Painless Geometry
4.5/5
()
About this ebook
Barron's makes learning Geometry fun and PAINLESS!
Painless Geometry provides lighthearted, step-by-step learning and includes:
- Characteristics of distinct shapes, such as circles, quadrilaterals, and triangles
- Discussion on how geometric principles can solve real-world problems
- Painless tips, common pitfalls, instructive tables, diagrams, “brain tickler” quizzes and answers throughout each chapter, and more.
Read more from Barron's Educational Series
Digital SAT Preview: What to Expect + Tips and Strategies Rating: 5 out of 5 stars5/5Business Law Rating: 4 out of 5 stars4/5Military Flight Aptitude Tests, Fifth Edition: 6 Practice Tests + Comprehensive Review Rating: 0 out of 5 stars0 ratingsLet's Review Regents: English Revised Edition Rating: 5 out of 5 stars5/5Art of Styling Sentences Rating: 3 out of 5 stars3/5AP Art History Premium, Sixth Edition: Prep Book with 5 Practice Tests + Comprehensive Review + Online Practice Rating: 0 out of 5 stars0 ratings501 French Verbs, Ninth Edition Rating: 4 out of 5 stars4/5501 Italian Verbs, Sixth Edition Rating: 4 out of 5 stars4/5Barron's American Sign Language: A Comprehensive Guide to ASL 1 and 2 with Online Video Practice Rating: 3 out of 5 stars3/5Dictionary of Real Estate Terms Rating: 5 out of 5 stars5/5501 Portuguese Verbs Rating: 4 out of 5 stars4/51100 Words You Need to Know + Online Practice: Build Your Vocabulary in just 15 minutes a day! Rating: 4 out of 5 stars4/5Dictionary of Legal Terms: Definitions and Explanations for Non-Lawyers Rating: 4 out of 5 stars4/5AP Calculus Premium, 2025: Prep Book with 12 Practice Tests + Comprehensive Review + Online Practice Rating: 5 out of 5 stars5/5AP World History Modern, Fifth Edition: Flashcards: Up-to-Date Review Rating: 0 out of 5 stars0 ratingsPainless Grammar Rating: 4 out of 5 stars4/5ASVAB Flashcards, Fourth Edition: Up-to-date Practice Rating: 0 out of 5 stars0 ratingsHSPT Strategies and Practice, Second Edition: Prep Book with 3 Practice Tests + Comprehensive Review + Practice + Strategies Rating: 0 out of 5 stars0 ratingsSpanish for Health Care Professionals Rating: 4 out of 5 stars4/5AP Biology Premium, 2025: Prep Book with 6 Practice Tests + Comprehensive Review + Online Practice Rating: 0 out of 5 stars0 ratingsLet's Review Regents: Living Environment Revised Edition Rating: 0 out of 5 stars0 ratingsAP Psychology Premium, 2025: Prep Book for the New 2025 Exam with 3 Practice Tests + Comprehensive Review + Online Practice Rating: 0 out of 5 stars0 ratingsPainless Algebra Rating: 3 out of 5 stars3/5PSAT/NMSQT Premium Study Guide: 2025: 2 Practice Tests + Comprehensive Review + 200 Online Drills Rating: 5 out of 5 stars5/5AP Statistics Premium, 2025: Prep Book with 9 Practice Tests + Comprehensive Review + Online Practice Rating: 0 out of 5 stars0 ratingsAP Precalculus Premium, 2025: Prep Book with 3 Practice Tests + Comprehensive Review + Online Practice Rating: 0 out of 5 stars0 ratings
Related to Painless Geometry
Related ebooks
Painless Algebra Rating: 3 out of 5 stars3/5Homework Helpers: Geometry Rating: 5 out of 5 stars5/5Pre-Algebra Essentials For Dummies Rating: 2 out of 5 stars2/5The Everything Guide to Algebra: A Step-by-Step Guide to the Basics of Algebra - in Plain English! Rating: 4 out of 5 stars4/5Painless Pre-Algebra Rating: 3 out of 5 stars3/5Algebra I Essentials For Dummies Rating: 2 out of 5 stars2/5Geometry For Dummies Rating: 4 out of 5 stars4/5The Not-So-Scary Guide to Basic Trigonometry Rating: 4 out of 5 stars4/5Painless Calculus Rating: 0 out of 5 stars0 ratingsHow to Solve Word Problems in Algebra, 2nd Edition Rating: 4 out of 5 stars4/5The Everything Everyday Math Book: From Tipping to Taxes, All the Real-World, Everyday Math Skills You Need Rating: 5 out of 5 stars5/5Painless Statistics Rating: 0 out of 5 stars0 ratingsegghead's Guide to Calculus Rating: 0 out of 5 stars0 ratingsPractice Makes Perfect Geometry Rating: 5 out of 5 stars5/5Quick Arithmetic: A Self-Teaching Guide Rating: 2 out of 5 stars2/5High School Pre-Calculus Tutor Rating: 4 out of 5 stars4/5egghead's Guide to Algebra Rating: 0 out of 5 stars0 ratingsBasic Math & Pre-Algebra Super Review Rating: 0 out of 5 stars0 ratingsTrigonometry Simplified Rating: 0 out of 5 stars0 ratingsPractice Makes Perfect Basic Math Review and Workbook, Second Edition Rating: 0 out of 5 stars0 ratingsPractice Makes Perfect Basic Math Rating: 0 out of 5 stars0 ratingsPractice Makes Perfect Pre-Algebra Rating: 5 out of 5 stars5/5Algebra II Essentials For Dummies Rating: 0 out of 5 stars0 ratingsMust Know High School Geometry Rating: 0 out of 5 stars0 ratingsAlgebra II For Dummies Rating: 3 out of 5 stars3/5Easy Algebra Step-by-Step, Second Edition Rating: 5 out of 5 stars5/5Beginning Algebra Rating: 4 out of 5 stars4/5Algebra II Workbook For Dummies Rating: 4 out of 5 stars4/5Easy Pre-Calculus Step-by-Step, Second Edition Rating: 0 out of 5 stars0 ratings
Study Aids & Test Prep For You
Summary of Good Energy by Casey Means:The Surprising Connection Between Metabolism and Limitless Health Rating: 0 out of 5 stars0 ratingsThe 48 Laws of Power: by Robert Greene | Conversation Starters Rating: 4 out of 5 stars4/5Do the Work: The Official Unrepentant, Ass-Kicking, No-Kidding, Change-Your-Life Sidekick to Unfu*k Yourself Rating: 4 out of 5 stars4/5Summary of The Anxious Generation by Jonathan Haidt: How the Great Rewiring of Childhood Is Causing an Epidemic of Mental Illness Rating: 0 out of 5 stars0 ratingsFluent in 3 Months: How Anyone at Any Age Can Learn to Speak Any Language from Anywhere in the World Rating: 3 out of 5 stars3/5Finish What You Start: The Art of Following Through, Taking Action, Executing, & Self-Discipline Rating: 4 out of 5 stars4/5Behold a Pale Horse: by William Cooper | Conversation Starters Rating: 4 out of 5 stars4/5The Art of Seduction: by Robert Greene | Conversation Starters Rating: 3 out of 5 stars3/512 Rules For Life: by Jordan Peterson | Conversation Starters Rating: 4 out of 5 stars4/5The Untethered Soul: The Journey Beyond Yourself by Michael A. Singer | Conversation Starters Rating: 3 out of 5 stars3/5Dare to Lead: Brave Work. Tough Conversations. Whole Hearts.by Brené Brown | Conversation Starters Rating: 5 out of 5 stars5/5Quiet: The Power of Introverts in a World That Can't Stop Talking by Susan Cain | Conversation Starters Rating: 2 out of 5 stars2/5Man's Search for Meaning: by Viktor E. Frankl | Conversation Starters Rating: 3 out of 5 stars3/5How to Take Smart Notes. One Simple Technique to Boost Writing, Learning and Thinking Rating: 4 out of 5 stars4/5Between the World and Me: by Ta-Nehisi Coates | Conversation Starters Rating: 3 out of 5 stars3/5Verity: by Colleen Hoover | Conversation Starters Rating: 4 out of 5 stars4/5The Great Alone: by Kristin Hannah | Conversation Starters Rating: 5 out of 5 stars5/5Circe: by Madeline Miller | Conversation Starters Rating: 4 out of 5 stars4/5Barron's American Sign Language: A Comprehensive Guide to ASL 1 and 2 with Online Video Practice Rating: 3 out of 5 stars3/5Becoming Supernatural: by Dr. Joe Dispenza | Conversation Starters Rating: 3 out of 5 stars3/5
Reviews for Painless Geometry
3 ratings0 reviews
Book preview
Painless Geometry - Barron's Educational Series
Chapter 1
A Painless Beginning
Geometry is a mathematical subject, but it is just like a foreign language. In geometry, you have to learn a whole new way of looking at the world. There are hundreds of terms in geometry that you’ve probably never heard before. Geometry also uses many common terms, but they have different meanings. A point is no longer the point of a pencil, and a plane is not something that flies in the sky. To master geometry, you have to master these familiar and not so familiar terms, as well as the theorems and postulates that are the building blocks of geometry. You have a big job in front of you, but if you follow the step-by-step approach in this book and do all the experiments, it can be painless.
Undefined Terms
Undefined terms are terms that are so basic they cannot be defined, but they can be described.
A point is an undefined term. A point is a specific place in space. A point has no dimension. It has no length, width, or depth. A point is represented by placing a dot on a piece of paper. A point is labeled by a single letter.
A line is a set of points that extend indefinitely in either direction. In this book, the term line will always mean a straight line.
images/himg-11-1.pngThis line is called line AB, or line AC, or line BC, or AB↔ , AC↔, or BC↔. The two-ended arrow over the letters tells you that the letters are describing a line. You can name a line by any two points that lie on the line.
A plane is a third undefined term. A plane is a flat surface that extends infinitely in all directions. If you were to imagine a tabletop that went in every direction forever, you would have a plane.
CAUTION—Major Mistake Territory!
The term line always refers to a straight line. This is not a line because it is not straight.
images/himg-12-1.pngA line also extends forever in both directions. A line has no endpoints. This is not a line because it does not extend forever in both directions.
images/himg-12-2.pngA plane is often represented by a four-sided figure. Place a capital letter in one of the corners of the figure to name the plane. This is plane P.
images/himg-12-3.pngSome Defined Terms
A line segment is part of a line with two endpoints. A line segment is labeled by its endpoints. We use two letters with a bar over them to indicate a line segment. This line segment is segment XY or XY¯.
images/himg-13-1.pngA ray is a part of a line that has one endpoint and extends infinitely in the other direction. The endpoint and one other point on the ray label a ray. This ray could be labeled ray AB or ray AC. When you label a ray, put a small arrow on the top of the two letters to indicate that it is a ray. The arrow on top of the two letters should show the direction of the ray. This ray could also be labeled as AB→ or AC→. This is not BC→ since B is not an endpoint.
images/himg-13-2.pngOpposite rays are two rays that have the same endpoint and form a straight line. Ray BA and ray BC are opposite rays. We can also say that BA→ and BC→ are opposite rays.
images/himg-13-3.pngParallel lines are two lines in the same plane that do not intersect.
images/himg-13-4.pngCAUTION—Major Mistake Territory!
No matter how far you extend two parallel lines, they will not intersect. These two lines do not intersect here, but they are not parallel. If you continue to extend them, they will intersect.
images/himg-14-1.pngCollinear points lie on the same line. A, B, and C are collinear points. D is not collinear with A, B, and C.
images/himg-14-2.pngNoncollinear points do not lie on the same line. X, Y, and Z are noncollinear points. All three of them cannot lie on the same line.
images/himg-14-3.pngBRAIN TICKLERSSet # 1
Decide whether each of the following statements is true or false.
1.A ray has one endpoint.
2.Points that lie on the same line are called linear.
3.A line is always straight.
4.A line segment can be ten miles long.
(Answers are on page 14.)
More Defined Terms
An angle is a pair of rays that have the same endpoint.
images/himg-15-1.pngThe rays are the sides of the angles. The endpoint where the two rays meet is called the vertex of the angle.
A polygon is a closed figure with three or more sides that intersect only at their endpoints. The sides of the polygons are line segments. The points where the sides of a polygon intersect are called the vertices of the polygons.
These are all polygons.
images/himg-15-2.pngTwo shapes are congruent if they have exactly the same size and shape.
Each of these pairs of figures is congruent.
images/himg-15-3.pngCAUTION—Major Mistake Territory!
These two shapes are not congruent. They have the same shape, but they are not the same size.
images/himg-16-1.pngThe perimeter of a polygon is the sum of the lengths of all the sides of the polygon. The perimeter of a polygon is expressed in linear units such as inches, feet, meters, miles, and centimeters.
The area of a geometric figure is the number of square units the figure contains. The area of a figure is written in square units such as square inches, square feet, square miles, square centimeters, square meters, and square kilometers.
The ratio of two numbers a and b is a divided by b, written ab as long as b is not equal to zero.
A proportion is an equation that sets two ratios equal. ab=cd is an example of a proportion.
BRAIN TICKLERSSet # 2
Determine whether each of the following statements is true or false.
1.A polygon can be composed of three segments.
2.The perimeter of a figure can be measured in square inches.
3.5/0 is a ratio.
(Answers are on page 14.)
Postulates
Postulates are generalizations in geometry that cannot be proven true. They are just accepted as true. Do the following experiment to discover one of the most basic postulates of geometry.
EXPERIMENT
Find out how two points determine a line.
Materials
Pencil
Paper
Ruler
Procedure
1.Draw two points on a piece of paper. To draw a point make a dot on the paper as if you were dotting the letter i.
2.Draw a line through these two points. Now draw another line through these same two points. Draw a third line through these two points. Are the three lines the same or different?
3.Draw two other points. How many different lines can you draw through these two points?
Something to think about . . .
How many lines can you draw through a single point?
POSTULATE Two points determine a single line.
What does this postulate mean?
You can draw many lines through a single point.
You can only draw one line through any two different points.
POSTULATE At least three points not on the same line are needed to determine a single plane.
What does this postulate mean?
Through a single point there are an infinite number of planes.
Through two points you can also find an infinite number of planes.
Through three points that lie in a straight line there are an infinite number of planes.
Through three points that do not lie in a straight line there is only one plane.
POSTULATE If two different planes intersect, they intersect on exactly one line.
What does this postulate mean?
Not all planes intersect.
Two different planes cannot intersect on more than one line.
Theorems
Theorems are generalizations in geometry that can be proven true.
THEOREM If two lines intersect, they intersect at exactly one point.
What does this theorem mean?
Not all lines intersect.
Two different lines cannot intersect at more than one point.
This statement is a theorem and not a postulate because mathematicians can prove this statement. They do not have to accept it as true.
THEOREM Through a line and a point not on that line, there is only one plane.
Three noncollinear points determine a single plane. A line provides two points and the point not on that line is the third noncollinear point.
Conditional Statements
Conditional statements are statements that have the form "If p, then q."
An example of a conditional statement is If a figure is a square, then it has four sides.
The first part of the conditional statement is called the hypothesis. In the above example, If a figure is a square
is the hypothesis. The second part of the conditional statement is called the conclusion. In the above example, then it has four sides
is the conclusion. Many theorems are conditional statements. If the first part of the statement is true, then the second part of the statement has to be true.
The converse of a conditional statement is formed by reversing the hypothesis and the conclusion. The converse of the conditional statement If a figure is a square, then it has four sides
is If a figure has four sides, then it is a square.
The original statement is true, but the converse is not true. A rectangle has four sides, but it is not a square.
PAINLESS TIP
Write each postulate or theorem on a separate index card. On the back of the index card, draw a diagram to illustrate the postulate or theorem. Memorize all of them!
Geometric Proofs
In geometry, there are two types of proofs—indirect proofs and deductive proofs.
Indirect proofs
In an indirect proof, you assume the opposite of what you want to prove true. This assumption leads to an impossible conclusion, so your original assumption must be wrong.
Example:
You want to prove three is an odd number.
Assume the opposite. Assume three is an even number.
All even numbers are divisible by two.
Three is not divisible by two, so it can’t be an even number.
Natural numbers are either even or odd, so three must be odd.
Deductive proofs
Deductive proofs are the classic geometric proofs. Deductive reasoning uses definitions, theorems, and postulates to prove a new theorem true. A typical deductive proof uses a two-column format. The statements are on the left and the reasons are on the right.
In this book, deductive proofs will have a different format. Three questions will be used to construct the proof. These three questions will help you think about proofs in a painless way.
1.What do you know?
2.What can you infer based on what you know?
3.What can you conclude?
Geometric Symbols
Much of geometry is written in symbols. You have to understand these symbols if you are going to understand geometry. Here are some common geometric symbols.
BRAIN TICKLERSSet # 3
Name the following symbols.
1.≅
2.<
3.⊥
4.≥
(Answers are on page 14.)
PAINLESS TIP
Write each of the basic geometry symbols on the front of an index card. Write the word or words each symbol represents on the back. Memorize each of the symbols using the cards for help.
SUPER BRAIN TICKLERS
Match these definitions or symbols to the correct terms.
(Answers are on page 14.)
BRAIN TICKLERS—THE ANSWERS
Set # 1, page 4
1.True
2.False
3.True
4.True
Set # 2, page 6
1.True
2.False
3.False
Set # 3, page 13
1.Congruent to
2.Less than
3.Perpendicular to
4.Greater than or equal to
Super Brain Ticklers, page 13
1.C
2.D
3.E
4.F
5.A
6.H
7.B
8.G