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HONO measurements from the NOAA P3 during SENEX
e Why
e How
e What



Why HONO in SENEX: by-product of effort to
measure multiple organic acids

Goal: Modify Chemical lonization Mass Spectrometer (CIMS) to detect organic acids

* Previously: SiF.~+ HNO; — SiF.~ « HNO; (VERY selective)
* Well known: I+ HNO; — |-+« HNO,

-+ HCOOH — |-« HCOOH
* Interference test with NO, (same mass as HCOOH)

— | ab air

5[ |"  HCOOH
10 3 —— 60 ppbv NO, I

| e HONO

N :
B’ 4 _ I e (H,0),
= 10 E / -
T ‘ | e HONO®H,0
2 10F ﬁ /
8 3
t ¥
S 10 3 ‘ ‘ |

.

10 40 80 120 160 200 240 280
Mass (amu)

No interference from NO,. HONO detected



Why: Because it worked (and others compounds didn’t)

e Compounds with similar molecular weights can’t be resolved by this mass spectrometer:
butyric (88.11) and pyruvic acids (88.06); propionic (74.08) and glyoxylic acids (74.04);
oxalic (90.03) and lactic acids (90.08)

* No sensitivity: acrylic & methacrylic acids, glycolic acid, alkyl nitrates, VOCs, NO,, SO,, glyoxal...
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Control humidity in detector to maintain constant sensitivity



How: HONO detection limits

Sampling details

e HONO, HCOOH, and HNO; measured once per second

e Inlet: 70 cm long Teflon at 40 °C, 0.64 cm ID, residence time = 170 ms
e Instrument background: sample through charcoal filter every % hour
e Calibrations: HNO,; or HCOOH once per hour

HONO from HCl + humidified NaNO, in laboratory
HONO calibration accuracy £40%, 1 s time response

e Example of raw data:
June 12 flight, Atlanta

e precision
25 pptv for 1 s data
11 pptv for 10 s averages

e Instrument background
160 + 30 pptv
(Achilles heel)

e detection limit:
40 pptv for 1s data
30 pptv for 10 s averages
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What: HONO in fire plumes

S |
e Nighttime

e Prescribed fires

e Western TN

* 0.6-0.8 km AGL

e 1 sdata

HONO (ppbv), NOy (10 ppbv)
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9:00 PM
Local time (CDT)

9:04 PM

Fire plumes sampled day and night during SENEX:
e HONO > 4 ppbyv, by far the largest mixing ratios observed
e HONO correlated with emitted CO and NOx
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HONO to CO fire emission ratio

e Nighttime

e Prescribed fires
e July 2, 2013

o Western TN

® 0.6-0.8 km AGL
e 1 sdata

e >20 plumes
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e HONO to CO enhancement ratios varied from 0.13-0.52%
e Consistent with previous reports of 0.2-0.5%
(Akagi, 2011; Burling, 2011; Veres, 2010; Yokelson, 2007)



HONO to NOy fire emission ratio
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e HONO to NOy enhancement ratios varied from 2-14%
e Consistent with previous reports of 7.7-22%
(e.g. Burling et al., 2011)



Digression: HCOOH fire emissions
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e HCOOH to CO enhancement ratios varied from 0.2-0.5%
e Consistent with previous reports of =0.4% (e.g. Burling, Veres)

e Formic acid useful fire tracer
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Digression: HNO, removal in fire plumes
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HONO emission from power plants
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HONO correlated with emitted SO, and NOy in power plant plumes



HONO to NOy power plant emission ratio

e 10 s averages
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e Fresh plumes from coal-fired power plants measured at night

e HONO:NOy = 0.2% (less than cars, planes)
e Sometimes HONO emission =0



HONO in urban plumes at night

e Nighttime, June
19

e Atlanta vicinity

e Atlanta plume
9:45 PM
60 km downwind

0.6 km AGL

e 10 s data

e HONO = 150 pptv in nighttime Atlanta plume
e HONO:NOy = 0.9% in nighttime Atlanta plume
e Plumes transported at night may be decoupled from the surface
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Daytime HONO: fresh power plant plumes
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e Daytime HONO also in fresh plumes from paper mills, fires, aircraft

e Plume modeling could sort out HONO contributions from:
e Emission e Formation (OH + NO)

e Loss (photolysis) e Dilution



Daytime HONO altitude profile
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e No trend with altitude
e All daytime 10 s measurements: HONO = -5 + 30 pptv
e Photostationary state (PSS): HONO = 1 pptv (for NO = 50 pptv)



Frequency distribution, daytime HONO measurements

e 14 daytime
flights

® measurements
0.4-6 km AGL

e most <1 km AGL

e fit to normal
distribution,

width = o
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Conclusions

e HONO measured once per second on 18 research flights
e Largest HONO mixing ratios in fresh fire plumes measured at night
e Fire HONO emissions consistent with past studies

e Power plant HONO emission ratio quantified
HONO:NOy=0.2%, though sometimes HONO:NOy=0

e Daytime HONO > 30 pptv always from nearby combustion source

e Outside of fresh plumes, daytime HONO consistent with PSS
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Extra

Number of 10 s measurements

Altitude (km)
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