8 minutes of settling (t = 605 s), the fine dust slide was 
withdrawn. The two dustiness indices (coarse dust and fine dust) were collected by 
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carefully brushing off and weighing the dust on the two slides. The results were 
reported in gram/ton of dust to fuel product. 

ASTM D547-41 [1980], a test method for determining the dustiness of coal and coke, 
was directly derived from Powell and Russell [1933] above. The method, first 
standardized in 1939 (ASTM D547-39T), was revised in 1941 (ASTM D547-41), last 
reapproved in 1980, and finally withdrawn in 1986. Only minor changes were 
incorporated into the ASTM D547-41 [1980] test configuration over the earlier Powell 
and Russell [1933] device. The receiving drawer was enlarged to 356-mm (14 in) deep, 
minimum sheet metal gauges were suggested to ensure containment integrity, and an 
optional automated slide insertion was used. The test sample mass was standardized to 
22.7 kg (50 lb), and samples could be tested either as received or dried over 1 to 3 days. 
Duplicate tests were anticipated to have a reproducibility of within 20% of the mean 
average. If this was not initially attained, additional testing was recommended.  

The fine coal or coke dust was denoted as “float” dust. This long-established terminology 
[e.g., BoM 1927] continues today within mining environments to describe airborne coal 
dust particles that remain airborne and may be transported on air currents. These 
particles are defined as those with a diameter less than 75 µm or that pass through a U.S. 
200-mesh sieve [NIOSH 2006]. 

There was also a scaled down version of ASTM D547-41 [1980]. It required a 200-g test 
sample, a pivoting hopper, and a fall of about 400 mm [BOHS 1985]. Active particle 
samplers were used to measure total dust and the thoracic particle size fraction (using a 
horizontal elutriator). 

Andreasen et al. [1939] performed a classical study of the dust-generating capacity of 24 
fine materials. Lycopodium powder (Lykopodium), which contains the spores from the 
Lycopodium clubmoss plant, were used as a reference material and assigned a 
dispersibility of 100. Twenty-three other test powders were then compared. The test 
system comprised a single drop of a 2-milliliter (mL) bolus of powder down a vertical 
chamber with a 145-mm diameter and 2500-mm height. Collection plates at the base of 
the apparatus were used to determine the quantity of dispersed dust by Stokes’ 
gravitational settling. 

A European dyestuff industry consortium developed another single drop configuration 
called the Roaches Dust Particle Apparatus (Roaches Engineering Ltd., UK). It was 
reported in Berger-Schuun et al. [1989] and evaluated by Lyons and Mark [1992]. A 
single 10 g of test powder was dropped from an open funnel at a fall height of 800 mm. 
The powder went through a vertical enclosure and into a cylindrical and initially 
quiescent chamber. Here, the falling powder impacted with the base. Five seconds 
following the test sample drop, a pre-weighed filter positioned at the top of the 
collection chamber (200 mm above the base) started sampling the total dust for 2 
minutes at 15 liter per minute (L/min). 

Another single powder drop device, the Dustview II, developed by BASF and the 
University of Wuppertal (Wuppertal, Germany), is remarkably similar to the Roaches 
Dust Particle Apparatus configuration [Berger-Schuun et al. 1989]. The 30-g powder 
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sample was dropped 750 mm as a single bolus into a chamber where the resulting 
aerosol is optically monitored with an aerosol photometer. A combination of the initial 
dust cloud (maximum concentration) and dust concentration at 30 s provide for a 
dustiness number between 0 and 100.  

Further inspired by the Dustview II configuration, O’Shaughnessy et al. [2012] described 
a single drop low-mass dustiness test system. The powder sample (15 mg) was dropped 
from a height of 610 mm within a metal tube with an inner diameter of 9.5 mm. 
Substituting an aerosol photometer with an aerodynamic particle sizer, O’Shaughnessy 
et al. [2012] estimated the respirable aerosol fraction from the test powder. 

A further single drop test configuration conforms to DIN 55992-2 [1999] and was briefly 
assessed by Burdett et al. [2000]. It consisted of a single drop column, required a 2-g 
dust sample, and used optical extinction to estimate the mass concentration of airborne 
dust. A sliding plate arrangement allowed for several repeat tests. An output of between 
0 and 1 indicated the total dust light-extinction. As with any optically based method, a 
relationship between gravimetric mass and optically derived mass for a given test 
powder needs to be established. 

Burdett et al. [2000] described a novel single/multiple drop test configuration. It used a 
test drop column above a stationary, cylindrical drum. In the drop configuration, a 600-
mm high column held the test powder in a hopper with a trap door, in a similar 
arrangement to the Roaches test configuration previously described. As the experiment 
began, the test powder was allowed to fall the 600-mm length down the column, which 
was fixed atop a 300-mm diameter drum. An impaction plate 200 × 250 mm at the base 
of the drum received the falling test sample. A gentle cross flow of air (38 L/min) 
through the drum transported dust containing air to size-selective foam substrates. A 
final filter allowed for the health-based inhalable, thoracic, and respirable size fractions 
to be determined [ACGIH 1999; CEN 1993; ISO 1995]. In initial testing, the falling test 
powder splashed from the impaction plate to the collection foams, adding considerable 
variability between experiments. This phenomenon was directly observed by removing 
the drum inlet. Later tests incorporated an impaction plate lip to reduce the potential 
sideways splash of the test powder impact. Although this drop test configuration is not 
currently used, the drum received further development, as later discussed in Section 3.c. 

A contemporary drop method, which measures dispersed powder, is the ASTM D6393 
[2021] Carr dispersibility test. It is a single drop configuration described as one of 
several powder tests measured by the PT-X Powder Characteristics Tester. In this test, 
10 g of test powder falls 170 mm unconfined. It then falls through a cylindrical tube with 
100-mm diameter and 340-mm height. The test powder falls another 102 mm, 
unconfined, onto a pre-weighed concave watch glass (with 100-mm diameter). The total 
height of the powder fall is about 612 mm. The dispersed powder is the mass of the 
powder that does not deposit on the watch glass, i.e., is not recovered from the 
experiment. Dispersed powder is usually expressed as a percentage of the original mass 
(10 g) of the powder test sample. This test configuration is focused more on 
manufacturing product performance than from a worker health or a safety perspective. 
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The open nature of portions of the apparatus and the subsequent external loss of some 
fraction of the test powder may preclude the handling of some powders. 

2) Pour or continuous drop configurations 

A pour configuration was described by Wells and Alexander [1978] at Unilever 
(Sharnbrook, UK). This Unilever dust-yield test-configuration was notable as it was one 
of first to consider health-related particle size fractions. During the test, the 100 to 300 g 
test powder was loaded into a wide stainless-steel funnel with a 20-mm stem bore 
diameter and 20-mm length with a closed slide. The slide was opened, allowing the test 
sample to pour a height of about 310 mm into the sample chamber below (within a few 
seconds). Air drawn horizontally across the falling powder at 50 L/min entered a Hexlet 
elutriator and provided the respirable particle size fraction. A similar flow rate across 
the powder and with a simple filter arrangement provided for total dust in a repeat 
experiment.  

To study fugitive dust emissions, a pouring device was described by Lundgren [1986] 
and Lundgren and Rangaraj [1986] at the University of Florida (Gainesville, FL, USA). 
The device simulated pouring and dumping of relatively coarse industrial aggregates, 
such as phosphate rock. The test was similar to the Powell and Russell [1933] and ASTM 
D547 [1980] devices, but it used active instead of passive sampling. Over a 1-min period, 
5 kg of test material was poured down a 1,524-mm (5 ft) column into a rectangular test 
chamber. As the material fell down the column, air was sampled at 1.9 m3/min using a 
standard high-volume (Hi-Vol) sampling configuration located 914 mm (3 ft) above the 
chamber base.  

Cowherd et al. [1989a] at the Midwest Research Institute (MRI; Kansas City, MO, USA) 
described the MRI pouring/drop device. The device had a powder drop height of 250 
mm and fell onto a solid receiving surface. The MRI device was inspired by the earlier 
Lundgren [1986] configuration. A vibrating stainless-steel sample cup of 270 mL, filled 
with 250 g of test powder, was slowly rotated at 0.8 rotations per minute (rpm). This 
resulted in a more continuous stream of powder. The airborne generated dust was 
sampled from the top of the containment chamber with a 47-mm filter at 8.3 L/min for 
10 minutes, resulting in about 4.2 air exchanges within the device. 

A. EN15051-3 [CEN 2013c] continuous powder drop test 

Falling powders are common mechanisms of dust generation within the workplace, 
whether intentional or unintentional. As noted earlier by BOHS [1988], continuous 
falling test methods generally provide more consistent results when compared with 
single drop test methods. The EN15051-3 continuous falling powder test derives from 
an early prototype [Burdett et al. 2000; Dahmann et al. 1997]. A former DIN method, 
DIN 33897-2 [2002], was withdrawn and superseded by EN15051 in 2006. A schematic 
is provided in Figure 2. 



 

 

NIOSH Manual of Analytical Methods  5th Edition  Chapter AD January 2024 Page AD-18 of AD-61 

 

Quantification of Airborne Dusts From Powders 

 

Figure 2: Schematic drawing of the EN15051-3 [CEN 2013c] continuous powder 
drop test configuration: continuous powder (P), main flow (F), inhalable 
sampler location (S1), and respirable sampler location (S2). Dimensions are in 
millimeters. 

In the contemporary EN15051-3 [CEN 2013c] drop test, the powder is continuously fed 
at between (6 g/min to 10 g/min) by a metering device, such as a vibrating chute with 
adjustable feed-rate. The powder moves down a cylindrical feed tube of 400-mm length 
and 15-mm diameter within a larger backflow tube of 150-mm diameter. An earlier 
screw feed metering device could not deliver all test powder types, and in general, 
metering of the powder limits testing to dry powders [Burdett et al. 2000]. The powder 
falls a total height of 1,100 mm within the backflow tube, with the lower end of the feed 
tube positioned 700 mm above the base of the backflow tube and 400 mm below the top.  

The experiment is performed against a slow countercurrent of upward moving air 
controlled at 0.05 m/s (53 L/min). A maximum particle size of about 38 µm can be 
carried by the upward countercurrent and be sampled [Burdett et al. 2000]. Test 
materials with a substantial particle fraction larger than 38 µm may result in a 
significant underestimation of the inhalable particle size fraction [Burdett et al. 2000]. 
The falling powder is collected into pre-weighed filter cups at the base of the apparatus. 
The falling powder is sampled by air samplers conforming to the inhalable (BIA GSP 
conical sampling head at 3.5 L/min) and respirable (BIA FSP cyclone sampling head at 
2.0 L/min) size fractions. This occurs at a height of 300 mm below the top of the 
backflow chamber and 100 mm above the base of the feed tube, typically for about 10 
minutes. The thoracic particle fraction is not quantified in this test configuration.  
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The mass collected by the inhalable and respirable samplers is then compared with the 
mass of powder delivered into the filter cup. A 500-g test sample mass is usually 
required for multiple tests to be performed (a minimum of four repeat tests).  

Threshold values for the continuous drop method have been established from results of 
over 500 test samples (EN15051-3) [CEN 2013c]. The thresholds compare the amount 
of dust released (mg) to the parent powder fed into the test device (kg). For the 
inhalable fraction, less than 1,000 mg/kg is considered very low dustiness; between 
1,000 and 4,000 mg/kg, low dustiness; between 4,000 and 10,000 mg/kg, moderate 
dustiness; and greater than 10,000 mg/kg, high dustiness. For the respirable size 
fraction, less than 20 mg/kg is very low dustiness; between 20 and 70 mg/kg, low 
dustiness; between 70 and 300 mg/kg, moderate dustiness; and greater than 300 
mg/kg, high dustiness. These threshold values and their corresponding exposure 
potential bands for each of the particle size fractions (very low, low, medium, and high 
dustiness) allow for the exposure risk assessment of new and unknown powders.  

EN15051-3 [CEN 2013c] has special application to certain workplace operations where 
the powder is poured a distance through air (perhaps 1 meter or more). Such operations 
might include the filling of containers or bags from a hopper, the filling of silos, or 
transferring powder from a conveyor, where the powder is permitted to fall 
continuously in a stream from a height. The EN15051-3 [CEN 2013c] continuous drop 
method has been further adopted for nanoscale materials and is described in EN17199-
3 [CEN 2019c]. The dust generation portion of the test method remains unchanged, but 
different sampling arrangements may be employed. 

c. Rotating test configurations 
In rotating test configurations, a test powder is rotated within a cylindrical containment 
vessel fitted with internal lifters. As the substrate angle periodically increases, the test 
powder exceeds its angle of repose, and a local avalanche ensues; this aerosolizes a 
fraction of the falling test powder [Evans et al. 2013]. This multiple drop process repeats 
continuously throughout the test as the cylinder is rotated. A falling powder within the 
workplace is a common mechanism of airborne dust generation, as noted earlier.  

Earlier classification of rotating, tumbling, or rolling drum/cylinder configurations 
considered the attrition (break up of larger particles or granules) aspect of these devices 
[BOHS 1985; Lyons and Mark 1994]. For example, in the first known description of a 
rotating test configuration [Cocke et al. 1978], attrition certainly contributed to the dust 
generation from agricultural grains. An attrition element may be present, particularly 
for larger materials such as grains, granules, or pellets, etc. However, the energy 
imparted to the test material that forms the airborne dust comes from the repeated fall 
of the material under gravity—where material is repeatedly scooped up by the internal 
protrusions, fins, lifters, or flights within the drum. So, we could say that rolling, 
tumbling, or rotating drum configurations are an important set of test configurations 
closely affiliated with gravity-induced falling powder methods, particularly those 
configurations operated at lower rotating speeds.  
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The finely divided solid, the internal surfaces of the drum, and air moving through the 
drum interact to generate and transport airborne dust. This dust moves out of the 
working dust-generation section to the sampling section for collection. Drum 
configurations more generally are capable of not only testing powders, but also flakes, 
granules, and pellets, or even larger forms of materials. For larger test materials, dust 
abraded or released from the surface is useful performance information. These larger 
forms are generally considered low-dust alternatives to fine powders. 

Contemporary methods include the EN15051-2 rotating drum [CEN 2013b], discussed 
in later sections; the National Research Centre for the Working Environment (NRCWE, 
Copenhagen, Denmark) small rotating drum (Schneider and Jensen [2008] and 
EN17199-4 [CEN 2019]); Types I and II of the Heubach rotating drum (DIN 55992–1) 
[DIN 2006]; and an Australian coal dust device (AS 4156.6) [AS 2000]. All rotating test 
configurations tumble the same test powder continuously for the duration of the 
experiment. It is feasible that the particle size distribution of the dust released from the 
test powder may potentially change over time. This effect may be most marked over 
longer duration experiments. 

The NRCWE drum [Schneider and Jensen 2008] includes aspects of both the Warren 
Spring Laboratory (WSL; Stevenage, Hertfordshire, UK) and later EN15051 [CEN 2013a–
c] drum configurations, described in Section 3.c.2. A 6-g test sample mass is rotated 
within the NRCWE drum with 163-mm diameter, 5.93-L volume, and 20-mm diameter 
outlet. Three internal vanes, 20-mm deep, lift the test sample no more than 163-mm 
high at a rotation rate of 11 rpm for 1 minute. A 90-mm filter collects the generated dust 
and can be substituted for other particle samplers or by aerosol instruments (e.g., 
EN17199-4) [CEN 2019d].  

Heubach drum configurations were originally developed in formulating dust-reduced 
pigments, potentially those containing toxic lead [Gawol and Adrian 1983]. Stauber and 
Beutel [1984] used a modified Heubach drum device to reduce the dusting potential of 
growth promoters in porcine feed premixes. Heubach drum configurations have seen 
considerable industrial use including chemicals, pharmaceuticals, food processing, and 
construction materials. The original Type I uses a dust-generating drum (140-mm 
diameter, 180-mm length, and three internal vanes) attached to a horizontal glass bottle 
as a sedimentation chamber, prior to collection on a filter cassette.  

The Type II also employs the drum, glass sedimentation bottle, and filter cassette, but it 
is configured with the sedimentation bottle at an angle between horizontal and vertical, 
connected through an intermediate throat. The Type II configuration is typically used for 
dusty materials requiring greater sedimentation, as not to overload the filter. Rotation 
speeds can vary from 0 to 60 rpm and air flow rates from 0 to 40 L/min. These 
parameters are fixed and specified to conform to the DIN 55992-1 standard [DIN 2006]. 
One major drawback to Heubach Types I and II test configurations is that they do not 
provide for the health-based particle size fractions (inhalable, thoracic, and respirable). 

The AS 4156.6 [2000] Australian Standard (AS) drum of 300-mm diameter was 
developed specifically for determining the dust and moisture relationship for coals. As 
moisture content of a coal increases, the dust-generating ability of the coal decreases 
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below the Dust Extinction Moisture (DEM) threshold, corresponding to a dust number of 
10. The dust number is gravimetrically derived from the mass of dust collected within a 
filter bag to the initial test material of 1 kg. The AS 4156.6 [2000] standard was derived 
from the work of Farrugia et al. [1989]. The coal moisture content required to reduce 
coal dust generation below the DEM threshold is informative, as it can be applied to 
reduce dust hazards (health and safety) in transportation, transfer, and further 
processing of the coal. See Section 4.a on moisture content, humidity, and liquid 
additives. One possible shortcoming of this approach is that the moisture content of the 
coal may change over longer time periods, resulting in an increased ability to generate 
dust once the moisture is reduced. 

Heubach and AS 4156.6 [2000] drum configurations operate at higher rotation rates (30 
to 45 rpm, and 29 rpm, respectively) than the EN15051-2 and NRCWE versions (4 rpm 
and 11 rpm, respectively). At higher rotation speeds, air mixing, dust transport, and flow 
regimes appear to differ from configurations that operate at lower rotation speeds [Chen 
et al. 2021; Chen et al. 2023]. Drum configurations that convey inhalable, thoracic, and 
respirable particle size fraction information (e.g., EN15051 [CEN 2013]; EN17199 [CEN 
2019a–e]), discussed in Sections 3.b.2.A and 3.c.2, are generally better suited to address 
worker inhalation exposure concerns. Those from worker health/worker exposure 
backgrounds may be more familiar with these devices. Test configurations that do not 
separate the airborne dust into the health-related size fractions can serve the needs of 
industry for product, process, and batch control, but provide limited information on the 
health hazards [Lyons and Mark 1992]. 

1) Evolution and development of the USDA, WSL, HSE, and CEN rotating tests 

From the original U.S. Department of Agriculture (USDA) rolling device to the Comité de 
Européen Normalisation (CEN) rotating drum, this family of rotating test configurations 
received multiple iterative refinements in dust generation, particle sampling, and in 
general usability. The USDA rolling cylinder [Cocke et al. 1978] was refined by WSL for 
general material handling scenarios [Higman et al. 1984; Taylor 1984].  

Several other investigators [e.g., Goodfellow and Smith 1988; Janhunan et al. 1988; 
O’Farrell and Vaughan 1986] used WSL drum configurations, but also suggested 
incremental improvements. The WSL rolling drum was selected as a promising method 
for further development[Lyons and Mark 1994]. Following a round-robin study by 
multiple laboratories [Lyons et al. 1996], the rotating drum was first adopted as a UK 
standard method (MDHS-81) [HSE 1996]. The rotating drum saw further development 
and refinement [Burdett et al. 2000] and, as a result, was subsequently adopted by CEN 
as one of two European dustiness methods described in EN15051 [CEN 2006]. The 
current EN15051-2 version [CEN 2013b] remains unchanged from the 2006 iteration. 
The EN15051-2 [CEN 2013b] rotating drum is arguably the most developed of the 
dustiness test configurations described in this guidance chapter, and one that has been 
most widely adopted worldwide. 

An agricultural test device, described by Cocke et al. [1978] at the USDA (Clemson, SC, 
USA), consisted of a rolling cylinder, with a 430-mm (17 in) diameter and 680-mm (27 
in) total length, that rotated on a hollow, fixed axle. Three internal angle-iron lifters 
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(dimensions not specified) lifted the test material as the cylinder rotated at 38 rpm. For 
a single test, 1.81 kg (~4 lb) of test material (wheat, soybean, and shelled corn grains) 
were used. Dust-suppressing oil of varying quantities was added as a spray. Following 2 
minutes of rotation, the airborne dust within the upper section of the cylinder was 
actively sampled at 1.5 L/min for varying periods of further rotation (1–10 min), using a 
37-mm, three-section (closed-face) cassette sampling for total dust. The cassette was 
positioned mid-length, with the inlet downward facing. An external vacuum pump, with 
flexible tube routed through the axle, provided the air flow. Grain (wheat) dust levels 
were reduced by more than 92% with an oil content of 0.07% [Cocke et al. 1978]. A 
dust-reduction approach using a mineral-oil additive was earlier applied to cotton 
textiles [Cocke et al. 1977]. 

Inspired by the earlier USDA rolling cylinder, the UK WSL established a rotating test 
system, among other tests, to study dust release, suppression, and prevention from a 
general material-handling perspective [Bransby 1977; Lyons and Mark 1994]. The 40-L 
WSL rolling drum configuration came with detachable conical ends, 110 mm in length, a 
dust generation section 460 mm in length, and a 300-mm diameter. It had a narrow 30-
mm inlet and 20-mm exit [Higman et al. 1984; Taylor 1984] and eight equally spaced 
longitudinal internal lifting vanes (25-mm deep). The rolling drum sat upon two rollers, 
driven by an enclosed motor within the chassis, which rotated the drum assembly at 30 
rpm. An air pump and flow control were housed within the lower chassis.  

The chassis approach, with rollers, motor, pump, and flow control all housed below, was 
retained through the development of these rotating tests. The chassis remains in use 
with the current EN15051-2 standard [CEN 2013b]. The exit consisted of a rotating 
coupling, a pipe, and finally a static, modified, three-stage Anderson cascade impactor 
assembly with a 10-µm preselector, 9-µm impactor stage (coarse), and a final filter (< 9 
µm, fine). The 10-µm preselector minimized overloading of the subsequent 9-µm 
impactor stage. A 100-g test sample was used. A flow rate of 23.8 L/min (1 ft3/min), the 
nominal flowrate required by the Andersen cascade impactor, passed through the drum 
transporting dust laden air to the impactor. The drum rotated initially for 5 seconds. The 
sampling flow commenced, and the drum continued rotation for the next minute. Three 
dustiness values were gravimetrically obtained: coarse (> 9 µm), fine (< 9 µm), and the 
sum of the coarse and fine fractions. The drum and collection substrates were cleaned. 
Two repeat experiments were further completed, for a total of three replicates. 

In 1981, the BOHS Technical Committee and the UK Health and Safety Executive (HSE) 
established a longstanding goal in the selection, development, and standardization of a 
dustiness test method. Lyons and Mark [1994] selected the WSL rolling drum, from 
many test methods available in the early 1990s, as a candidate method for 
standardization. With a 300-mm dust generation diameter, the WSL drum was larger 
than the Heubach drum described in Section 3.c, providing flexibility in the type of 
materials that could be studied (e.g., powders, granules, pellets, lumps of materials, 
damp materials, etc.) Its construction was modular. It was the most versatile of 
dustiness test configurations, replicating dust generation by industrial rotating mixers, 
rotating feeders, or rotating conveyance systems. The WSL drum had been previously 
used to generate a large body of test material data for reference [Higman et al. 1984; 
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Lyons and Mark 1994]. The detachable end cones were very amenable to subsequent 
design changes. 

Lyons and Mark [1992, 1994] suggested that the narrow 30-mm drum inlet and 20-mm 
exit potentially resulted in a central air jet forming. This air jet would not necessarily 
interact and mix sufficiently with dust generation toward the outer walls. Particle losses 
between the dust-generating section and the sampling section (within the pipe and a 90° 
radius in some setups) were thought to be significant, as well as the potential 
misclassification of dust because of impactor stage overloading for very dusty materials. 
Cleaning between experiments could often be laborious and time consuming. 

Test powder initially positioned closest to the WSL drum exit was preferentially 
collected as airborne dust [Lyons and Mark 1994]. Quantitative measurements, with an 
aim of increasing the dust yield, favored a shorter drum length [Lyons et al. 1992]. The 
dust generation section length was shortened from 460 mm to 230 mm, which continues 
in the current EN15051-2 configuration [CEN 2013b]. Lyons and Mark [1994] also 
studied variables, such as test powder mass (25 to 400 g), air flow rate (20 to 40 L/min), 
and test run length (5 seconds to 4 minutes) to maximize the quantity of dust entering 
the sampling section at a drum rotation of 30 rpm. Following initial testing, an air 
flowrate of 40 L/min (initially), dust dispersion time of 1 minute, and a test mass loading 
of 200 g were further selected for the anticipated large range of materials that would 
ultimately be tested.  

The sampling system required a significant redesign considering the newly defined (at 
that time) inhalable, thoracic, and respirable particle size fractions [CEN 1993; Chung 
and Burdett 1994; Lyons et al. 1992]. To achieve these particle size fractions, 
experiments were done to validate the use of porous polyester foams as particle size-
selective collection media for the drum, based on long-established prior research and 
practice [Aitken et al. 1993; Brown 1980; Gibson and Vincent 1981; Roesler 1966; 
Whitby et al. 1961; Vincent et al. 1993]. 

Porous polyester foams of 30 pores per inch (ppi) and 90 ppi were selected; these were 
25-mm thick and, nominally, 150-mm in diameter. Glass fiber filters of initially 70-mm 
diameter (prototype), and later 140-mm diameter (final version), were installed at both 
the inlet and dust collection ends of the drum. The central 130-mm diameter of the open 
foams collected the generated dust within a slightly larger (150 mm) aluminum carrying 
frame. A spacing insert placed between the drum and the first foam was found to have 
an insignificant effect on the resulting sampled dust. The flow rate through the drum 
was reduced slightly from 40 L/min to 38 L/min to provide a closer agreement between 
measured foam penetration to that of the thoracic and respirable particle size fractions 
within an acceptable 10% error. The 38 L/min flow rate remains in the current 
EN15051-2 standard [CEN 2013b].  

Incidentally, and at least not initially by design, the combination of conical geometry and 
flow rate through the drum exit closely followed the inhalable particle size fraction. 
Lyons and Mark [1994] assessed particle penetration experimentally with sodium 
fluorescein and aloxite particles fed axially into the entry. Good agreement was observed 
with the inhalable size fraction for particles up to 30-µm aerodynamic diameter. As 
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particle diameter further increased to 46 µm, particle penetration tailed off. Only those 
particles that were carried by the gentle lateral airflow and escaped the dust generation 
section could ultimately be quantified. The foams and filters rotated with the drum 
assembly. The foam and filter diameters made gravimetric weighing challenging. Only 
gravimetric balances (with four decimal places) capable of accommodating large media 
diameters could be used. Weighing/carrying frames held collection media in a vertical 
position during weighing. 

For larger test sample masses (e.g., 200 g), there was some initial concern over the dust 
loading capacity of the porous foam media [Breum 2000]. Lyons and Mark [1994] 
reported that sample masses as high as 20 g could be reliably collected on porous foam 
media. With higher mass loadings, care in handling was needed to minimize dislodging 
collected material. A significant limitation was that polyester foams were subject to 
weight variations due to the uptake of atmospheric water vapor. Therefore, creating the 
need for two foam sets, one set in the entry to the drum (as controls) and another at the 
exit as collection media. An alternate method, using five sets of control foams set aside, 
was also feasible, but required many more gravimetric measurements to be made. The 
potential weight instability of the foams led to a measurement limit of about 6 mg on 
each foam, that is, dust loadings over 6 mg could conceivably be quantified. Lyons and 
Mark [1994] reported a range of dustiness values spread over five orders of magnitude 
was possible with the new prototype drum configuration, using 23 test materials from 
across different industrial sectors. 

A round-robin study of the HSE/WSL prototype drum was eventually done by five 
laboratories using ten industrially relevant materials [Lyons et al. 1996]. A minimum 
four decimal place balance was stipulated. Results from low to high dustiness test 
materials spanned about four orders of magnitude (from ~1 to 10,000 mg). Respirable 
fractions below ~4 mg represented values below the test resolution limit. At least five 
dustiness measurements were recommended for each test material. A standardized 
version of the HSE/WSL drum was adopted as a UK method (MDHS-81) [HSE 1996].  

The MDHS-81 [HSE 1996] rotating drum underwent further development and 
refinement by Burdett et al. [2000] and was recommended for further CEN technical 
workgroup consideration as a European standard. Much of the Burdett et al. [2000] 
study focused on optimizing the foam collection media and test variables that potentially 
influenced dustiness measurement. The adoption of metalized (nickel) porous foams 
largely mitigated the moisture (weight) variation issue of the earlier polyester foams. A 
control set of foams was no longer required, simplifying the configuration and the effort 
needed to perform a single test. Weighing weight-stable collection media improved 
precision and accuracy. This was particularly important for the quantification of low-
dustiness materials. As a result of smaller foam diameters (150 mm reduced to 80 mm), 
a larger potential pool of analytical balances could be employed in the quantification of 
the collected dust.  

Smaller foam diameters meant the drum had to have a smaller conical exit geometry, 
going from a 150-mm to 80-mm diameter. The 150-mm inlet and 80-mm exit remained 
in the current EN15051-2 standard [CEN 2013b]. The porosity (reduced from 30 to 20 
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ppi, and from 90 to 80 ppi) and dimensions of the foams (reduced from 150-mm to 80-
mm diameter and from 25-mm deep, reduced to 20-mm and 12-mm deep) also changed 
to ensure the particle penetration of the foams continued to closely match the thoracic 
and respirable particle size fractions [CEN 1993]. The larger foam porosities (smaller 
ppi numbers) also improved dust loading capacities. The later nickel foams with 80-mm 
diameters (20-ppi and 20-mm deep; 80-ppi and 12-mm deep) are retained in the 
current EN15051-2 standard [CEN 2013b]. 

The latter 80-mm conical exit geometry was tested with four aloxite test dusts, fed 
axially into the drum entry at particle sizes up to about 60 µm [Burdett et al. 2000]. A 
generally good agreement with the inhalable particle size fraction was observed. An 
improvement was seen, particularly at larger particle sizes, over earlier iterations 
[Lyons and Mark 1994]. Standard conditions that further maximized dust release 
consisted of an electrically grounded (earthed) rotating drum, operated over a period of 
one minute, and used a low moisture content dust, at a relative humidity of 50% 
[Burdett et al. 2000]. These parameters were also further adopted. A summary of test 
variables for these rotating test configurations is provided in Table 1. Test 
configurations are typically fabricated from stainless steel. 

Table 1. Parameters for notable, commonly used, or standardized rotating 
dustiness test configurations. Values in bold denote the most frequently used 
or standardized variable when several values were reported.  

Drum Drum 
Diameter 
(mm) 

Drum 
Length 
(mm) 

Vanes & 
Rotation 
Rate 

Flow 
Rate 
(L/min)

Dust 
Collection 
Method 

Test 
Powder 
Quantity 

Test 
Duration 

Cocke et al. 
[1978] USDA 
Agricultural 
Dust Cylinder 

430 680 3 vanes, 38 
rpm 

1.5 37-mm three-
piece (closed-
face) cassette
within upper 
cylinder 

1,810 g 1 to 10 
min 

Heubach (DIN 
55992-1) [DIN 
2006] 

140 180 3 vanes* 30 
to 45 rpm 

20 Settling 
chamber and 
filter 

100 g 5 min 

WSL Drum 
[Higman et al. 
1984; Taylor 
1984] 

300 
(30 inlet and 
20 outlet) 

460 with 
detachable 
110-conical 
ends 

8 vanes, 30 
rpm 

28.3 (1 
cfm) 

Stationary 
three-stage 
Anderson 
Impactor, 10 
µm, 9 µm, and 
filter 

100 g 
evenly 
along 
drum 

1 min 

Prototype WSL 
Drum [Lyons 
and Mark 
1994] 

300 
(30 inlet and 
20 outlet) 
initially then 
modified to 
150 to 
accommodate 
foams at inlet 
and exit 

460 
Shortened 
to 230 

8 internal 
vanes, 25-
mm deep, 2-
mm width, 
30 rpm 

20, 28.3, 
35, 40, 
and 
38 

Three-stage 
Anderson 
impactor, then 
150-mm 
diameter 
polyester 
foams (30 ppi 
and 90 ppi)
and filter at 
inlet and 
outlet (130-

25 g, 100 
g, 200 g, 
400 g 

5 s, 20 s, 1 
min, 2 
min, 4 min 
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Drum Drum 
Diameter 
(mm) 

Drum 
Length 
(mm) 

Vanes & 
Rotation 
Rate 

Flow 
Rate 
(L/min)

Dust 
Collection 
Method 

Test 
Powder 
Quantity 

Test 
Duration 

mm effective 
foam 
diameter) 

HSE MDHS 81 
[1996] 
HSE/WSL drum 

300 
(150, foams, 
in carrier 
frames) and 
filters at both 
inlet and exit) 

230 8 internal 
vanes, 30 
rpm 

38 150-mm 
diameter 
polyester 
foams (30 ppi 
and 90 ppi)
and filter at 
inlet and 
outlet (130-
mm effective 
diameter) 

200 g 1 min 

Burdett et al. 
[2000] 
modified 
HSE/WSL MkII 
drum 

300 
(150 inlet, 80 
exit) 

230 8 internal 
vanes, 25-
mm deep, 4 
rpm 

38 Proposed 
nickel foams 
of 80-mm 
diameter with 
larger pores 
(20 ppi and 80 
ppi) to negate 
overloading 

Standard 
volume 
(35 mL) 
but also 
weighed 

1 min 

AS 4156.6 [AS 
2000] 
Determination 
for dust 
moisture 
relationship for 
coal 

300 (40 inlet, 
40 exit) 

300 with 
100 conical 
exit 

8 lifters, 7-
mm wide 
and 6-mm 
deep, 29 rpm 

170 Vacuum bag 1,000 g 10 min 

Small-rotating 
drum NRCWE 
(Denmark) 
[Schneider and 
Jensen 2008]† 

163, 20 exit, 
5.93-L total 
volume 

230 dust 
generation 
section, 63 
conical ends 

3 internal 
vanes, 20-
mm deep, 11 
rpm 

11 90-mm filter 
plus aerosol 
instruments

6 (and 2) g 1 min 

EN15051-2 
[CEN 2013b] 

300 
(150 inlet, 80 
exit) 

230 dust 
generation 
section, 
130-mm 
conical 
inlet, 80-
mm conical 
exit 

8 vanes 25-
mm deep, 2-
mm width, 4 
rpm 

38 80-mm 
diameter, 
nickel foam 
(20 ppi and 80 
ppi) and filter 
(60-mm 
effective
diameter) 

35 mL 
weighed 

1 min 

*Internal vanes do not point radially toward the center of the drum, as in most other drum test
configurations. †The NRCWE (Denmark) small rotating drum is the only configuration to specify
internally polished surfaces (450+/–50 gloss units). In the EN17199-4 Standard [CEN 2019d], the
inner surfaces of the small rotating drum are polished to a mean roughness profile of 0.19 µm, which
may be obtained by vibratory polishing.

2) The CEN [2013] EN15051-2 rotating drum

The contemporary EN15051-2 [CEN 2013b] drum is arguably one of the most widely
used test methods worldwide for determining the dustiness of bulk powders. It has been
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employed to quantitatively assess a large range of industrially relevant test materials, as 
well as those commercially used. As noted in the previous section, the test configuration 
received significant attention by multiple laboratories while being developed, resulting 
in several iterative performance and usability improvements. The EN15051-2 drum has 
been adopted globally by many research institutions and is used routinely within 
industry and commercial laboratories.  

A falling material height of less than 300 mm within the drum closely approximates 
gentle to moderate manual (seated or standing) benchtop procedures involving 
powders within the workplace. These procedures might include scooping, weighing, 
transferring, and preparing powder subsamples for quality control, for example. The 
drum also approximates well the dust generated from using industrial mixers and bulk 
rotational conveyance methods.  

The apparatus consists of a stainless-steel drum with a 300-mm internal diameter on a 
lower rotating roller assembly with pump and air flow control. The drum is electrically 
bonded and grounded to the equipment electrical power supply. The ultimate fall height 
of less than 300 mm is influenced by the angle of repose for the powder (an indication of 
how cohesively the powder behaves). This determines how far the powder travels into 
the upper portion of the drum before cascading down under gravity. The pre-weighed 
test powder (35 mL) is loaded evenly along the base of the dust-generating section of 
the drum, prior to final assembly of the 150-mm inlet with filter. The drum rotates at 4 
rpm for a total 1-min test cycle. Air is drawn through the drum at 38 L/min for the entire 
test period, passing through the 150-mm diameter inlet filter, the 300-mm diameter 
dust generation section, and, finally, the 80-mm diameter dust sampling system. A 
schematic of the rotating drum is shown in Figure 3. Within the dust generation section, 
a winnowing air current with a mean velocity of 0.9 centimeter per second (cm/s) is 
generated [Burdett et al. 2000]. The Reynolds number for the air flow within the central 
dust generation section of the drum is Re~570 and indicates the flow is gentle and 
laminar [Chen et al. 2021]. The Reynolds number at the drum inlet is Re~1140 and at 
the exit is Re~2140 [Chen et al. 2021].  

The sampling section of the drum is next to the dust generation section. It consists of 
two porous, metallic (nickel) foams (20-ppi or 800 ppm, 20-mm depth; and 80-ppi or 
3,200 ppm, 12-mm depth). The 80-mm diameter foams are followed by an 80-mm 
diameter quartz-fiber final filter. The conical geometry that transitions between the dust 
generation section of the drum to the sampling section of the drum, at the 38 L/min 
flow, provides for the inhalable particle size fraction. The two foams and filter in the 
sampling section are each separated by 2-mm thick annular gaskets, with 80-mm outer 
diameter and 60-mm inner diameter. The effective sampling area of the foams and filter 
used for dust collection is therefore the central 60-mm portion. The combined weight 
change of the metallic foams and the quartz filter provides the inhalable, thoracic, and 
respirable particle size fractions simultaneously from a single experiment. A minimum 
of three replicate experiments are usually performed. If the relative standard deviations 
of the results are not within 10%, further replicates may be required. Results are 
typically expressed in mg/kg for each of the particle size fractions. Dustiness values for 
materials tested within the drum can span about four orders of magnitude [e.g., Chung 
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and Burdett 1994; Lyons et al. 1996]. Potential suppliers of the rotating drum apparatus 
are included in the EN15051-2 standard [CEN 2013b]. 

 

Figure 3. Schematic of the CEN [2013b] EN15051-2 rotating drum with 
dimensions in millimeters. Air flow at 38 L/min enters from the 150-mm 
filtered inlet (left) and goes through the 300-mm diameter dust generation 
section. It then enters the 80-mm dust collection section (right), consisting of 
three annular gaskets, two porous foams, and a final quartz filter.  

Figure 4 shows a photograph of the porous cylindrical foams and filter. The air flow 
finally passes through a radial rotating union to flexible tubing, a pump, and flow 
controller. The whole drum assembly sits upon a chassis and is rotated by two external 
rollers (not shown) at 4 rpm. 

A minimum five decimal place analytical balance (i.e., from 1-g, readability to 0.01 mg) is 
required for quantifying the dusts collected on the size-selective foams and filter 
(EN15051-2) [CEN 2013b]. Clean metallic foams typically weigh ~40 to 60 g. Clean 80-
mm quartz-fiber filters typically weigh 270 to 285 mg. The draft shield of the analytical 
balance needs to be large enough to hold the 80-mm filter without the filter contacting 
the walls. An analytical balance with a minimum resolution of 0.1 g is required for 
weighing the 35-mL bulk test samples (EN15051-2) [CEN 2013b]. 

The EN15051-2 [CEN 2013b] drum has been used in characterizing nanoscale materials 
in EN17199-2 [CEN 2019b]. Gravimetric measurements are first performed by following 
EN15051-2 [CEN 2013b] and provide for the conventional inhalable, thoracic, and 
respirable dustiness fractions reported in mg/kg. In the EN17199-2 [2019b] 
configuration, the two porous foams and filter are replaced with an annular spacer (80-
mm outer diameter and 60-mm inner diameter). An axial rotating union replaces the 
more typical radial rotating union that connects the drum to the system flow control and 
vacuum pump. The spacer and axial union allow for further external measurements to 
be made by aerosol instruments. The tubing needs to be kept short and sharp bends 
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should be avoided to minimize particle transport losses. The total flow through the 
drum needs to be maintained at 38 L/min. 

 

Figure 4. The two porous nickel foams (20 ppi top left and 80 ppi middle) and 
final quartz filter (base) used to collect the generated dust within the rotating 
drum (photo provided by D.E. Evans, NIOSH). The foams and filter have 80-mm 
diameters. The sample collection media are typically separated by 2-mm thick 
annular gaskets (80-mm outer diameter and 60-mm inner diameter, not 
shown).  

Threshold values for the rotating drum method have been established from over 220 
test samples (EN15051-2) [CEN 2013b]. The thresholds are based on the amount of dust 
released (mg) compared with the parent powder initially added to the test device (kg). 
For the inhalable fraction, less than 300 mg/kg is considered very low dustiness; 
between 300 and 650 mg/kg, low dustiness; between 650 and 3,000 mg/kg, moderate 
dustiness; and greater than 3,000 mg/kg, high dustiness. For the thoracic fraction, less 
than 80 mg/kg is considered very low dustiness; between 80 and 300 mg/kg, low 
dustiness; between 300 and 1,000 mg/kg, moderate dustiness; and greater than 1,000 
mg/kg, high dustiness. For the respirable size fraction, less than 10 mg/kg is very low 
dustiness; between 10 and 60 mg/kg, low dustiness; between 60 and 210 mg/kg, 
moderate dustiness; and greater than 210 mg/kg, high dustiness. These threshold values 
and their corresponding exposure potential bands for each of the particle size fractions 
(very low, low, medium, and high dustiness) allow for the exposure risk assessment of 
new and unknown powders. 

Burdett et al. [2000] noted that surface adhesion was an important test system variable, 
yet a polish or roughness value was not later specified in the EN15051 [CEN 2006] or 
later [CEN 2013a–c] standards. In contrast, the Schneider and Jensen [2008] NRCWE 
small rotating drum specified a surface polish or roughness value of 450+/–50 gloss 
units. In the EN17199-4 standard [CEN 2019d], the inner surfaces of the small rotating 
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drum are polished to a mean roughness profile of 0.19 µm, which as noted, may be 
obtained by vibratory finishing. 

The coupling of the test powder, the internal surfaces of the test apparatus, and the 
cross airflow are important aspects of all rotating drum dustiness test configurations. 
The internal surface plays a larger role in drum test configurations than in others, such 
as falling powders. Intuitively, the roughness of the inner surfaces within the drum may 
influence wall adherence of the powder; but how much of that powder takes part in the 
experiment and what particles can escape the drum and be quantified. Different 
manufacturers of the standard test equipment may source different construction 
materials, so the internal surface roughness or polish quality may vary. We anticipate 
that a more polished finish would likely reduce inner wall adherence and maximize dust 
generation. Conducting multiple experiments in a series may help negate wall-
adherence, with test material from the first experiment potentially pre-coating the 
internal surfaces. In practice, between experiments of the same powder, the excess 
powder is removed, but the internal surfaces may remain coated. 

d. Fluidized test configurations 
Fluidization may result in some fraction of powdered test materials being entrained 
within air. Fluidized methods may be further grouped into aerated or aero-fluidization 
and vibrating or vibro-fluidization. Fluidized methods are generally limited to dry test 
materials [Burdett et al. 2000]. Broßell et al. [2019] provide a summary of different 
fluidization modes for further reading. 

Schofield et al. [1979] at WSL described an aero-fluidized device consisting of a vertical 
glass tube, 2,050-mm long with 70-mm inner diameter, and a porous base where a 400-g 
test sample was placed. The sample, consisting of no less than 10% test material (40 g) 
and no more than 90% (360 g) 350–500 µm sand, was pulvated (fluidized) by air at a 71 
L/min flow rate through the medium. This was a two-component test sample and test 
configuration. A proportion of the aerosol was drawn iso-kinetically into an Andersen 
cascade impactor (size range ~1–10 µm). The remainder of the aerosol was vented to 
the atmosphere. Dust was collected over a 1-min sampling period. The dustability 
(dustiness) of the test sample was determined as a cumulative emission rate in mg/min 
of “fines.” 

An additional method was ASTM D4331-84 [1984], withdrawn in 1988, that assessed 
the effectiveness of dedusting agents mixed with powdered chemicals. ASTM D4331 
could be classified as a combined aero- and vibro-fluidized testing configuration. A 
vertical, butyrate-plastic tube, with a 73-mm (2 7/8 in) internal diameter and 457-mm 
(18 in) height, acted as the vibrating housing where an initial 200-g test sample was 
placed. A pneumatic vibrating device, operating at 29 kilohertz, was clamped to the 
housing. An aeration flow of 15 L/min provided a face velocity of 6 cm/s up through the 
tube. Fluidized powder was applied from a polyester fabric-covered base. The vibrating 
housing prevented defined air channels from forming within the test powder column. A 
fraction of the dust-laden air was collected on a two-piece (open-face) 37-mm filter 
cassette for 20 minutes. Excess dust-laden air was vented to the atmosphere through an 
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optional 73-mm filter. The gravimetric mass of material collected on the filter provided 
the dustiness measurement. 

Both fluidized methods described above suffered from electrostatic charge buildup, with 
particles adhering to the glass and butyrate walls of the devices [Cowherd et al. 1989a]. 
Fluidized methods are known for triboelectrification within the powder bed, and these 
charges subsequently carried on aerosolized particles. A further fluidized test 
configuration [Sethi and Schneider 1996] was assessed by Burdett et al. [2000] but not 
considered for further standardization.  

The BOHS Technology Committee Working Party on Dustiness Estimation [BOHS 1985] 
reviewed six aerated or aero-fluidizing (gas dispersion) methods, including the WSL 
fluidized method [Schofield et al. 1979]; however, they did not recommend a fluidized 
method as practical for dustiness standardization. A primary factor was limited 
relevance to workplace operations that would result in worker exposures [BOHS 1985]. 
All fluidized methods agitate the same test powder sample over and over. The particle 
size distribution of the dust liberated from the test sample at the beginning of the test 
may differ from that liberated toward the end. The longer the test duration, the more 
marked this difference may be.  

Contemporary fluidizer-based dustiness methods include the EN17199-5 [2013e] vortex 
shaker and a vibro-fluidization method specifically developed for dispersing fibrous 
materials [Broßell et al. 2019]. Vibro-fluidization contributes to aerosol generation in 
both test configurations. In the Broßell et al. [2019] combined aero- and vibro-fluidizer 
device, an upright aluminum sample tube (with 25-mm inner diameter, tapering to 16 
mm at the top) was oscillated vertically at frequencies between 10 and 60 Hz and 
amplitudes between 0.05 and 1.5 mm. An air flow between 0.1 to 1.0 L/min was passed 
up through the vibrating powder column. A 300-mg test sample mass sat on a stainless-
steel mesh at the base of the column. A variety of aerosol sampling and collection 
configurations could be connected to the device through a small (0.5 L) mixing chamber. 
A 75-min sampling time was noted. One of the major drivers for developing this device 
was the fiber analysis and counting according to the WHO phase-contrast method [WHO 
1997]. 

1) Vortex shaker 

The vortex shaker was first described as an approach to qualitatively aerosolize and 
study the properties of airborne single-walled carbon-nanotube particles [Maynard et al. 
2004]. The device released particles from a 100-mg bulk powder sample. This work was 
conducted in parallel with some of the first reported nanomanufacturing workplace 
studies, also described by Maynard et al. [2004]. An initial attempt to use a conventional 
two-component fluidized aerosol generator, with the air flow fluidizing the medium 
(aero fluidization), was insufficient in aerosolizing the test powder for further analysis. 

A more aggressive agitation with the vortex shaker (vibro-fluidization) was then 
attempted in both single- and two-component configurations. In the two-component 
mode, an aerosol contribution from the 70-µm bronze beads was detected. As further 
remarked by Maynard et al. [2004], “...it should not be assumed that the laboratory-
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based method of aerosol generation provides a definitive characterization of workplace-
related processes.” The authors recognized potential limitations with the vortex shaker 
approach.  

Relevance to the workplace is a cornerstone of dustiness test methods from a worker 
inhalation exposure perspective. The close match between workplace operations or 
activities to dustiness test methods has historically been well understood [e.g., BOHS 
1985; Lidén et al. 2006; Lyons and Mark 1992]. A subtle but very important distinction 
exists between laboratory aerosol generation techniques and quantitative dustiness test 
methods: the latter being those test configurations that tell us something about the test 
powder from a workplace health or safety perspective [e.g., Boundy et al. 2006; Evans et 
al. 2013; Lidén 2006]. 

In the EN17199-5 [CEN 2019e] approach, a small volume (0.5 mL) of the test powder is 
held within a vertical tube (31-mm internal diameter and 110-mm length) with a conical 
base. The test sample tube is vigorously shaken in an orbital motion (4-mm amplitude 
and 1,850 rpm at the base). An airflow (4.2 L/min) is introduced at the top fixed portion 
of the vertical tube and directed toward the powder sample with a smaller internal tube. 
The air does not pass through the test powder column as in aero-fluidization 
configurations. A small fraction of the fluidized particles from the top of the powder 
sample is transported by the airflow that ultimately exits in the opposite direction to the 
inflow. The vortex shaker is coupled to a cyclone to provide the respirable aerosol 
fraction. Ku et al. [2013] reported that small configuration or operational changes can 
have a potentially sizeable effect on the aerosol output from the vortex shaker. Ku et al. 
[2013] also reported the temporal evolution of the particle-size distribution of the 
aerosol generated by this method. This implies significant kinetic redistribution within 
the heterogeneous powder. While these effects are not completely understood, they 
underscore the challenges with this approach. 

e. Aerodynamic test configurations 
Aerodynamic dust dispersal mechanisms are observed in nature (i.e., Aeolian processes) 
[e.g., Bagnold 1941; Cowherd 1981; Gillette et al. 1974; Visser 1992]. These are highly 
relevant to the workplace, though perhaps not encountered as often as the gravity-
induced mechanical dispersion experienced by falling powders. Aerodynamic dispersion 
involves the movement of air over a powder, in contrast to the movement of powder 
through air (mechanical dispersion). Aerodynamic dust dispersion can be differentiated 
from air moving through a test powder column (such as aero fluidization discussed 
earlier or gas dispersion described by [BOHS 1985]). Airborne dust generation and 
subsequent worker inhalation exposure from certain industrial processes or activities 
might be better simulated by aerodynamic dustiness test configurations.  

Pneumatic conveyance systems (where air flow is used to transfer powders or other 
bulk solids within enclosed equipment) are common industrial transfer applications that 
have been available since the late 1960s [Bransby 1977]. Though not initially in powder 
form, another aerodynamic process example involves the removal of surface-grown or 
adhered products from substrates with a focused air jet. Products may then be collected 
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as a fine powder downstream for further processing. Using an air jet or air knife to clean 
contamination from a surface, or for drying or cooling manufactured parts, is also an 
aerodynamic process. A resulting aerosol is a finely divided solid suspended within the 
airflow. 

The uncontrolled cleaning of contaminated clothing, surfaces, or process equipment 
using compressed air, although not recommended either from an exposure or safety 
perspective, is nevertheless observed in the workplace [Evans et al. 2013]. The closing 
and cinching of bags during product filling, and the removal of air from bags prior to 
disposal [e.g., Evans et al. 2010; Hammond 1980], can also be responsible for 
aerodynamic airborne dust generation. In general, these are vigorous dispersal 
mechanisms where moving air imparts kinetic energy to the powder. The underlying 
dust dispersion mechanism is by aerodynamic shear, consistent with a steep air velocity 
gradient. The result is typically highly turbulent air flows characterized by high 
Reynolds numbers. The aerodynamic reentrainment and dispersion of combustible dust 
from surfaces are responsible for the transmission of dust explosions [e.g., Cashdollar 
2000; Eckhoff 2003; Perera et al. 2016]. 

An overview of aerodynamic dispersion mechanisms and available approaches for 
aerodynamically dispersing powders is provided by Calvert et al. [2009]. One of the 
underlying aerodynamic phenomena common to many dispersal devices is the Venturi 
effect. The Venturi effect is a reduction in fluid (air) pressure, resulting from a 
constriction within a pipe or tube. This reduced pressure region can be used to draw 
powder, aerosol, liquids, or other materials, and introduce them into a fast-moving 
airflow. The acceleration (or deceleration) of powder particles within the airflow 
provides enough aerodynamic shear to break up agglomerates that are held together by 
the relatively weak interactive forces (such as van der Waals). Multiple commercial 
dust/aerosol generators rely on the Venturi principle to combine powders/dusts and 
rapid air flows into airborne dusts/aerosols.  

1) UNC Venturi 

Boundy et al. [2006] at the University of North Carolina (UNC; Chapel Hill, NC, USA) 
introduced a novel dustiness testing device for pharmaceutical application. It allowed 
small (mg) quantities of pharmacologically active powder to be safely dispersed within a 
fully enclosed device. The device used a small stainless-steel funnel/nozzle arrangement 
where 5 mg of a test powder sample was initially placed. Figure 5 shows the nozzle with 
the lid removed. When activated, the device dispersed the test powder sample (under 
reduced pressure) into a 5.7-L glass chamber. In the chamber, metallic versions of two 
common industrial hygiene samplers (37-mm closed-face Slaton cassette and BGI 
GK2.69 cyclone fitted with a 37-mm filter cassette) were placed to sample the resulting 
dispersed dust. 
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Figure 5. The UNC Venturi dispersion nozzle with lid removed (photo provided 
by D.E. Evans, NIOSH). The nozzle is fabricated from stainless steel. The O-ring 
seal for the lid (removed) is visible at the funnel. The length of the nozzle (from 
left to right) is 72 mm. The left portion of the nozzle is inserted into the glass 
containment chamber through a rubber grommet. 

Closed-face and opened-face 37-mm cassette configurations performed comparably for 
five test powders [Boundy et al. 2005]. The closed-face configuration was chosen for 
improved sample integrity. Both metallic samplers were electrically bonded to the 
metallic chamber lid and the lid electrically grounded to the power supply. Figure 6 
shows the two samplers fixed to the underside of the containment chamber lid. A 
microbalance of at least 6 decimal places (i.e., 1 µg readability from 1 g) is recommended 
for quantifying the collected airborne dust on the polytetrafluorethylene (PTFE) or PVC 
37-mm diameter filters [Boundy et al. 2005; Evans et al. 2013]. See the later section 
(Section 4.d) on gravimetric weighing. 

A single dustiness test involved two consecutive 5-mg dispersions for a total of 10 mg of 
dispersed test powder. This increased the quantity of material ultimately collected, 
improving sensitivity twofold. For each dispersion, the sampling period lasted 4 minutes 
and the dispersion phase lasted 1.5 s. The 4-minute sampling period provided for more 
than four air exchanges within the chamber: an air exchange approach similar to 
Cowherd et al. [1989b]. The aerosol samplers provided for total aerosol, approximating 
the inhalable size fraction [Dahm et al. 2019] and respirable aerosol [Kenny and 
Gussman 1997] at flow rates of 2.0 L/min and 4.2 L/min, respectively. As with many 
other dustiness devices, the mass collected on the filters (determined gravimetrically) 
was compared with the initial mass of the test material. Due to the narrow geometry 
within the Venturi nozzle, in practice, this dustiness method applies to testing powders 
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and small granules only. Flakes and pellets are not suitable as with many other test 
configurations. 

 

Figure 6. Metallic aerosol samplers attached to the underside of the UNC 
Venturi containment chamber lid (photo provided by D.E. Evans, NIOSH). The 
respirable GK2.69 cyclone sampler is on the left and the total dust closed-face 
Slaton cassette is on the right. Both samplers are in contact with the center 
grounding clip. 

Motivated by the need to disperse small (less than 1 g) quantities for expensive, difficult 
to obtain, or toxic test powders, Evans et al. [2013] applied the UNC Venturi to 27 fine- 
and nanoscale-powdered test materials. Authors reported results that spanned about 
two orders of magnitude for both total and respirable dustiness. They also observed an 
exponential particle concentration decay following dispersion of the test sample within 
the containment chamber. Within the ISO [2021] TS 12025 technical specification, this 
test configuration is described as a dynamic method of the release and measurement of 
nano objects from powders. 

The UNC device is more commonly referred to as the Venturi method, as it is best 
understood that the Venturi effect is used in both drawing and aspirating the test 
powder into the containment chamber [Evans et al. 2013; Evans et al. 2014]. 
Aerodynamic shear within the nozzle, and for some cohesive test powders, perhaps into 
the containment chamber, appear to be the underlying mechanisms by which the 
powder is dispersed. Numerical or computational fluid dynamic modeling of the 
sampling chamber with airflows and particle trajectories (1-µm aerodynamic diameter) 
has also been studied once injected from the nozzle [Dubey et al. 2017].  
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The airflow, at the point of exiting the nozzle and entering the chamber, is highly 
turbulent and characterized by a Reynolds number of Re~20,000 [Dubey et al. 2017]. 
Test powder aerosolization within the dispersion nozzle is only partially understood 
[Palakurthi et al. 2017, 2022; Sharma et al. 2020a,b]. The UNC device appears to be 
robust to inhomogeneous test powder injection or injection being delayed. The test 
powder is also well mixed at the conclusion of the injection phase: an important 
consideration when sampling from within the chamber. 

The Venturi method offers an energetic and efficient powder dispersal, making best use 
of small (mg) quantities of available test powder. It has been used to disperse many 
carbon nanotube and carbon nanofiber test samples [Bishop et al. 2017; Dahm et al. 
2019; Fraser et al. 2020]. Particularly when minimizing test powder quantities and 
generating less waste (a substitution exposure control) are desired and good laboratory 
practice. The method has been described as possibly representing a worst-case 
exposure scenario [Evans et al. 2013]. Therefore, when exposure controls are selected to 
mitigate potential exposures through dustiness information gained from the Venturi 
dustiness configuration, they are likely to be the most protective and capable of 
mitigating the full spectrum of worker exposure scenarios, from gentle handling through 
to worst-case energetic dispersions. Materials with a greater dustiness, and therefore 
exposure potential, may require more stringent exposure controls. Several Venturi 
dustiness testing devices are located at research institutes and pharmaceutical 
manufacturing sites worldwide. 

2) Rock dust dispersion chamber

Coal dust explosions are a serious safety hazard in underground coal mines [Cashdollar
2000]. Rock (stone) dusting in coal mines goes back over 100 years in the United States
[BoM 1927]. The practice originated in the United Kingdom and France following
multiple mining disasters and prevents propagating coal-dust explosions. Unlike most
occupational dust release scenarios, an increase in the relative dispersibility of rock dust
is beneficial because only rock dusts that disperse and become airborne can effectively
mitigate the risks from combustible coal dust. An incombustible content of 80% or more
is required when mixed with coal dust to prevent propagating coal dust explosions
[NIOSH 2010]. An aerodynamic test configuration was developed to quantify the
dispersion of pulverized rock dusts. Perera et al. [2016] describe the device, which uses
a carefully controlled pulse of compressed air (40 psi, 276 kPa, 2.76 bar) though a
narrow (1.4-mm internal diameter or nominal 1/8 in) nozzle, placed upstream at the
upper surface of the test sample tray. During the 0.3 s air pulse, a channel of rock dust is
scoured from the upper test sample surface. The mass of initial test sample may range
from ~45 to 260 g (directly related to the bulk density of the test dust) within the
constant volume (225 mL) sample tray. The resulting airborne dust cloud is carried
downstream at 1.5 m/s within a 152 × 152 mm (6 × 6 in) × 1,524 mm (5 ft) length
containment chamber, where it is detected optically. Figure 7 shows the rock dust
dispersion chamber with a more detailed view of the test sample tray and nozzle
arrangement in Figure 8. The loss of test powder from the tray and the relative optical
density (obscuration) measured downstream within the chamber quantifies how
effectively the rock dust is dispersed in each experiment.
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Figure 7. The rock dust dispersion chamber (photo provided by D.E. Evans, NIOSH). The 
transparent acrylic containment chamber is 1,524 mm (5 ft) in length. The chamber sits 
within a nominal ~1,800 mm (6 ft) width laminar-flow ventilation hood for easier cleaning 
between experiments. The dust sample tray and nozzle are to the left and the optical 
detection probe, pressure monitoring port, and flow control valve are to the right. The front 
hinged lid of the chamber is opened for clarity. The lid is closed during an experiment. 

Water in underground mining can cake rock dust, making dispersion much less effective. 
Coal dust retains some dispersibility when wet. Rock dusts with anti-caking properties 
have therefore been developed to address this problem [Perera at al. 2016].  

Figure 8. Dispersion nozzle, test sample tray (pre-loaded with mineral dust), and ballast 
weight to prevent the tray shifting during an experiment (photo provided by D.E. Evans, 
NIOSH). A series of five holes in the chamber, situated above the nozzle, introduce 
laboratory air for dust transport. The front hinged lid of the chamber is opened for clarity. 
The dust sample tray is 190 mm long. 
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4 Key considerations for dustiness 
There are test powder measurements that typically accompany dustiness testing 
(moisture content and bulk unconsolidated density determinations) and are required 
according to EN15051-1 [CEN 2013a]. Moisture content (or the presence of other 
liquids) is perhaps the most important variable in the release of dust from powders, 
both within the workplace and during testing. There are important considerations for 
taking representative test samples from a bulk powder and in the gravimetric weighing 
of test powders and dust collection media when quantifying dustiness. Finally, we 
discuss further factors that may influence dust release in the workplace and through 
laboratory dustiness testing. Though these factors may influence some powders, i.e., are 
material specific, they often exhibit a complex relationship with dustiness and so are not 
reliable predictors in dustiness behavior. The role of multiple interparticle forces acting 
within a bulk powder is extremely complex [e.g., Castellanos 2005; Munroe 2020]. 

a. Moisture content, humidity, and liquid additives
One of the more widely recognized variables influencing dustiness is moisture content 
[e.g., Burdett et al. 2000; Farrugia et al. 1989; Levin et al. 2015; López-Lilao et al. 2017b; 
Plinke et al. 1995; Pujara 1997; Visser 1992]. Burdett et al. [2000] described moisture 
content as the most important variable in dustiness testing, potentially capable of 
producing order-of-magnitude variations. In the workplace, aqueous slurries or pastes 
are simple, low-dust alternatives to dry powders. These could conceivably be considered 
a substitution exposure control (see Controlling Exposures in Section 2.f) if slurries or 
pastes are amenable to downstream manufacturing processes. Oils, or other liquid 
additives, might also be considered in reducing dust generation [e.g., Cocke et al 1977, 
1978; HSE 2010]. Water or oils can potentially reduce the dustiness of a powder by 
increasing interparticle or interagglomerate capillary adhesion. At the microscopic level, 
the formation of menisci or bridging between particles occurs, although the behavior is 
exceedingly complex [e.g., Cleaver and Tyrrell 2004; Rabinovich et al. 2002]. 

Low moisture content for powders, perhaps coupled with low ambient humidity, can 
potentially cause problems with electrical charge accumulation and static electricity. 
This, in turn, can make the handling and transfer of materials considerably more 
challenging [Bailey 1984]. The dissipation of charge within dustiness test systems can 
also influence dustiness by a factor of two [Burdett et al. 2000]. So it is generally best 
practice that quantitative test systems be electrically grounded. Moisture content of the 
powder and the accumulation of electrical charge can at times be interrelated [Visser 
1976]. 
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The moisture content history of the powder may also influence dustiness. If a soluble or 
partially soluble component is present, water vapor may be adsorbed, forming solutions 
at higher humidities. Even if the powder is returned to a reduced relative-humidity 
environment (and moisture content), solute bridges at interparticle contact points may 
persist [Plinke et al. 1995], significantly influencing powder properties and dustiness. In 
one extreme example, fine granulated sugar (sucrose), when subjected to 50% or 
greater relative humidity, deliquesced, forming a liquid solution [Evans et al. 2013]. 
Once dried, a single solid pellet remained, and fine sugar granules were not recoverable. 

Powders can cake and sometimes plug equipment as their humidity or moisture content 
increases. This is a well-known problem in process engineering, bulk solids handling, 
and bulk powder conveying and storing [AIChE 2005]. The caking of rock dusts caused 
by moisture, which are used to mitigate potentially explosive coal dusts in underground 
mining operations, can render rock dusts ineffective [Perera et al. 2016]. 

The effect on powders of water uptake or loss to the ambient atmosphere, therefore, has 
implications for both workplace risk assessment and for laboratory testing. In the first 
instance, worker exposure concentrations during powder processing and handling could 
be influenced by season (dry winters, humid summers, for example), that is, if powders 
are permitted to equilibrate their moisture content with the atmosphere. If permitted, 
humid summers may decrease the dust-generating potential of some powdered 
products. Conversely, drier winters might also result in an increase in the dust-
generating potential. In the laboratory, quantitative dustiness testing is significantly 
impacted by powder moisture content. For example, using the NRCWE small rotating 
drum and the same TiO2 test powder, dustiness decreased by three orders of magnitude 
(1000x) with a relative humidity increase from 30% to 50% during the preconditioning 
of test powders [Levin et al. 2015]. This underlines the importance of careful control of 
this variable. 

1) Determining moisture content

There are generally two acceptable approaches in accounting for the moisture content of
test powders. The first approach is the testing of powders as received: the moisture
content of the test sample is determined and reported together with the dustiness
information. This approach is currently recommended in EN15051-1 [CEN 2013a, Annex
A], and the dustiness experiment conducted at 50 ± 10% relative humidity (RH). It may
be useful to determine the dustiness of a powder as produced or perhaps as an
intermediate product within a multistep manufacturing process. Commercial testing
laboratories routinely use the as received approach.

A second approach, and the one adopted more recently in EN17199 [CEN 2019a–e], is 
the careful preconditioning of the test powder at 50 ± 5% RH. Note that in this latter 
standard, the acceptable humidity range under which materials may be preconditioned 
and dispersion experiments performed is more carefully controlled (i.e., 50 ± 5% RH 
versus 50 ± 10% RH). The preconditioning period could span several hours to 48 hours, 
depending on the size of the test powder sample. Generally, larger sample sizes require 
longer equilibration periods. For tight control of humidity (and ambient temperature), 
the test apparatus may need to be modified to supply acceptable conditioned air while 
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testing. This is required if ambient laboratory conditions do not meet test requirements. 
It can be achieved by supplying excess conditioned air to the test apparatus, for example, 
through an antechamber arrangement or similar [Evans et al. 2013]. 

Determining the moisture content of test powder may be done in at least two ways. One 
of the simplest is the oven-dry method. For this, about 10 g of pre-weighed powder (as 
received or conditioned) are heated in an oven at 120°C for several hours or overnight 
(EN17199-1) [CEN 2019a]. The powder is briefly allowed to cool before post-weighing. 
Best practice is cooling the powder within a desiccator containing an active desiccant. 
The mass loss is reported as the moisture content (typically in %).  

When both as received and conditioned moisture content are required, three sequential 
gravimetric measurements can provide this information efficiently, particularly if test 
sample quantities are scarce. In this approach, between 1 and 10 g of the as received 
powder are pre-weighed (into a small glass petri dish or similar). This powder sample 
may be conditioned (50 ± 5% RH, 21 ± 3°C) for at least several hours. The sample is then 
re-weighed. The sample can then be heated within the oven at 120°C overnight, briefly 
allowed to cool (within a desiccator, if available), and then post-weighed. Thus, the 
moisture content as received and conditioned at 50% RH may be deduced by 
subtracting the final oven-dried mass. Clean, dry petri dishes can also be conditioned in 
parallel to the test samples (and pre- and post-weighed) to provide for substrate control. 
In addition to the oven method, using a dedicated moisture analysis instrument is also 
acceptable (EN15051-1) [CEN 2013a]. 

b. Bulk density
A test material parameter commonly reported with dustiness information is the bulk 
density (EN15051-1) [CEN 2013a, Annex B]. More specifically, this is the unconsolidated 
or untapped bulk density of the test powder. In the EN15051-1 [CEN 2013a] standard, 
10 g of test powder are gently placed into a volumetric cylinder, and the volume is 
recorded. Only very light tapping or knocking is acceptable in filling the cylinder, as 
further compression or consolidation of the test powder can erroneously influence the 
density measurement. A minimum of three separate determinations are typically made, 
and the mean average reported. If dustiness measurements are made by the EN15051-2 
rotating drum [CEN 2013b], the required 35 mL of test powder is pre-weighed within a 
volumetric vessel before carefully loading into the drum. If the vessel is further post-
weighed, not only is the mass of the test material loaded in the dustiness experiment 
determined, but also the untapped bulk density (density = mass/volume). Each rotating 
drum dustiness experiment will provide an independent bulk density determination, 
and no further measurements are required. 

c. Representative powder samples
During testing it is important to take a representative test sample from a larger bulk 
powder. During transport, it is possible for particles to partially segregate within the 
bulk powder, particularly with a wide mix of particle sizes. Consider the Brazil nut effect 
where we often find the larger Brazil nuts migrate toward the top of a container of 
mixed nuts [Gajjar et al. 2021]. A similar process occurs for heterogeneous powder 
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samples. Powder taken from the top of the sample may not possess the same size 
distribution as that at the base, or even be representative of the powder sample taken as 
a whole.  

To counter this effect, some approaches, such as using rotary sample dividers or rifflers, 
or quartering the test material, can be done. Such approaches are often used when 
sending out test materials from a much larger master batch for interlaboratory 
comparisons [e.g., Lyons et al. 1996; Pensis et al. 2010; Totaro et al. 2016]. A simple 
method described in EN15051-1 [CEN 2013a] is inverting the bulk powder sample 
several times before taking a subsample from the top of the powder column. This should 
be done just before a subsample is removed for testing and ensures adequate mixing of 
the test powder. General guidance on sample preparation for powders can be found in 
ISO 14488 [2007]. 

d. Gravimetric weighing
Dustiness test configurations typically rely on the gravimetric measurement of airborne 
dust on collection substrates and may be directly compared with the quantity of the 
original test material (e.g., g/ton, %, mg/kg, etc.). Irrespective of balance type, 
manufacturer, or model, good weighing practices need to be followed when quantifying 
the initial test material and the collected airborne dust. In general, balances are set up 
according to manufacturer specifications. A balance should be situated in a low draft 
environment and on a heavy weighing table, to minimize movement and vibrations. A 
draft shield, if supplied with the instrument, should be used.  

While using a balance, a stable temperature (21 ± 3°C) and RH (50 ± 5 %) are 
recommended (e.g., EN17199) [CEN 2019a–e]. Test powders and collection media 
(filters or foams) may need to be adequately conditioned prior to weighing. Depending 
on application, a balance with a readability from three to seven decimal places (from 1 
g) may be required (i.e., 1 mg to 0.1 µg readability). Masses ranging from milligrams to
tens of kilograms may need to be quantified. Two (or more) balances may be required to
cover an exceptionally large range of values. Electrostatic effects can be minimized by
using static dissipative devices (ionizers). Standardized weights and media blanks
should be used to regularly assess that the balance is operating correctly, to ensure
there is no drift, and to provide confidence in weighing results. There are several
sources of information on good weighing practices and minimizing the uncertainties in
weighing [e.g., ACS 2021; EURAMET 2015; ISO 2009; Mettler-Toledo 2015].

e. Compression
The compression of powders may be intentional or perhaps a consequence of 
processing, conveyance, or storage. For example, compressing formulations into tablets 
can provide effective, low-dust, and convenient forms of pharmaceuticals for storage, 
transport, and dispensing to consumers [e.g., Davies 1992]. Tableting, pelletizing, or 
granulating products could be considered a substitution exposure control (see 
Controlling Exposures, Section 2.f) if these forms are amenable to downstream use. Like 
moisture-induced effects, the physical effects resulting from powder compression may 
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not be completely reversible once the powder load is removed. This suggests that 
powder compression history is an important factor in testing.  

The storage of powders in industrial bulk quantities can generate compression loads on 
the powder. Levin et al. [2015], for example, reported 160 kilogram per square meter 
(kg/m2) corresponded to a pressure experienced at the base of a single European pallet 
holding of five layers of bagged product. In the same study, Levin et al. [2015] subjected 
five nanoscale test powders to 160 kg/m2 uniaxial pressure, followed by dustiness 
testing in the NRCWE small rotating drum [Schneider and Jensen, 2008]. Compaction 
increased, decreased, or had no effect on dustiness depending on the test powder, so the 
results were highly material specific. Much smaller changes in dustiness were observed 
than those by moisture content [Levin et al. 2015]. Following low pressure compaction 
(3.5 kg/cm2), a granulated organoclay increased in dustiness whereas the dustiness of a 
loose bentonite was reduced [Jensen et al. 2009]. These effects are material specific.  

f. Surface modifications and coating
Using the EN15051-2 rotating drum [CEN 2013b], Burdett et al. [2013] observed that 
when nanoscale calcium carbonate powders were surface coated, dustiness increased 
45 times for the inhalable, 90 times for the thoracic, and 331 times for the respirable 
dustiness fractions. Although organic (carbon containing) additives, the coatings were 
not specified. Perera et al. [2016] noted an increase in dustiness (quantified by airborne 
optical extinction) of treated limestone dusts when compared with untreated examples. 
A 1% (by mass) coating of calcium stearate was sufficient in generating about a fourfold 
increase in dustiness of the treated dusts when compared with their parent limestone 
constituents [Perera et al. 2016].  

As noted previously, surface-treated limestone dusts are more effective in mitigating 
propagating coal dust explosions in wet, underground mining environments. Polymer 
coatings added to multiwalled carbon nanotube powders resulted in both observed 
increases and decreases in the dustiness measured by the UNC Venturi device [Bishop et 
al. 2017]. Authors observed a tenfold decrease and elevenfold increase in total dustiness 
and a corresponding elevenfold decrease and fivefold increase for the respirable 
dustiness fractions. This suggests a more complex and material specific relationship 
between dustiness and surface coating. 

g. Particle size
In their study of powders, Plinke et al. [1995] assessed four parent test materials: 
limestone, TiO2, glass beads, and lactose. These were further classified into three 
aerodynamic size fractions prior to testing: less than 5 µm, between 5 and 25 µm, and 
greater than 25 µm. Other factors, such as powder cohesion and impaction (height) 
during powder dispersion, were found to play a more prominent role in dustiness 
behavior than particle size for these four materials [Plinke et al. 1995]. 

Primary particle size, indicated through BET specific surface area measurements 
[Brunauer et al. 1938; ISO 2022], did not correlate with either total or respirable 
dustiness measured with the UNC Venturi for 27 fine and nanoscale powders [Evans et 
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al. 2013]. Counter intuitively, smaller particles do not necessarily result in increased 
dustiness. Respirable dustiness made up about one third of the total dustiness for the 
fine and nanoscale powders studied, but this relationship is not expected to hold for 
coarse test materials [Evans et al. 2013]. Given a sufficiently energetic aerodynamic 
stimulus (such as provided by the UNC Venturi), many of the nanoscale test powders 
tested could exhibit a relatively high respirable content.  

López-Lilao et al. [2017a] studied 20 commercial materials (all minerals), including 
quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, with 
particle sizes collectively ranging from about 1 to 300 µm. Authors did not initially 
observe a clear relationship between mean particle size (d50) and dustiness as measured 
by the continuous drop method (EN15051-3) [CEN 2013c]. However, when the 
inhalable and respirable dustiness results were compared with the relative emission 
potential of the parent mineral, a stronger relationship was observed between dustiness 
and particle size. Particle size of the parent powder may influence dustiness and the 
particle size fractions observed in the resulting airborne dust, but there is not a 
consistent relationship. 

5 Criteria for current, improved, or new dustiness 

test configurations 
What constitutes a good quantitative dustiness test configuration from the variety of 
tests described here is worth considering. This consideration may apply to current test 
configurations, to improvements or redesigns of existing tests, or to the development of 
new quantitative dustiness test methods. From a workplace inhalation exposure 
perspective, the tests may incorporate most, if not all, of the following attributes: 

1. Direct relevance to workplace inhalation exposure scenarios.
2. Enclosed during operation for the health and safety of the technician.
3. Direct gravimetric determination of the health-based particle size fractions:

inhalable, thoracic, and respirable [ACGIH 1999; CEN 1993; ISO 1995].
4. Particle transport losses between dust generation and collection either eliminated

or minimized. If particle losses do occur, it should be shown that losses closely
result in the particle health size fractions stated above.

5. Discriminate test materials over a wide dustiness range (i.e., orders of
magnitude).

6. Ideally quantifies a range of test material forms (powders, granules, pellets, damp
samples, etc.).

7. Well characterized.
8. Threshold dustiness values or exposure potential bands (i.e., very low, low,

medium, and high dustiness, for example) are established for the comparison of
new or unknown test powders.

Of the various contemporary test configurations discussed in this chapter, the EN15051-
2 rotating drum [CEN 2013b] meets all these criteria from an inhalation exposure 
perspective. Most of these attributes may apply to other (non-inhalation exposure) test 
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configurations, including dust dispersion systems designed for studying the mitigation 
of dust explosion transmission. 

6 Summary 
The propensity with which a powder/dust becomes airborne is a major contributing 
factor in worker inhalation exposures [Brouwer et al. 2006; Heitbrink et al. 1989; 
Ribalta et al. 2019b] and can result in work-related illness and disease [Burdett et al. 
2000]. This attribute may be defined by the term dustiness, and although not an intrinsic 
powder or dust property, is quantifiable, repeatable, and may be assessed independently 
of the workplace by well-prescribed test configurations [Evans et al. 2013]. Once 
airborne, powders and dusts may also pose significant safety hazards [Cashdollar 2000; 
Eckhoff 2003]. 

Quantifying the dustiness of powders and dusts can contribute to closing exposure-
knowledge gaps. This would help in estimating the approximate airborne concentrations 
of worker inhalation exposures and improving understanding of the nature of those 
exposures. Testing potentially provides information on the particle size fractions that 
may be generated from an inhalation exposure perspective. This can help in selecting 
appropriate exposure or safety mitigation measures (control banding) and developing 
reduced or non-dust producing alternative products. The efficacy of dust reducing 
additives may also be assessed. Product packaging could then provide information 
warning potential employers and employees, particularly those who infrequently handle 
products, of possible hazards, so mitigation measures (controls) may be adopted. 

Quantitative test configurations that provide the three health-based particle size 
fractions (inhalable, thoracic, and respirable) are preferred, particularly when 
considering worker inhalation exposures. Dustiness test configurations that possess 
dust generation mechanisms with direct relevance to the workplace, i.e., gravity-induced 
falling powders through air, and perhaps aerodynamic based methods, where air moves 
over the test powder, provide for more realistic exposure characteristics and exposure 
scenarios.  

Results from new or unknown test powders may be compared with threshold dustiness 
values. In this way, we can determine the exposure potential (very low, low, medium, and 
high dustiness) that new test powders may have for each of the three health-based 
particle size fractions [CEN 2013]. Exposure mitigation (controls) selection can be based 
of these exposure potential categories. Both test configurations described in EN-15051 
[CEN 2013a,b] provide these thresholds; the rotating drum (EN15051-2) [CEN 2013b] 
provides all three size fractions, and the continuous drop (EN15051-3) [CEN 2013c] 
offers two of the three. It is recommended that potential users choose the test method 
that best simulates their materials and handling processes as stipulated in EN15051-1 
[CEN 2013a]. 

The rotating drum test system (EN15051-2) [CEN 2013b] received substantial 
development and improvements in both performance and usability (see Section 3.c.2). It 
is the most widely adopted test method worldwide and closely replicates the dust 
generation mechanisms from moderate to gentle benchtop manual transfer/handling, 
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rotational mixers, or rotational bulk conveyance. Powder is permitted to fall no more 
than 30 cm (12 in). This test configuration also meets all criteria (Section 5) for current, 
improved, or new quantitative dustiness tests. The rotating drum may also be used to 
characterize nanoscale test powders as described by both EN15051-2 [CEN 2013b] and 
EN17199-2 [CEN 2019b]. Each experiment requires 35 mL of test powder, and 
experiments are conducted in replicate.  

To simulate the continuous pouring of powder from a height (more than 1 m for 
example), the EN15051-3 continuous drop test [CEN 2013c] is an effective test system. 
Nanoscale materials may be charactered using the same dust generation configuration, 
but with other particle sampling options (EN17199-3) [CEN 2019c). This test 
configuration does not incorporate the thoracic aerosol fraction. Further, not all test 
materials may be continuously fed with the powder feed mechanism, limiting test 
materials mostly to fine dry powders. The test may also underestimate the inhalable 
particle size fraction for test materials with a substantial fraction of particles greater 
than ~38 µm [Burdett et al. 2000]. About 100-g of test powder is required per 
experiment, and experiments are conducted in replicate.  

One possible shortcoming to the rotating drum, continuous drop test, and several other 
test systems described here are the quantities of test material required for testing. 
Experiments are typically repeated in replicate to assess variability. These quantities 
can be problematic when test materials are in limited quantities, cost prohibitive, or 
potentially toxic. The EN15051-2 [CEN 2013b] rotating drum and EN15051-3 [CEN 
2013c] continuous drop are relatively gentle dust-generating test configurations. They 
may underestimate airborne particle concentrations and their size fractions from more 
energetic dispersion processes observed in the workplace. A complimentary 
aerodynamic technique, such as the Venturi, may provide for a better simulation of more 
vigorous (worst case) dust-dispersion processes and requires orders of magnitude less 
test material (10 mg per experiment). 

Disclaimers: Mention of any product or company name does not constitute 
endorsement by NIOSH. Citations to external websites do not constitute NIOSH 
endorsement of the sponsoring organizations or their programs or products. NIOSH is 
not responsible for the content of these websites. Web addresses referenced in this 
document were accessible at the time of publication. 
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ed. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease 
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