ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

A generating function for all semi-magic squares and the volume of the Birkhoff polytope

J.A. De Loera , F. Liu and R. Yoshida
University of California Davis, Davis, CA 95616, USA

DOI: 10.1007/s10801-008-0155-y

Abstract

We present a multivariate generating function for all n\times  n nonnegative integral matrices with all row and column sums equal to a positive integer t, the so called semi-magic squares. As a consequence we obtain formulas for all coefficients of the Ehrhart polynomial of the polytope B n of n\times  n doubly-stochastic matrices, also known as the Birkhoff polytope. In particular we derive formulas for the volumes of B n and any of its faces.

Pages: 113–139

Keywords: keywords Birkhoff polytope; volume; lattice points; generating functions; Ehrhart polynomials

Full Text: PDF

References

1. Baldoni, V., De Loera, J.A, Vergne, M.: Counting integer flows in networks. Foundations of Computational Mathematics 4(3), 277-314 (2004)
2. Barvinok, A.I.: Computing the volume, counting integral points, and exponential sums. Discrete Comput. Geom. 10, 123-141 (1993)
3. Barvinok, A.I.: A course in convexity. Graduate studies in Mathematics, vol.
54. American Math. Soc., Providence (2002)
4. Barvinok, A.I., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997). Math. Sci. Res. Inst. Publ., vol. 38, pp. 91-147. Cambridge Univ. Press, Cambridge (1999)
5. Beck, M., Pixton, D.: The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom. 30, 623-637 (2003)
6. Beck, M., Hasse, C., Sottile, F.: Theorems of Brion, Lawrence, and Varchenko on rational generating functions for cones, manuscript (2007), available at math ArXiv:
7. Beck, M., Robins, S.: Computing the continuous discretely: integer-point enumeration in polyhedra. Springer undergraduate texts in Mathematics (2007)
8. Brion, M.: Points entiers dans les polyèdres convexes. Annales scientifiques de l'École Normale Supérieure Ser. 4(21), 653-663 (1988)
9. Canfield, E.R., McKay, B.: Asymptotic enumeration of integer matrices with constant row and column sums, available at math ArXiv:
10. Canfield, E.R., McKay, B.: The asymptotic volume of the Birkhoff polytope, available at math ArXi
11. Chan, C.S., Robbins, D.P.: On the volume of the polytope of doubly-stochastic matrices. Experiment.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy