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Nuclear power plants will increasingly need to follow uncertain loads in 
future power systems dominated by intermittent renewable generation. 
However, regulatory and technical constraints limit the frequency of load-
following operations, making their efficient allocation crucial. This paper 
explores the economic value of nuclear flexibility by modeling it as a stock 
constraint within a stochastic dynamic programming framework. We show 
how non-convex constraints at the reactor scale translate to the fleet level 
through a linearized approximation, allowing for analyzing multiple reactors 
operating under flexibility constraints. Applying this model to the French 
electricity system in 2035 using the Stochastic Dual Dynamic 
Programming (SDDP) algorithm, we estimate a marginal value of EUR 
100/MW for the current flexibility level of the French nuclear fleet. Our 
results show that increased nuclear flexibility enhances system-wide cost 
efficiency and improves the integration of renewables, with solar 
generation seeing the largest benefits. However, our findings suggest a 
potential misalignment with the profit-maximizing goals of individual 
nuclear operators, which may deter them from increasing flexibility despite 
its necessity for the system.
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Executive summary 
 

The increasing integration of renewable energy sources in European power systems demands 
greater flexibility from conventional generation assets. Traditionally designed for baseload 
operation, nuclear power plants must adapt to load-following operations to ensure system 
reliability. This paper quantifies the economic value of nuclear flexibility in future power systems, 
focusing on France in 2035. 

Key Findings 

1. Economic Value of Flexibility: The marginal value of flexibility for the French nuclear 
fleet in 2035 is estimated at €100/MWh. This means increasing the amount of load-
following operations performed by nuclear reactors can benefit the system significantly. In 
2023, French nuclear plants performed 25 load-following operations and can theoretically 
vastly improve. 

2. Renewable Integration: Greater nuclear flexibility reduces renewable curtailment 
significantly, especially for solar energy. Solar curtailment is cut by nearly 50% at the 
highest flexibility level, enhancing its economic viability. 

3. Profitability Misalignment: While system efficiency improves with increased nuclear 
flexibility, the profit-maximizing goals of nuclear operators may not align with system-wide 
benefits. Profits peak at current flexibility levels, suggesting limited incentives for nuclear 
operators to enhance flexibility. 

4. System Cost Efficiency: Enhanced nuclear flexibility reduces overall system costs by 
optimizing resource utilization and minimizing reliance on costly peaking plants.  

Policy Recommendations 

1. Regulatory Incentives for Flexibility: Regulators should closely monitor the performance 
of nuclear operators to bring flexibility to the system as a dominant player may be unwilling 
to maximize the flexibility of their plant to maximize their own profits. Mechanisms to align 
operator incentives with system-wide needs, such as flexibility bonuses or modified market 
designs, may be relevant. 

2. Integrated Resource Planning: Strategic integration of nuclear flexibility with renewable 
expansion plans can maximize cost-efficiency and system reliability. 

3. Focus on Solar Complementarity: Given the expected boom in solar generation, policies 
fostering coordination between nuclear and solar assets should be prioritized. 

Conclusion 

Nuclear flexibility is critical for integrating high shares of renewables in future energy systems. 

While system-wide cost reductions and renewable integration improve with flexibility, operator 

incentives remain misaligned. Addressing this gap through targeted policies will be essential for 

leveraging the full potential of flexible nuclear power. 

 



1. Introduction

The transition toward low-carbon power systems goes hand-in-hand with an

increased penetration of Variable Renewable Energy sources (VREs), such as so-

lar and wind. Because of the intermittency of VREs, the provision of flexibility—

which is commonly defined as the capacity to effectively and promptly adapt to

unforeseen fluctuations in electricity demand or supply (Cochran et al., 2014;

Perez-Arriaga and Batlle, 2012)—is becoming crucial for preserving the relia-

bility of the power system. In power systems endowed with nuclear generation,

operating a Nuclear Power Plant (NPP) in the so-called load-following mode—

i.e., by varying the output as the residual load on the grid changes—is recurrently

presented as a low-carbon flexibility option to accommodate VREs and preserve

the reliability of the system (Troy et al., 2010; Jenkins et al., 2018). However,

the fleet of existing nuclear reactors was primarily installed to provide baseload

generation as these NPPs were designed to operate at maximum rated capacity

with limited output changes whenever online. Though the NPP output can be

varied, the power plant is subjected to specific constraints on safety or technol-

ogy considerations (Khatib and Difiglio, 2016; Owen, 2011). In some regions, the

aptitude of NPPs to operate flexibly is also mothballed by regulatory mandates

or the absence of economic incentives since some plants do not face market prices

and instead receive compensation based on predetermined rates. Assessing the

economic value of nuclear flexibility can motivate law or market design change to

unleash this potential. Given the controversies surrounding the future of nuclear

generation,1 an adequate representation and valuation of nuclear flexibility is

crucial for analyzing the extent to which NPPs can complement VREs in future

electric systems.

The purpose of this paper is to examine the economics of flexible nuclear

generation in a VRE-intensive power system. From a modeling perspective, our

point of departure is an analogy with managing hydropower resources. Indeed, in

contrast with most technologies of thermal power plants that run on coal or gas,

one major flexibility limitation for NPPs stems from a limit on the number of

load-following operations the reactor can undergo rather than on ramping capac-

ity (Cany et al., 2016). The decision to allocate nuclear flexibility resources over

time resembles the optimal scheduling for hydropower generation from reservoirs.

1Recall that some countries (e.g., France or Sweden) envision a nuclear renaissance (Vaillan-
court et al., 2008; Hong et al., 2018) whereas others either consider NPPs only as one marginal
technology within a portfolio of other options (Bruninx et al., 2013) or have decided to phase
out nuclear completely as in Germany.
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The operation of these reservoirs typically involves inter-temporal arbitrages

whereby one must (i) weigh the immediate opportunity gain that can be yielded

by using the stored water now and (ii) compare it with the value of storing the

water for subsequent periods. As the future is cursed by uncertainty, that value

is also uncertain, and a risk-neutral agent should consider it using an expected

value perspective. By modeling flexibility as a predefined stock of load-following

operations to be decided throughout the year given uncertain VRE generation,

we propose that we take advantage of this analogy with hydropower and model

the resource scheduling problem at hand as an instance of a stochastic dynamic

programming problem.

We analytically show how flexibility constraints at the reactor scale translate

to the fleet scale and how to efficiently model this complex, non-convex problem.

We then build a numerical model of the French electricity system dispatch as

a cost-minimization problem. The “curse of dimensionality” often complicates

solving such multistage stochastic optimization problems. To address this, the

Stochastic Dual Dynamic Programming (SDDP) algorithm, proposed by Pereira

and Pinto (1991), offers an effective solution by decomposing the problem into

simpler subproblems. Unlike traditional dynamic programming, which relies on

discretizing the values taken by the state variables, SDDP uses a piecewise linear

approximation of the Bellman function with Benders’ cuts, allowing for continu-

ous state variables and efficient computation. In the past decade, significant con-

tributions in Operational Research have facilitated the widespread adoption of

the SDDP algorithm, extending its use beyond hydrothermal problems. Shapiro

(2011) improved understanding of algorithm convergence, Shapiro et al. (2013)

explored risk aversion, and Soares et al. (2017) enhanced stability under variable

water inflows. Dowson’s recent Julia package further simplified SDDP implemen-

tation.(Dowson and Kapelevich, 2021) These advancements have enabled SDDP

applications in various contexts, such as managing pumped hydro resources (Pa-

pavasiliou et al., 2018), integrating hydropower with wind (Bodal et al., 2016),

gas storage valuation in incomplete markets (Löhndorf and Wozabal, 2021), mi-

crogrid management under renewable uncertainty (Bhattacharya et al., 2018),

day-ahead electricity dispatch (Lu et al., 2020), and optimal farm management

under uncertainty (Dowson et al., 2019).

Our study uncovers several key findings regarding the value of nuclear flexi-

bility. First, maintaining the current flexibility level of the French nuclear fleet in

2035 yields an economic value of around EUR 100/MW, emphasizing a strong in-
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centive to enhance flexibility. Technically, nuclear reactors are flexible enough to

accommodate large shares of renewable energy without hitting operational limits.

From a profitability standpoint, renewable energy—especially PV—benefits sig-

nificantly from reduced curtailment, though wind turbine profits remain largely

unchanged. Lastly, nuclear profits peak before reaching the socially optimal flex-

ibility level, indicating possible misalignment between operator incentives and

overall system welfare.

This paper contributes to the growing literature on the interplay between nu-

clear and renewable energy by focusing on the economic value of nuclear flexibil-

ity, which is key to the relevance of NPPs in future systems. Green and Léautier

(2015) indeed demonstrate that flexibility is paramount for determining the opti-

mum level of investment in NPPs, as shown in their analysis of the UK. Similarly,

Shirizadeh and Quirion (2021) emphasize the importance of flexibility assump-

tions in determining the optimal electricity mix in France by 2050. Engineering

studies, such as those by Cany et al. (2016) and Loisel et al. (2018), explore the

compatibility between VREs and flexible nuclear operations in Europe. They

find that VRE deployment challenges the profitability of NPPs, although they

remain economically viable when operated flexibly. Denholm et al. (2012) stress

the impacts of nuclear flexibility on the economics of nuclear generation in fu-

ture electricity systems dominated by renewables. By operating flexibly, NPPs

will achieve smaller load factors than those observed historically, affecting their

revenues and ability to recoup the large capital expenditures required to build

them. Lynch et al. (2022) and Jenkins et al. (2018) use MILP models to opti-

mize nuclear flexible operations and highlight the benefits for both VREs and

NPPs revenues. Perrier (2018) adopts a robust decision-making framework to

propose an optimal pathway for retrofitting French reactors. Much of the exist-

ing literature on nuclear flexibility overlooks key aspects of how nuclear-specific

constraints, like cycling limitations, affect power systems dominated by VRE.

Indeed, the uncertainty of VRE production is generally not considered, and the

economic value of nuclear flexibility is not properly defined. By addressing this

question through a stochastic dynamic programming lens, we intend to bridge

this gap as well as contribute to the expanding use of SDDP by applying it for

the first time to the scheduling of load-following operations in nuclear power

plants.

The paper is organized as follows. The next section provides a concise

overview of the technological constraints restricting the operations of a nuclear

4



power plant and the SDDP framework. Next, Section 3 presents our analytical

model and first results. Sections 4 and 5 present the implementation of the nu-

merical model on the French case study in 2035. Section 6 presents and discusses

the results, and the last section offers a summary and some concluding remarks.

For clarity, Appendix 7 presents proofs and data assumptions.

2. Background & motivation

2.1. A changing market environment for nuclear generation

Most NPPs currently in use worldwide are light water reactors, of which a

particular type, the Pressurized Water Reactor (PWR), accounts for more than

two-thirds of the world’s nuclear capacity. These plants were built in the 1980s

and 1990s as part of the nuclear programs decided in the aftermath of the oil

shocks (Toth and Rogner, 2006). Their design was thus primarily driven by the

need to conserve oil used in baseload thermoelectric generation in order to shield

energy-importing nations from potential supply disruptions. The specific eco-

nomics of NPPs also favored their use as a source of baseload generation. The

capital expenditures account for approximately 70% of the total Levelized Cost

of Electricity (LCOE), reaching up to 85% when considering all fixed costs and

decommissioning (Khatib and Difiglio, 2016). Maintaining a high load factor by

continuously generating an output close to nameplate capacity was necessary to

recoup these upfront and fixed costs. During the last three decades, these nu-

clear plants thus represented the cornerstone of baseload generation: they were

operated at rated capacity and supplemented by peak-or mid-merit units (e.g.,

thermal power plants or hydropower dams) that absorbed variations in the load.

However, the market environment is radically changing as VREs are becom-

ing prevalent in power systems. VRE technologies have low-to-zero marginal

costs, so it is economically optimal to enroll renewable production in the system

when available. In good weather conditions, VREs thus compete with nuclear

generation and can even displace it. Consequently, the historical consensus that

regarded NPPs as the unmatched option for baseload generation needs to be re-

considered (Lévêque, 2013). This changing landscape has deep implications for

the role assigned to nuclear plants. In a VRE-dominated power system, nuclear

power may still be considered a relevant source of low-carbon generation dur-

ing low VRE production. A fundamental issue for the future of nuclear energy

is, therefore, its ability to complement VREs by varying the output of existing

NPPs to match the residual demand, that is, the difference between the load

and the generation from intermittent renewables.
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2.2. Flexible nuclear generation: What limitations?

2.2.1. Nuclear-specific constraints, a concise review

NPPs face constraints like other thermal plants, such as ramping rates and

warm-up delays. However, modern NPPs in Europe can reduce output by up to

100% of their nameplate capacity within an hour, meaning they are not limited

by ramping rates on an hourly scale (IAEA, 2018). Yet, NPPs must adhere

to specific restrictions. Although they can adjust output between a minimum

threshold and the rated capacity using control rods or boric acid concentration

(Cany, 2017), sudden output changes induce thermal and mechanical stress, par-

ticularly affecting fuel pellets and claddings due to temperature variations (Jenk-

ins et al., 2018; IAEA, 2018). Another constraint is the “Xenon effect”, which

occurs as Xenon-135 concentration increases when reactor power decreases, com-

plicating fission reactions and narrowing output modulation capabilities, espe-

cially after two-thirds of the fuel cycle (Lynch et al., 2022). A typical irradiation

cycle profile is displayed in Figure 1, presenting the rise in minimal power due

to the Xenon effect and the cycling operations performed for load-following pur-

poses.

Figure 1: Illustration of a typical nuclear reactor’s fuel cycle.

Although cycling operations can accelerate wear and tear and increase main-

tenance costs, experiences in France and Germany show minimal impacts on

costs, reliability, or safety when these operations are well-managed. (IAEA,

2018; Cany, 2017)
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2.2.2. Implications for load-following operations

To account for these concerns, international standards limit the frequency of

load-following operations for PWR designs to two per day, five per week, and two

hundred per year (IAEA, 2018). These limits have been set by European nuclear

operators since 1990 to ensure safety, performance, and flexibility in new reactor

designs. With the rise of VREs, these limits have not been fully tested yet, as

load-following operations have remained below the maximum thresholds (e.g.,

the maximum load-following operations observed in French reactors by 2018 was

155 according to Cany et al. (2018)). However, regulations differ across the

globe. In the US, nuclear plants are restricted to a maximum of one cycle per

day (EPRI, 2014). In China, the business model of NPPs does not incentivize

flexible operation, as they are remunerated based on controlled tariffs rather than

being exposed to wholesale prices (Andrews-Speed, 2023). Similarly, the Hinkley

Point C nuclear plant in the UK will benefit from a predefined sell price through

a Contract-for-Difference scheme. Yet, the system impacts of these regulatory

frameworks remain to be assessed.

3. The value of nuclear flexibility: analytical intuitions

When the cap on annual load-following operations is binding, load-following

operations become scarce, necessitating their efficient allocation over time. The

challenge is intertemporal: deciding whether to reduce NPP output now, such

as during high wind production in spring, or to save this flexibility for future pe-

riods, like a summer day with high solar output. Prioritizing immediate curtail-

ment avoidance may lead to future overproduction issues if flexibility is depleted.

The methodology presented next addresses this allocation problem.

3.1. A stylized model

Consider a simple analytical model where the NPP operator intends to max-

imize profit over two time periods, considering the flexibility constraints that

limit the change in power output between periods. Let q1 and q2 denote the

power output of the nuclear plant at periods t = 1 and t = 2, respectively. The

prices at each period are given by p1 and p2. The operator’s profit each period is

given by revenue minus generation costs, thus the profit function for each period

can be expressed as:

Πt = ptqt − C(qt),

with C(qt) the cost of generating qt units of power. In the following, we assume

C(qt) = c× qt, with c the variable cost of the NPP. In this simplified framework,
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the NPP’s flexibility constraint is captured by a linear limit on the permissible

change in output between two consecutive periods. This constraint is expressed

as follows:

|q1 − q2| = ∆ (µ) (1)

where ∆ is the maximum allowed deviation between the production levels of the

two periods, and µ is the shadow price associated with this constraint. For this

analysis, we assume the constraint to be binding, effectively making the inequal-

ity an equality—a condition central to our study. The problem is formulated

within a stochastic dynamic programming framework, where the price at time

t = 2 follows a probability density function f(·). The value function at time

t = 2 is given by:

V2(q2, p2) = max
q2 ∈ R+

(p2 − c)q2 (2)

Here, the Bellman term—or cost-to-go function—V2(q2, p2) represents the

maximum profit achievable at time t = 2 for a given realization of price p2. The

problem at time 1 writes:

max
q1 ∈ R+

(p1 − c)q1 + Ep2(V2(q2, p2))

s.t. (1)

(3)

The Lagrange function reads:

L(q1, q2, µ) = (p1 − c)q1 + Ep2(V2(q2, p2))− µ(|q2 − q1| −∆).

Solving the Karush-Kuhn-Tucker (KKT) conditions for this setup, and ex-

tending to a multistage framework, yields the following proposition.

Proposition 1. Under the given assumptions, the value of nuclear flexibility is

determined by the maximum absolute expected value of the price, adjusted for the

variable cost, across all considered timeframes:

µ = max
t∈B

(|E[pt]− c|) ,

where pt represents the price at time t, c is the variable generation cost, and B
is the set of timeframes where the flexibility constraint is binding.

Proof. See Appendix A.
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3.2. Nuclear flexibility at the fleet scale

To properly assess the value of nuclear flexibility in future energy systems, we

need a system-wide model that considers the aggregate behavior of nuclear power

plants rather than individual reactors. While nuclear flexibility constraints are

inherently non-linear and non-convex at the reactor scale—each reactor makes

a binary decision when deciding to operate or not a load-following cycle—these

constraints become computationally challenging when modeling large fleets of

reactors. As suggested in the literature, one solution is to cluster reactors, re-

ducing the number of integer variables and making the problem more tractable

(Langrene et al., 2011; Palmintier and Webster, 2014; Meus et al., 2018). How-

ever, clustering may not fully capture the flexibility potential of the entire fleet,

which can respond more fluidly when reactors are considered individually. In-

deed, we demonstrate how the flexibility constraints of individual reactors can

be aggregated at the fleet level. We show that, as the number of reactors in-

creases, a linearized flexibility constraint at the fleet scale closely approximates

the behavior of a fleet governed by non-convex, integer-based constraints.

Proposition 2. Let N denote the number of reactors in a nuclear fleet, each

subject to a non-convex flexibility constraint due to discrete load-following ca-

pabilities. When the flexibility of the aggregated fleet is approximated using a

linearized model, the absolute deviation from the actual, discrete flexibility at the

reactor level is bounded by 1
N .

Proof. See Appendix B.

We propose a numerical example to illustrate the convergence of the discrete

approach (with integer variables) to the linearized aggregated approach as the

number of nuclear reactors N increases. Consider a total fleet capacity of Q =

63GW, that serves a given flexibility need at a certain timestep of δ = 10GW.

Consider a flexibility constraint for each reactor for the entire year of ∆
N , with

∆ = 0.8 × 63 = 50.4GW (i.e., each reactor can contribute up to 1 cycle of

flexibility). In this setup, the ratio of the flexibility used at this timeframe to

the total flexibility stock is δ
∆ , calculated as 10

50.4 ≈ 0.2. For a given number of

reactors N , the discrete approach uses n reactors to fulfill the flexibility need,

where n is defined by:

n =

⌈
δ

∆
×N

⌉
,

where ⌈·⌉ denotes the ceiling function (see Appendix B). The discrepancy be-

tween the discrete approach and the linearized approach is given by equation (4),
9



and Figure 2 displays the value for a system of up to 10 reactors.

η =
n

N
− δ

∆
. (4)
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Figure 2: Error between the linearized aggregated model and the real non-convex problem,
bounded by 1

N
.

In the numerical simulations, we consider the case of the French fleet, where

the number of reactors (57 units) is sufficient to justify the use of a linearized and

aggregated approach, greatly reducing tractability issues. In the following, we

thus consider all the NPPs to be clustered into one unique cluster, approximating

the real system’s behavior.

4. Numerical Model

4.1. Overview

The numerical implementation of a multistage stochastic programming prob-

lem through Stochastic Dynamic Programming (SDP) has been well-studied in

the literature (Shapiro et al., 2009). Conventional approaches are known to

rapidly face tractability problems due to the so-called curse of dimensionality.

We consider an alternative approach based on the Stochastic Dual Dynamic

Programming (SDDP) algorithm to overcome it. Formally, the problem aims at

minimizing the expected cost of operating the power system over one year. The

problem includes an intertemporal constraint as the number of cycling operations

that can be performed during the year is capped. Based on the nomenclature

described in 4.3, the optimal policy (π) is the solution to the following problem:

min
π

Ew∈R+,ω∈Ωw
[V π

w (x0, ω)] , (5)
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where the vector x0 denotes the state variables at the initial stage w = 0 (which

stands, for the present case, for the amount of NPPs cycling operations that

remain usable), the vector ω denotes the observations of the random variables

drawn from the sample space Ωw. The objective function is thus given by the

Bellman equation:

V π
w (x, ω) = Cw(x, u, ω) + Ew′∈w+,ϕ∈Ωw′ [V

π
w′(x′, ϕ)], (6)

where Cw is the cost of the system at stage w, and u is the action on the

decision variables that is made. Ew′∈w+,ϕ∈Ωw′ [V
π
w′(x′, ϕ)] is the expected cost-to-

go function at stage w, which corresponds to the expected cost of solving the

optimization problems of subsequent stages. It quantifies the anticipated future

costs associated with the decision-making process. At a given stage w, control

variables take their values according to a decision rule u, which balances out the

trade-off between the minimization of the subproblem at stage w and the related

impact on future costs, that is, the impact on Ew′∈w+,ϕ∈Ωw′ [Vw′(x′, ϕ)]:

u = πw(x, ω) ∈ Uw(x, ω), (7)

with Uw(x, ω) a non-empty, bounded convex set with respect to x. Decisions

made at stage w have an impact on children stages w′ ∈ w+, and information

is conveyed by a transition function that maps the incoming state, control, and

random variables to their outgoing values x′ as follows:

x′ = Tw(x, u, ω). (8)

Once an optimal policy πw(x, ω) has been determined for each stage of the

problem, multiple simulations are conducted to evaluate its performance under

various scenarios of random variable realizations.

4.2. General assumptions

We propose modeling the system as a stylized multistage stochastic linear

programming problem. Electricity generation is dispatched hourly from the var-

ious technologies of power plants involved. The year is divided into 52 stages

(weeks) of 168 hours each. As we analytically showed in the previous section, the

linear relaxation of the problem closely approximates the real unit commitment
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decisions that are made at the reactor scale. Hence, we consider NPPs to be a

unique technological cluster. The electric transportation network is disregarded.

No investment decisions are considered in the analysis, and the variable costs

associated with each generating technology are determined based on commodity

prices and carbon costs. The technologies considered are gas and oil thermal

plants (CCGT, OCGT, OCOT), NPPs, and renewables, including solar panels,

wind turbines, biomass, and hydropower composed of Run-of-River (RoR), hy-

dro reservoir, and Pumped Hydro Storage facilities (PHS).

Figure 3 provides a concise illustration of the approach applied to model

uncertainty. The uncertainty related to VRE generation and power load is ad-

dressed weekly, where each stage represents a full week of the year. At the

start of each week, the values of the random variables are revealed, and the

corresponding subproblem of cost minimization is solved. The random variables

are assumed to be time-independent within the SDDP framework, as modeling

time correlation would require significant computational resources.2 The SDDP

framework also requires the discretization of the distribution function for the

random variables. In this study, the random variables are sampled from three

different sets: Ωpv
w , Ωwind

w , and Ωdem
w , with each set representing five potential

realizations of the associated variable for each stage w based on historical data.

For example, in the first stage, VRE generation and power load time series for

the week are selected from five past occurrences of that specific week, ensuring

the incorporation of seasonal characteristics and possible correlations between

PV, wind, and demand.

4.3. Subproblem formulation

Appendix C presents the sets, parameters, and variables of the model. We

use four state variables: the level of nuclear generation, the reservoir of nuclear

flexibility available for cycling operations, PHS reservoirs levels, and hydropower

reservoir levels. The daily and weekly constraints on nuclear power modulation

do not require a separate state variable as it is captured within the time span of

a stage in the problem and can be managed using decision variables alone. For

each stage, the subproblem at stake is to solve:

2For the sake of tractability, the approximation of time independence is preferred over the
use of Auto-Regressive models, which would increase the number of state variables. We refer
to Papavasiliou et al. (2018) for an example of an SDDP AR-1 model.
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Figure 3: Illustration of the probabilistic tree and randomness generation process for two stages.

min
gkw,t

∑
k∈K

∑
t∈(1,...,168)

Ck · gkw,t + E(V (gnucw , lnucw , lphsw , lhydrow )) (9)

Constraints concerning the maximum output power of the different tech-

nologies, as well as the minimum power threshold for nuclear, are depicted in

equations (10) and (11). Equation (12) ensures production to equal consumption

for every hour, and the associated dual variable λt defines the market price for

electricity for each hour. All equations are set for every timestep t considered in

the model when relevant, and all variables are non-negative.

0 ≤gkw,t ≤ Ak
w,t · P k, ∀k ∈ K (10)

gnucw,t ≥ Pnuc
w,t (11)∑

k∈K
gkw,t + gphs,+w,t − gphs,−w,t = ξdemw,t − ξpvw,t − ξwind

w,t (λw,t) (12)

Equations binding the evolution of PHS, hydro, and nuclear-considered stocks

are displayed below and account for energy conservation within the system.
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lphsw,t+1 − lphsw,t = gphs,−w,t − ρ · gphs,+w,t (13)

lhydrow,t+1 − lhydrow,t = W − ghydrow,t (14)∑
t∈d

∣∣(gnucw,t+1 − gnucw,t )
∣∣ ≤ Lnuc

day ∀d,w (15)∑
t∈w

∣∣(gnucw,t+1 − gnucw,t )
∣∣ ≤ Lnuc

week ∀w (16)

lnucw+1 − lnucw =
∑
t

|gnucw,t+1 − gnucw,t | ∀w (17)

l0,0 = Lnuc
year (18)

As shown in equations (15)-(18), nuclear power variations are discounted iter-

atively. NPP load-following operations are subject to three distinct constraints,

each corresponding to a specific timescale. These constraints impose limitations

on the frequency of load-following operations on a daily, weekly, and yearly basis.

As we show in Section 3, the value of nuclear flexibility for a given week µw can

be expressed as the partial derivative of the Bellman term to the variable lnucw ,

i.e., the stock of cycles nuclear is allowed to undergo during the year:

∂E(V (gnucw , lnucw , lphsw , lhydrow ))

∂lnucw

= µw. (19)

5. Application to the French case

We now detail an application of our methodology and consider the future

French power system in 2035 as a case study. Our focus on France is motivated

by the country’s historical endowment in nuclear generation. At the 2035 hori-

zon, the projected deployment of VREs will likely necessitate an increased use of

nuclear-based load-following operations. In recent years, the cycling operations

conducted at French reactors have experienced rapid growth. Between 2012 and

2015, the percentage of reactors engaged in such operations climbed from 20 to

40%, while the electricity production from renewable sources increased by more

than 55% (Cany et al., 2018). That percentage is projected to increase to accom-

modate an increasingly VRE-dominated system. Given France’s strong political

commitment to the combined development of VREs and NPPs, examining the

future economics of flexible nuclear generation in this country is particularly

relevant.3

3Recall that the country is endowed with a large fleet of nuclear power plants which, in
2023, contributed to around 65% of electric generation.
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5.1. Model calibration

5.1.1. Non-nuclear related data

We consider the projected generation mix retained in the national energy

plans as reported in the studies by RTE, the French Transmission System Op-

erator (TSO) (RTE, 2022). Table C.4 in Appendix C reports the posited gen-

eration capacities for 2035. VRE electricity generation time series and load

patterns from 2015-2019 have been scaled up to the projected evolution of both

VRE installed capacity and demand trends in the coming decade.4 We impose

hydropower reservoir levels to be half-filled at the beginning and the end of the

modeled year, in line with real data from RTE. Our model omits export price

setting, so any excess energy produced beyond domestic consumption is cur-

tailed rather than exported, simplifying the model by not simulating the entire

European energy market.

5.1.2. Nuclear-specific considerations

All the 57 reactors of the French nuclear fleet are aggregated into one unique

nuclear cluster. To assess the number of cycles allowed at fleet scale for the

French nuclear fleet, we calculate the effective historical nuclear flexibility based

on EDF data from 2017 to 2023. During that period, French reactors performed

an average of 26 cycling operations per year. In the sequel, we use this as a

baseline value. The value of 20%P for the lower generation bound is drawn

from Cany et al. (2018). It represents the usual value retained for the flexible

operation of French reactors. The availability of the fleet is historically higher

in winter than in summer in France since maintenance and refueling outages are

strategically scheduled to minimize their impact on the system. To account for

this effect, we set the fleet’s availability equal to the average availability of the

French reactors between 2017 and 2023. Similarly, the lower bound restricting

nuclear generation is extracted from historical data. The fleet’s total minimal

power is the sum of each reactor’s minimal power, reflecting variations in their

irradiation cycles and operational schedules. Figure 4 shows the average op-

erational schedule for the French nuclear fleet in the years 2015-2023 and its

minimal power evolution based on the duration of each reactor’s irradiation cy-

cle. To estimate the minimum power output of the fleet, we assume that fuel

burn-up is proportionate to the progress of each reactor’s irradiation cycle.5 The

resulting feasible range of nuclear generation is presented in Figure 4.

4Source: ENTSO-e transparency platform (European Network of Transmission System Op-
erators for Electricity).

5Sources: ENTSO-e and ASN (Autorité de sûreté nucléaire, the French Nuclear Safety
Authority).
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Figure 4: Retained minimal and maximal output power for nuclear power, based on 2015-2023
data.

5.2. Implementation

We investigate the effects of nuclear flexibility through a series of five case

studies, each corresponding to different levels of nuclear flexibility. The con-

straint on the maximum number of cycling operations that a nuclear reactor can

perform per year is set to 1, 26 (the baseline case, corresponding to the current

flexibility of the French fleet), 50, 75, and 100, respectively. For each of these

five cases, we solve the system cost minimization problem, which is implemented

as an instance of a multistage stochastic dynamic programming problem solved

with the SDDP algorithm. We determine an optimal policy—i.e., an approx-

imation of the Bellman term across all stages—for each flexibility case in the

algorithm’s training phase. We then run simulations to assess its performance

across 100 possible years. We use the Julia implementation proposed by Dowson

and Kapelevich (2021) and the CPLEX solver. The model is trained over 1000

iterations, yielding 1000 Bender’s cuts at each of the 52 stages considered. At

each stage, the generating patterns of PV and wind plants, as well as the level

of electricity demand, are extracted from 5 possible realizations. This results in

a probabilistic space of more than 2.2× 1036 possible scenarios.

The training phase of the algorithm takes between 5 and 10 hours per case

study on an Intel Xeon Gold 6230 with 20 cores @ 2.1 GHz (Cascade Lake) and

10GB of dedicated RAM. Following Shapiro (2011), we ensure that the upper

bound of the system’s expected total cost (estimated via policy simulations)

aligns with the lower bound (determined by the Benders’ cuts) within a fixed

tolerance of ε = 2%. To confirm proper convergence, we track the evolution of

this gap between the bounds across iterations, ensuring no significant change

occurs in the variance of the interval when stopping the algorithm.
16



6. Results

6.1. System costs

For each scenario, we evaluate the performance of the optimal policy using

100 random simulations. The average system cost is calculated as the arithmetic

mean of the total annual cost from the simulations. Table 1 presents the ratio of

this estimate to the baseline case for each scenario. As expected, the mean cost

decreases with higher nuclear flexibility, reflecting improved resource utilization

and lower operational costs.

Nuclear flexibility Mean objective value
(# allowed cycles) (% of baseline case)

1 1.08
26 1
50 0.98
75 0.97
100 0.96

Table 1: Mean cost of the system across varying levels of nuclear flexibility.

With a flexible nuclear fleet, VRE integration improves, reducing curtailment

levels, as shown in Figure 5. While there are diminishing returns from increased

nuclear flexibility, the reduction in curtailment remains significant at first. How-

ever, after 75 cycles per year, further flexibility yields negligible improvements in

curtailment, suggesting that the system is nearing the unconstrained optimum

for nuclear flexibility.
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Figure 5: Total amount of curtailed energy
from VRE across varying levels of nuclear flex-
ibility.
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Figure 6: Mean load factor of NPPs across
varying levels of nuclear flexibility.

NPP capacity factors decrease from 63% in the least flexible scenario to

55% at the highest flexibility level, as shown in Figure 6. For comparison, the
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average load factor for French NPPs from 2010 to 2019 was around 72%. These

results highlight a significant reduction in nuclear output, even at flexibility

levels similar to historical norms, driven by competition between nuclear and

renewable generation.

6.2. The value of nuclear flexibility

The value of nuclear flexibility is derived from the shadow price of the flex-

ibility constraint, representing the marginal cost reduction of the system when

the constraint is slightly relaxed. This corresponds to the derivative of the Bell-

man function with respect to the flexibility constraint, capturing the system’s

sensitivity to the flexibility constraint and reflecting how much the overall sys-

tem cost decreases as nuclear flexibility is incrementally increased.

Figure 7 illustrates the relationship between nuclear flexibility, measured in

cycles per year, and its corresponding value in EUR/MW. The graph highlights

that nuclear flexibility holds the highest value when scarce, particularly when

the fleet’s flexibility is limited to only one cycle per year (with flexibility value

exceeding EUR 2000/MW). In this scenario, flexibility is crucial because it can

only be used sparingly, and its application in critical moments significantly re-

duces system costs. As the nuclear fleet’s flexibility increases, the marginal value

of additional flexibility diminishes, down to EUR 5/MW in the 100-cycle case.

This is because the most valuable opportunities to deploy flexibility are already

utilized as flexibility increases, leaving fewer situations where additional flexibil-

ity would significantly impact system costs.

The link between the value of flexibility and electricity prices is tied to price

extrema, not the average price level. During high-price periods, upward flexi-

bility (i.e., the ability to increase nuclear output) is valuable because it allows

the system to avoid using more expensive peaking plants or to shed load. Con-

versely, during periods of negative prices, downward flexibility (i.e., the ability

to decrease nuclear output) becomes valuable, as it prevents the need to sell elec-

tricity at a loss. Figure 8 displays the evolution of prices and shows the mean

value stays roughly idle depending on the scenario, whereas price volatility highly

diminishes.

6.3. Impact on profitability

Simulation results indicate that nuclear flexibility has little impact on NPPs’

profits. Interestingly, the maximum profit occurs at 26 cycles per year, that is,
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Figure 7: Marginal value of nuclear flexibility
across varying levels of nuclear flexibility.
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Figure 8: Price distribution across varying
levels of nuclear flexibility. Diamonds indi-
cate mean values.

the current practice. The differences in profit across flexibility levels are mini-

mal, as shown in Figure 10. A Wilcoxon test was conducted to assess whether

the profit distributions differ significantly. While comparisons between the 1 and

26-cycle cases, as well as between the 26 and 100-cycle cases, produced p-values

low enough to reject the null hypothesis, most other tests yielded high p-values,

indicating that samples cannot be clearly distinguished among themselves in the

majority of cases. This suggests that nuclear profits depend only weakly on

flexibility. Indeed, the largest profit difference —between 1 and 26 cycles—is

about 7%. Since nuclear plants already operate with around 26 cycles per year,

a more relevant comparison is between 26 and 100 cycles to see the impact of

increasing the nuclear fleet flexibility in the future. Results indicate a drop of

approximately 5% in profits. This indicates a nuclear operator would have little

incentive to pursue such high flexibility.
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NPPs across varying levels of nuclear flexibil-
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Flexibility levels compared (# cycles) p-value

1 / 26 0.004
26 / 50 0.54
50 / 75 0.38
75 / 100 0.75
26 / 100 0.04

Table 2: Wilcoxon test results for profit distribution across nuclear flexibility levels

This counterintuitive result stems from two counteracting dynamics. As the

nuclear fleet becomes more flexible, NPPs can better align production with sys-

tem needs and thus increase the market value of their production. In sharp

terms, NPPs begin to produce less when prices are low and can better adjust

for any price rise, potentially increasing profits. However, the nuclear generat-

ing pattern also impacts the price formation, which aligns more closely with the

short-term marginal cost of the technology and lowers potential revenues. Also,

given the reduction in load factor, NPPs produce less at higher flexibility levels,

which hinders profits.

The impacts on profits for other technologies can be highlighted by three main

results. First, solar panel profits benefit substantially from increased nuclear

flexibility, as Figure 9 shows. In the most flexible scenario, solar panel payoffs

increase by almost 50% compared to the baseline. This increase is due to reduced

curtailment of solar energy and mitigation of the cannibalization effect during

peak solar generation periods. Second, wind turbine profits show no significant

change despite a substantial reduction in energy curtailment of 27TWh between

the two most extreme flexibility cases (see Figure 5). The increased flexibility of

NPPs leads to higher wind energy volumes sold in the market, which is offset by

deflated price levels in moments of wind production, resulting in stable profits for

wind turbines. Finally, PHS profits are adversely affected by increased nuclear

flexibility. The flattening of the price distribution reduces opportunities for time

arbitrage, leading to a 63% decrease in PHS profits between the most flexible

NPP scenario and the baseline.

7. Conclusion

The massive deployment of variable renewable generation radically shifts the

role of nuclear power plants from providing baseload generation to offering flexi-
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bility through load-following operations. To examine the system implications of

that change, this paper introduces a new model for nuclear flexibility, concep-

tualizing it as a fixed stock of load-following operations optimally dispatched in

an uncertain environment. Using a linearized approximation of the inherently

non-convex problem, we extend this model from the reactor level to the fleet

scale. We derive the marginal value of nuclear flexibility as the dual value of the

binding constraint on flexibility, showing that this value is determined by the

extremum of expected prices in subsequent periods.

As an application of that model, the paper analyzes the French power sys-

tem in 2035, treating it as a multistage stochastic dynamic programming problem

solved using the Stochastic Dual Dynamic Programming (SDDP) algorithm. At

an empirical level, our results quantify the value of nuclear flexibility across dif-

ferent flexibility levels, and we demonstrate its effects on market prices and the

profitability of various technologies. At the current flexibility level of the French

nuclear fleet, we estimate a value of EUR 100/MW by 2035, underscoring the

economic incentive to enhance nuclear flexibility in the future.

While increasing nuclear flexibility improves overall cost efficiency, our find-

ings suggest a potential misalignment with the profit-maximizing goals of indi-

vidual operators, especially in imperfect markets susceptible to price manipu-

lation. Future research should further explore these dynamics, particularly the

role of market power in systems with flexible nuclear assets. Moreover, incorpo-

rating time correlations in renewable generation and demand patterns—treated

as independent in this study—could provide more precise insights. Lastly, recent

technical failures in French NPPs, which have affected availability, highlight the

need for further investigation into how such outages might influence the value of

nuclear flexibility.
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Cany, C., Mansilla, C., da Costa, P., Mathonnière, G., Duquesnoy, T., and Baschwitz, A.

(2016). Nuclear and intermittent renewables: Two compatible supply options? the case of

the french power mix. Energy Policy, 95:135–146.

Cany, C., Mansilla, C., Mathonnière, G., and da Costa, P. (2018). Nuclear power supply:

Going against the misconceptions. Evidence of nuclear flexibility from the French experience.

Energy, 151:289–296.

Cochran, J., Miller, M., Zinaman, O., Milligan, M., Arent, D., Palmintier, B., O’Malley, M.,

Mueller, S., Lannoye, E., Tuohy, A., Kujala, B., Sommer, M., Holttinen, H., Kiviluoma, J.,

and Soonee, S. K. (2014). Flexibility in 21st Century Power Systems. Technical Report

NREL/TP-6A20-61721, 1130630, National Renewable Energy Laboratory.

Denholm, P., King, J. C., Kutcher, C. F., and Wilson, P. P. (2012). Decarbonizing the electric

sector: Combining renewable and nuclear energy using thermal storage. Energy Policy,

44:301–311.

Dowson, O. and Kapelevich, L. (2021). SDDP.jl: a Julia package for stochastic dual dynamic

programming. INFORMS Journal on Computing, 33:27–33.

Dowson, O., Philpott, A., Mason, A., and Downward, A. (2019). A multi-stage stochastic

optimization model of a pastoral dairy farm. European Journal of Operational Research,

274(3):1077–1089.

EPRI (2014). Advanced nuclear technology: Advanced light water reactor utility requirements

document, revision 13. Technical report, Electric Power Research Institute (EPRI).
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Appendix A. The value of nuclear flexibility

Proof. In electric markets, two types of flexibility are generally distinguished:

downward flexibility (ability to manage supply exceeding demand) and upward

flexibility (ability to manage demand exceeding supply). We differentiate these

by examining two typical market scenarios where nuclear flexibility is valuable,

subsequently deriving the respective downward and upward values of nuclear

flexibility.

Downward flexibility

Consider a case where the price in t = 1 is high (p1 ≫ c), and at time t = 2,

the expected price is below the marginal cost, E[p2] < c. Since the expected

price is below marginal cost in time 2, ∂E[(p2−c)q2]
∂q2

≤ 0 and the NPP operator

lowers output to maximize profit down to a point the flexibility constraint is

binding. Hence, λ2 = 0 and µ > 0. The Karush-Kuhn-Tucker (KKT) conditions

for stationarity yield:

∂L
∂q1

= (p1 − c)− µ = 0 (A.1)

∂L
∂q2

=
∂Ep2(V2(q2, p2))

∂q2
+ µ = 0 (A.2)
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and we have:

∂Ep2(V2(q2, p2))

∂q2
=

∫
∂

∂q2
(f(p2)V2(q2, p2))dp2

=

∫
f(p2)

∂V2(q2, p2)

∂q2
dp2

= E
[
∂V2(q2, p2)

∂q2

]
= E(p2)− c.

Thus we find:

−µ = E[p2]− c. (A.3)

Here, µ represents the shadow price associated with the flexibility constraint.

It quantifies the cost of the reduced flexibility at time 2 due to a higher produc-

tion level at time 1. This relationship highlights the trade-off the operator faces

when setting the production level at 1. A lower production level at 1 increases

the flexibility available at 2, increasing the expectancy of profit at time 2 by the

value of:

µ = c− E[p2] ≥ 0. (A.4)

Upward flexibility

Now consider the situation of a nuclear plant producing below nameplate

capacity at time 1 (as the result of a former optimization as we just calculated,

for instance) but facing a very high price at time 2. With no flexibility constraint,

the optimal dispatch would result in producing at maximum capacity in time

2 to maximize profit, but as before, we consider the flexibility constraint to be

binding. The NPP cannot reach nameplate capacity in time 2, and the KKT

conditions of this problem lead to a value of flexibility of

µ = E[p′2]− c, (A.5)

with p′2 the peak price in 2. The value of flexibility—which is the marginal

change in the value of the Lagrange function when the flexibility constraint is

relaxed by an infinitesimal amount— is now equal to the expectancy of price in

time 2, minus the variable cost of running the plant c.

Multistage framework
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We showed that the value of nuclear flexibility is determined by the expected

extremum of the price, adjusted for the variable cost. The variable cost is either

added or subtracted, depending on whether the flexibility is upward or down-

ward:

µ = |E(p2)− c|. (A.6)

This is true if the flexibility constraint on load-following cycles is binding.

Since the value of flexibility is set by the Lagrange multiplier of the flexibil-

ity constraint, if the latter is not binding, the former equals zero, and adding

more potential of flexibility to the NPP does not bring any economic gain for

the system or the operator. In a multistage framework with more than two

timeframes, the dual value of the flexibility constraint will be determined by

the period when the constraint is most binding, i.e., when the dual value is at

its maximum. Economically, this can be understood as follows. Initially, with

limited flexibility, the nuclear plant utilizes its flexibility in the most valuable

situations, typically involving extended periods of low prices followed by high

prices, such as seasonal variations. As the plant’s flexibility increases, it can

address less critical, less valuable needs. Consequently, the marginal value of

nuclear flexibility µ decreases, settling at the value of the next most valuable

opportunity for additional flexibility. Thus, in a multistage case, the value of

nuclear flexibility is determined by the highest-value opportunity for marginal

flexibility that remains unused. The marginal value of nuclear flexibility thus

writes:

µ = max
t∈B

(|E[pt]− c|) , (A.7)

where pt represents the price at time t, c is the variable generation cost and B
is the set of timeframes where the flexibility constraint is binding.

Appendix B. The problem of aggregation

Proof. Consider a fleet of N nuclear reactors, each subject to a non-convex flex-

ibility constraint represented by a discrete variable n, which counts the number

of reactors performing a load-following cycle. The proportion of reactors cycling

is n
N . The system requires a certain amount of flexibility, δ, while the total flex-

ibility the fleet can provide is ∆. Hence, the relative flexibility need is δ
∆ . Each

reactor contributes a flexibility of ∆
N when performing a full load-following cycle.

Any plant participating in a flexibility request without completing a full cycle

underutilizes its flexibility potential, depleting its available cycling operations.

Therefore, the optimal strategy to preserve the nuclear fleet’s flexibility is to
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minimize the proportion of reactors engaged in load-following cycles, n
N , while

still meeting system demand:

min
n

n

N
s.t.

n

N
≥ δ

∆
.

The solution to this is n = ⌈ δ
∆ ×N⌉, where ⌈·⌉ denotes the ceiling function to

account for the fact that n must be an integer. The ceiling function introduces

a small error, as δ
∆ ×N may not be an integer. The error between the discrete

solution n
N and the continuous solution δ

∆ can be written as:

η =
⌈ δ
∆ ×N⌉
N

− δ

∆
. (B.1)

Recall that the set of rational numbers Q is dense in the set of real numbers

R. This implies that for any real number δ
∆ , and for any small positive ε, there

exists a rational number n
N such that:∣∣∣∣ nN − δ

∆

∣∣∣∣ ≤ ε. (B.2)

Thus, for any desired accuracy ε, we can always find a sufficiently large N

such that the discrete ratio n
N is arbitrarily close to the continuous value δ

∆ . We

now quantify this error explicitly. The ceiling function introduces an error of at

most 1:

⌈ δ
∆

×N⌉ −
(

δ

∆
×N

)
≤ 1,

dividing by N , we obtain:

⌈ δ
∆ ×N⌉
N

− δ

∆
≤ 1

N
.

Thus, 1
N is an upper-bound for the error η:

η ≤ 1

N
∀N ∈ N. (B.3)

In conclusion, the discrete, non-convex constraint at the reactor level n
N

converges to the continuous, linearized constraint δ
∆ at the fleet level as N → ∞.

The convergence error decreases at a rate bounded by 1/N , ensuring that as

the number of reactors increases, the fleet-level linearized model becomes an

increasingly accurate approximation of the individual reactor-level non-convex

model.
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Appendix C. Nomenclature & Data

Table C.3: Notations

Abbreviation Dimension Description

Sets
k ∈ K Generating technologies
t ∈ (1, ..., 168) Hours of the week
d ∈ (1, ..., 7) Days of the week
w ∈ (1, ..., 52) Weeks of the year

Parameters
Ck EUR/MWh Generation variable cost
Pk GW Installed capacity of technology k
Pnuc
w,t GW Minimum generating power

of nuclear power plants
Ak

w,t Availability factor of technology k at time t
ρ Round trip efficiency of PHS
W GW Water inflow for hydro reservoirs (constant)
V oLL EUR/MWh Value of Lost Load
Lnuc

day GW Maximum amount of nuclear power variation
allowed per day

Lnuc
week GW Maximum amount of nuclear power variation

allowed per week
Lnuc

year GW Maximum amount of nuclear power variation
allowed per year

Initial values
lnuc
0,0 GW Initial stock of flexibility for NPPs
lPHS
0,0 GWh Initial stock of water for PHS
lhydro0,0 GWh Initial stock of water for hydrothermal plants

Stochastic Variables
ξpvw,t GW Electricity production from solar

ξwind
w,t GW Electricity production from wind
ξdemw,t GW Electricity demand

State Variables
gnuc
w GWh Nuclear generation level at the end of week w
lnuc
w GWh Remaining nuclear flexibility at the end of week w
lphsw GWh Filling levels of PHS stocks at the end of week w
lhydrow GWh Filling levels of hydro reservoirs stocks at the end of week w

Control Variables
gkw,t GW Generating power of technology k

g
phs,+/−
w,t GW Turbining (+) or pumping (-)

from/into PHS reservoirs

6Sources: Villavicencio (2017) for efficiency rates, Pietzcker et al. (2021) for emission factors
and input prices, and the posited carbon price, which is set at EUR 170 per ton.
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Technology Capacity (GW) Derating factor Variable cost (EUR/MWh)

Solar 50 Ø 0
Wind 50 Ø 0
RoR 2.2 Ø 0

Hydro reservoir 8 0.86 0
PHS 7 0.54 0

Nuclear 63 f(t) 14
Biomass 2 0.9 99
CCGT 6.6 0.88 100
OCGT 4.7 0.94 151
OCOT 1 0.94 258
Imports 25 0.5 268
VoLL Ø Ø 10,000

Table C.4: Capacity and variable costs of considered technologies in France in 2035 6
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