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Chapter 1

Background

Soils have become one of the world’s most vulnerable resources in face of cli-
mate change, land degradation, biodiversity loss, and increased demand for food
production. The role of soils and soil organic carbon (SOC) in the climate sys-
tem and climate change adaptation and mitigation has been recognized widely
and validated in various studies, both experimentally and through modelling.
Maintaining and increasing SOC stocks is not only crucial for reducing green-
house gas (GHG) emissions and removing CO5 from the atmosphere but also for
harnessing the benefits of increased SOC (and soil organic matter — SOM) for
soil health and fertility by improving water storage and thereby increasing the
access of plants to water, food production potential, and resilience to drought
(FAO, 2017). It may be beneficial to human health, decreases the imminent
threat of food insecurity to rural communities, and enables us to thrive on our
planet. The widespread adoption of site—specific sustainable soil management
(SSM) practices in agricultural lands can harness a large C sink capacity at
the global scale and its role as an effective strategy to mitigate GHG has been
widely documented. The magnitude and rate of carbon sequestration in soils
can vary greatly, depending on the different land uses and practices, soil charac-
teristics, vegetation, topography, and climate, among other soil forming factors
and processes. It is thus relevant to identify which regions, environments and
production systems have a greater potential to increase SOC stocks as well as
establishing priorities for research and the implementation of public policies.
Responding to a request for support in addressing the Sustainable Develop-
ment Goal Indicators, especially indicator 15.3 which includes the restoration



of degraded soils, the Global Soil Partnership (GSP) Plenary Assembly in 2020
instructed the Intergovernmental Technical Panel on Soils (ITPS) and the GSP
Secretariat to develop the Global Soil Organic Carbon Sequestration Potential
map (GSOCseq map), following the same country—driven approach developed
for the Global Soil Organic Carbon map (GSOCmap). This ‘bottom—up’ ap-
proach is expected to generate a GSOCseq map from national SOCseq maps,
developed and validated by local experts, based on the implementation of SOC
models using standardized procedures and by leveraging the best available local
data.

To this end, members under the International Network of Soil Information In-
stitutions (INSII) umbrella developed general guidelines and technical specifi-
cations for the preparation of the GSOCseq map and countries were invited
to prepare their national soil organic carbon sequestration potential maps ac-
cording to these specifications. Given the scientific advances in the tools for
modeling and mapping SOC, many countries requested the GSP Secretariat to
support them in the process of preparing national SOCseq maps. Hence, an in-
tensive capacity development program on SOC sequestration potential through
the use of modeling and mapping techniques is being implemented. Regional
and national training sessions are being organized using an on-the—job—training
modality to ensure that national experts are trained on the state of the art
modeling and mapping techniques using their own data sets to produce reliable
SOCseq maps. This Technical Manual was prepared as a comprehensible refer-
ence knowledge base to support the capacity development process. It provides
the necessary background knowledge, methodologies and technical steps to pro-
duce national SOCseq maps. It includes step—by—step guidance for developing
1x1 km grids of SOC sequestration potential, as well as for the preparation of lo-
cal data and the compilation and pre—processing of spatial datasets, using open
source software environments and tools. This Technical Manual supplements
the Technical Specifications and Country Guidelines for Global Soil Organic
Carbon Sequestration Potential Map (GSOCseq) (FAO and GSP, 2020), and
part of its contents is included in the current Manual. It is our hope that this
Technical Manual will fulfill its mandate of easily enabling any user to produce
digital SOC sequestration maps using soil legacy data, process—oriented SOC
models and modern techniques of digital soil mapping and realize the overall
aim of improving decision making on soil management.



3 1.1. How to use this book

1.1 How to use this book

This Manual is organized in 13 Chapters, including this one. Chapter 2 provides
scientific background on the importance of SOC sequestration as a GHG mitiga-
tion strategy, factors that regulate SOC sequestration and finally how it can be
estimated. Chapter 3 provides scientific background on the use of different SOC
models to estimate SOC changes and SOC sequestration potential. Chapter 4
describes one of the most used process—oriented SOC models, to be used as a
standard to allow comparisons between countries: the RothC model. Chapter
5 describes the general modeling procedures to generate national SOCseq maps
using this SOC model. Chapter 6 describes the required datasets, potential
data sources and methodologies to estimate modeling inputs for the modeling
approach described in Chapter 5. Chapter 7 gives an overview of the steps and
software requirements to generate national SOCseq maps using a spatially ex-
plicit R—version of the RothC model. Chapters 8 to 11 constitute the core of
this document, providing a step by step guide on how to run the R—scripts and
generate the final product:

e Chapter 8 summarizes the different steps and scripts to be used during
the complete process;

e Chapter 9 summarizes the procedures and scripts harmonization and
preparation of input data;

e Chapter 10 summarizes the procedures for running the model from the
prepared data;

e Chapter 11 summarizes the procedures for the generation of the final maps
from the modeling runs.

Chapter 12 provides an overview for the estimation of uncertainties. Lastly,
Chapter 13 summarizes the procedure for the sharing of the national SOCseq
maps.
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1.2 The sample dataset

The sample dataset provided with this Technical Manual was compiled to model
and map the potential soil organic carbon sequestration for the district of
Pergamino, Buenos Aires. It covers an area of 2 950 km? that is mainly dedi-
cated to agriculture. Pergamino is located in the Corn Belt of Argentina and
with its subtropical climate it is favorable for double cropping systems, allowing
for two harvests a year. The lowlands of this district are used mainly as pastures
for the production of calves.

This Technical Manual used in combination with the provided sample dataset
and scripts can be used as a step—by—step guide, which covers data prepara-
tion and harmonization, modeling potential soil organic carbon sequestration,
rasterizing the results, estimating the uncertainty and finally data sharing.

The sample dataset and scripts can be found in the following repository: https:
//drive.google.com/drive/folders/1Jonn17LAiCyaUSpUn6W63016bjTgl POE?

usp=sharing

More information on the necessary data and the provided data set can be found
in Chapter 6, while an overview of the different steps and scripts needed is
presented in Chapter 8.


https://drive.google.com/drive/folders/1Jonn17LAiCyaUSpUn6W63o16bjTg1P0E?usp=sharing
https://drive.google.com/drive/folders/1Jonn17LAiCyaUSpUn6W63o16bjTg1P0E?usp=sharing
https://drive.google.com/drive/folders/1Jonn17LAiCyaUSpUn6W63o16bjTg1P0E?usp=sharing

Chapter 2

Soil organic carbon (SOC)
sequestration

2.1 Soil carbon

Soils constitute the largest terrestrial carbon (C) pool. Total soil carbon (C)
stock comprises soil organic C (SOC) and soil inorganic C (SIC) components.
SOC is the carbon component of soil organic matter (SOM), a heterogeneous
pool of C comprised of diverse materials including fine fragments of litter, roots
and soil fauna, microbial biomass C, products of microbial decay and other bi-
otic processes (i.e. such as particulate organic matter), and simple compounds
such as sugar and polysaccharides (Jansson et al., 2010). The global SOC stock
of ice—free land contains about 1 500-2 400 Pg C (1 Pg = 1 Gt) in the top 1
m, 2 300 Pg C in the top 3 m, and 3 000 Pg C in the soil profiles (Batjes et
al., 1996; Scharlemann et al., 2014; Tifafi et al., 2018; Lorenz and Lal, 2018).
This represents more than the sum of carbon contained in the atmosphere and
vegetation (Smith et al., 2019). Soil inorganic C comprises pedogenic carbon-
ates and bicarbonates, which are particularly abundant in arid regions and in
alkaline soils. The SIC stock is estimated at 700-1 700 Pg C in the top 1-m
soil layer (Lorenz and Lal, 2018) and is believed to occur predominantly in the
deeper layers of temperate soils Although soils contribute to a major share of
agricultural greenhouse gas emissions (GHGs), due to the size of the soil carbon
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pool, even small increments in the net soil C storage represent a substantial C
sink potential (Paustian et al., 2016). Carbon sequestration implies transfer-
ring atmospheric CO; into long—lived pools and storing it securely so it is not
immediately re-emitted (Lal et al., 2018). Thus, soil C sequestration means
increasing SOC and SIC stocks through judicious land use and sustainable soil
management (SSM) practices. Due to the current knowledge on SOC dynamics,
the global distribution, and the current knowledge on size of the SOC pool com-
pared to the SIC pool, this technical manual will focus on SOC sequestration.

2.2 SOC sequestration

The basic process of SOC sequestration in the terrestrial biosphere involves
transfer of atmospheric CO5 into plant biomass and conversion of biomass into
stable SOC through formation of organo—mineral complexes (Lal et al., 2018).
Thus, soil carbon sequestration relies on plant photosynthesis to carry out the
initial step of carbon “removal” from the atmosphere. However, rather than
increasing the storage of carbon contained in plant biomass, SOC sequestration
relies on management practices that increase the amount of carbon stored as soil
organic matter, primarily in cropland and grazing lands. The main advantage
of scaling up soil C sequestration as a biological negative emission strategy
is that carbon stocks are most depleted on lands currently under agricultural
management and thus this approach does not require land use conversions (e.g.,
to forests) nor it increases the competition for land resources. In addition,
increases in SOC stocks are highly beneficial in maintaining and increasing soil
health and soil fertility, which provides additional incentives for adopting SOC
sequestering practices (Paustian et al., 2019).

2.3 Factors affecting SOC sequestration

SOC sequestration is governed by the balance between the rate of C added to
the soil from plant residues (including roots) and organic amendments (e.g.,
manure, compost), and the rate of C lost from the soils, which is mainly as
COy from decomposition processes (i.e., heterotrophic soil respiration). Other
forms of organic C can be lost as CHy from anaerobic (e.g. flooded) reactions
and to a lesser extent through leaching of dissolved organic C. Soil erosion can
greatly affect C stocks at a particular location, but at larger scales erosion
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may not represent a loss process per se but rather a redistribution of soil C
(Paustian et al., 2019). Decomposition rates are controlled by a variety of
factors including soil temperature and moisture, drainage (impacting soil Oy
status) and pH (Paustian et al., 2019). Soil physical characteristics such as
texture and clay mineralogy also impact the longevity and persistence (i.e., mean
residence time) of soil C, by affecting organic matter stabilization processes,
through mineral-organic matter associations (Schmidt et al., 2011; Paustian
et al., 2019). In native ecosystems the rate of C inputs is a function of the
type (e.g., annual vs. perennial, woody vs. herbaceous) and productivity of the
vegetation, largely governed by climate (mainly temperature and precipitation)
but also nutrient availability and other growth determining factors. In managed
ecosystems such as cropland and grazing land both the rate of C input as well
as the rate of soil C loss via decomposition are impacted by the soil and crop
management practices applied. There is no one universal management practice
to increase SOC sequestration (Lal et al., 2018), but in general, soil C stocks
can be increased by: (a) increasing the rate of C addition to the soil, which
removes COq from the atmosphere, and/or (b) reducing the relative rate of
loss (as CO3) via decomposition, which reduces emissions to the atmosphere
that would otherwise occur (Paustian et al., 2019). Three key aspects need
to be considered regarding the pattern of gains or losses of soil C and hence
SOC sequestration (Paustian et al., 2019). The first is that with increased
C inputs and/or decreased decomposition rates, soil C stocks tend toward a
new equilibrium state and thus after a few decades C gains attenuate, becoming
increasingly small over time. Secondly, although sequestered SOC can be highly
stable, changes in management that lead to C gains are potentially reversible,
i.e., if management reverts back to its previous condition, much or all of the
gained C can be lost. Thus, practices that led to increased soil C need to be
maintained long term. Third, mineral soils (i.e., non—peat soils) have an upper
limit or “saturation level” of soil C (Six et al., 2002). While this maximum soil
C concentration is well above the observed C concentration of most managed
soils, carbon rich mineral soils that already have very high SOC levels (e.g., >5
percent C by mass) may have a propensity for further C gains.

2.4 Estimating SOC sequestration potential

Taking into account the above mentioned factors, SOC sequestration potential
after the adoption of SSM practices under specific conditions can be expressed
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in different ways depending on the definition of SOC baseline stocks and time
towards a new equilibrium state. This Technical Manual will refer to two
types of SOC sequestration: an ‘absolute SOC sequestration’ (SOCseq abs),
expressed as the change in SOC stocks over time relative to a base period
(or reference period, t0); and a ‘relative SOC sequestration’ (SOCseq rel),
expressed as the change in SOC stocks over time relative to business as usual
practices (Fig. 2.1). Thus, the ‘absolute’ attainable SOC sequestration can be
determined for business as usual (BAU) and SSM practices (See Chapter 5),
and can be either positive, neutral or negative:

ASOCABstChG_l = SOCSSM/BAU t SOCto (21)

where SOC SSM/BAU t refers to the final SOC stocks once a new equi-
librium is reached or after a defined period of time (e.g. 20 years), and
SOC t0 refers to the initial or base period SOC stocks (t=0). The ‘relative’
attainable SOC sequestration is either neutral or positive, can be determined as:

ASOCtCha™" = SOCssar + — SOCpau ¢ (2.2)

where SOCgsgns ¢+ refers to the final SOC stocks once a new equilibrium is
reached or after a defined period of time (e.g. 20 years) after SSM practices
are implemented, and SOCpay ; refers to the final SOC stocks under busi-
ness as usual (BAU) practices at the end of the same considered period. Mean
annual SOC sequestration rates (t C ha™t yr'l; absolute or relative) can be de-
termined by dividing SOC changes by the duration of the defined period. For
more specifications on the approaches proposed in this manual, see Chapter 5.

Thus, agricultural lands may show potential for improvement in their SOC stock
after the adoption of SSM practices (compared to business as usual practices),
by either gaining or maintaining SOC levels. Four situations are possible: a)
lands where SOC levels have reached equilibrium and it is possible to increase
levels through SSM; b) lands where the SOC is increasing but can be further
increased through SSM; c¢) lands where SOC is declining and it is possible to
stop or mitigate losses in SOC levels through SSM; and d) lands where SOC is
declining and it is possible to reverse this fall through SSM. These situations
are depicted in Fig. 2.1. It has been estimated that the widespread adoption of
site/biome-specific SSM practices can harness a large C sink capacity in agri-
cultural systems at a global scale: 0.4-1.2 PgC/yr (Lal, 2004); 1.0-1.32 PgC/yr
(Smith et al., 2008); 0.4-1.1 PgC/yr (De Vries, 2017); 0.32-1.01 PgC/yr (Batjes
et al., 2019). However, the extent and rates of SOC sequestration in agricultural
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lands may vary greatly depending on the different land uses and practices, soil
characteristics, vegetation, topography and climate, among other soil forming
factors and processes (Smith et al., 2008; Minasny et al., 2017; Lal et al., 2018;
Batjes et al., 2019). Annual sequestration rates due to management practices
in croplands and grasslands are usually in the range of 0.2-0.8 tC/ha (Poeplau
and Don, 2015; Kampf et al., 2016; Minasny et al., 2017; Conant et al., 2017,
Paustian et al., 2016; Paustian et al., 2019). It is therefore relevant to identify
which regions, environments and systems have a greater potential to increase
SOC stocks and establish priorities for research and implementation of private
and public policies. In this sense, coupling SOC models to GIS (Geographic
Information Systems) platforms enables the transition t from site—specific SOC
stocks estimations to spatial simulations and projections (e.g. Smith et al., 2005;
Milne et al., 2007; Kamoni et al., 2007; Falloon et al., 2007; Gottschalk et al.,
2012; Lugato et al., 2014), allowing for the identification of conditions that
increase the SOC sequestration potential.

A SSM practices \ SSM practices
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SOC theoretical evolutions under business—as—usual (BAU) practices and after
the adoption of sustainable soil management (SSM) practices.



Chapter 3

SOC modelling

Modelling is an approach used to infer SOC stocks and distributions in condi-
tions where they have not been measured, such as: under future climatic con-
ditions, at locations or regions where no measurement exists, for management
scenarios that have not yet been implemented (FAO, 2019). In the last decades,
a number of numerical models have been developed, including mathematical
representations that quantitatively describe soil characteristics and processes.
The breadth of these approaches can be illustrated by the recent compilation
of 90 mathematical models describing SOC changes and biogeochemical related
soil processes developed in the last 80 years (Falloon and Smith, 2009; Manzoni
and Porporato, 2009; Campbell and Paustian, 2015). However, according to
their structure, number of input variables required and temporal and spatial
resolution, not all available C models are suitable for all studies (Manzoni and
Porporato, 2009).

3.1 Process—oriented models

Among the different types of SOC models, process—oriented multicompartment
models have been dominant in efforts to simulate changes in SOC in agri-
cultural lands, grasslands and other production systems (Stockmann et al.,
2013). Process—oriented models are built considering the processes involved
in the transfer of SOC across the soil profile and its transformations (Smith et

10
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al., 1998). They are generally used to predict SOC dynamics based on differ-
ent conceptual C pools or compartments that alter in size via decomposition
rates and stabilization mechanisms (each compartment or pool being a fraction
of SOC with similar chemical and physical characteristics; Stockmann et al.,
2013). Models belonging to this class can potentially have a variable degree
of complexity, from one compartment to multiple compartments (Jenkinson et
al., 1990). Early models simulated SOC as one homogeneous compartment
(Jenny, 1949). Beek and Frisel (1973) and Jenkinson and Rayner (1977) pro-
posed two—compartment models, and as computational tools became more ac-
cessible, multi-compartment models were developed (McGill, 1996).

According to Falloon and Smith (2009), decay rates k are usually expressed in
this type of models by first—order kinetics with respect to the concentration C'
of the pool:

ac
T kC (3.1)
The flows of carbon within most models represent a sequence of carbon going
from plant and animal debris to the microbial biomass and then, to soil organic
pools of increasing stability. The output flow from an organic pool is usually
split. It is directed to a microbial biomass pool, another organic pool and, under
aerobic conditions, to COy . This split simulates the simultaneous anabolic
and catabolic activities and growth of a microbial population feeding on one
substrate. Two parameters are generally required to quantify the split flow, often
defined as a microbial (utilization) efficiency and a stabilization (humification)
factor, which control the flow of decayed carbon to the biomass and humus
pools, respectively.

3.2 Examples of process—oriented models

CENTURY (Parton, 1996), RothC (Jenkinson et al. 1990; Coleman and Jenk-
inson, 1996), SOCRATES (Grace et al., 2006), DNDC (Li, 1996), CANDY
(Franko et al., 1997), DAISY (Hansen et al., 1991), NCSOIL (Hadas et al.,
1998) and EPIC (Williams et al., 1983; 1984) are known examples of this kind
of process—oriented multicompartment models. They have been developed and
tested using long—run data sets, and in general they show a good ability to
predict SOC dynamics over decades across a range of land uses, soil types and
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climatic regions (Smith et al., 1997). As mentioned before, process—oriented
models can be combined with GIS software, giving a modelling platform well
suited for global, national, and regional scale studies (e.g. Smith et al., 2005;
Milne et al., 2007; Kamoni et al., 2007; Falloon et al., 2007; Gottschalk et al.,
2013; Lugato et al., 2014). The review by Campbell and Paustian (2015) empha-
sizes the fact that among these known process—oriented models, no one clearly
outperforms the others. The increase in multi-model comparison publications
in the last decades shows the lack of consensus in SOC modelling approaches.
It is also noteworthy that among these multi-model comparisons, there was no
single model identified with conclusively higher performance capacity. For a de-
tailed comparison between some of the most used SOC models refer to Campbell
and Paustian (2015).

However, in order to obtain consistent results in SOC sequestration estimates
at a global scale, and to allow comparisons between countries and regions, the
use of a standard ‘process—oriented’ SOC model, following standardized proce-
dures is required in this first step. The Rothamstead soil organic carbon model
(RothC; Coleman and Jenkinson, 1996, Chapter 4) is proposed as the standard
comparison model in this Technical Manual, for the following reasons:

e It requires less and more easily obtainable data inputs compared to other
process—oriented models

o It has been applied using data from long—term experiments across several
ecosystems, climate conditions, soils, and land use classes;

e It has been successfully applied at national, regional and global scales;
e.g. Smith et al. (2005), Smith et al. (2007), Gottschalk et al. (2012),
Wiesmeier et al. (2014), Farina et al. (2017), Mondini et al. (2018),
Morais et al. (2019);

o It (or its modified/derived version) has been used to estimate carbon diox-
ide emissions and removals in different national GHG inventories as a Tier
3 approach; according to the latest review by Smith et al. (2020): Aus-
tralia (as part of the FullCam model, Japan (modified RothC), Switzer-
land, and UK (CARBINE, RothC).

The following Chapter describes the RothC model and its general requirements.
Users are nevertheless encouraged to use modified versions of the RothC model
(e.g. Farina et al., 2013) if it has been demonstrated that these versions improve
estimations under local conditions. Users are also encouraged to provide sup-
plementary SOC sequestration maps developed using alternative preferred SOC
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models and procedures. The use of a multi-model ensemble approach (e.g. Rig-
gers et al., 2019; Lehtonen et al., 2020) with selected models is intended for
future versions of the GSOCseq map.



Chapter 4

The RothC model

4.1 Model description

RothC is a model for the turnover of organic carbon in non—waterlogged topsoil
that allows for the inclusion of the effects of soil type, temperature, moisture
content and plant cover on the turnover process, with a monthly time step
(Coleman and Jenkinson, 1996). C sequestration in RothC is quantified solely
based on soil processes, and as such it is not linked to a plant production model.
The user defines carbon inputs to the soil. SOC is split into four active com-
partments and one inactive compartment which comprises the inert organic
matter (IOM). The four active compartments differ in the mean residence time
of organic carbon in the soil and are defined as:

o Decomposable Plant Material (DPM);
o Resistant Plant Material (RPM);

o Microbial Biomass (BIO);

o Humified Organic Matter (HUM).

The structure of the model is shown in Figure 4.1. The IOM compartment
is resistant to decomposition and is calculated using the following equation
(Falloon et al., 1998):

14
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IOM = 0.049 x SOC*'3? (4.1)

Where SOC is soil organic carbon, tC/ha, and IOM is Inert organic matter,
tC/ha. Incoming carbon inputs are split between DPM and RPM, depending on
the DPM/RPM ratio of the particular incoming material. For most agricultural
crops and improved grassland, the default DPM/RPM ratio is 1.44, i.e. 59
percent of the plant material is DPM and 41 percent is RPM. For unimproved
grassland and scrub (including Savanna) a default ratio of 0.67 is used. For
a deciduous or tropical woodland a default DPM/RPM ratio of 0.25 is used,
i.e. 20 percent of the plant material is DPM and 80 percent is RPM. Both DPM
and RPM decompose to form COs, BIO and HUM. The proportion that goes
to CO4 and to BIO 4+ HUM is determined by the clay content of the soil. The
BIO 4+ HUM is then split into 46 percent BIO and 54 percent HUM. BIO and
HUM both decompose to form more CO5, BIO and HUM. Each compartment
decomposes by a first—order process with its own characteristic rate. If an active
compartment contains Y tC/ha, this declines at the end of the month to:

Ye ®rC /ha (4.2)

where «a is the rate-modifying factor for temperature; b is the rate—modifying
factor for moisture; c¢ is the soil cover rate—modifying factor; k is the decom-
position rate constant for that compartment; and ¢ is 1/12, since k is based on
an annual decomposition rate. Y (1 — e~2¢**) is the amount of the material in
a compartment that decomposes in a particular month. RothC has also been
adapted to simulate N and S dynamics (Falloon and Smith, 2009), but nutrient
and C dynamics are not interconnected in RothC. It was originally developed
and parameterized to model the turnover of organic C in arable topsoil, and it
was later extended to model turnover in grasslands, savannas and woodlands,
and to operate in different soils and under different climates (Coleman and
Jenkinson, 1996).
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4.2 RothC general data requirements

The model requires climatic, soil and management data that are relatively easy
to obtain or estimate. Each modeling unit (e.g. cell of a grid) requires the
following minimum data:

¢ Climate data

1. Monthly rainfall (mm)
2. Average monthly mean air temperature (°C)
3. Monthly open pan evaporation (mm)/evapotranspiration (mm)

e Soil data
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1. Total initial 0-30 cm SOC stocks (tC/ha)

2. Initial C stocks of the different pools (tC/ha): DPM, RPM, BIO,
HUM, TOM

3. Clay content (percent) at simulation depth

4. DPM/RPM ratio

o Land—use/Management data

1. Monthly Soil cover (binary: bare vs. vegetated)

Irrigation (to be added to rainfall amounts)

3. Monthly Carbon inputs from plant residue (aboveground + roots +
rhizodeposition)

4. Monthly Carbon inputs from organic fertilizers and grazing animals’
excretion (tC/ha)

5. Estimate of the decomposability of the incoming plant material

N

Careful harmonization of modeling procedures, datasets and input estimation
methodologies is essential to obtain consistent SOC sequestration results across
regions and countries. The general approach and modeling procedures to gen-
erate national SOCseq maps using the RothC model are described in Chapter
5. The land use datasets required for the proposed procedures are described in
Chapter 6.



Chapter 5

Modeling approach for the
GSOCseq

5.1 General framework

SOC sequestration estimates will focus on croplands and grazing lands for the
current GSOCseq map version. As defined by IPCC (2006, 2019), croplands
include: all annual and perennial crops (cereals, oils seeds, vegetables, root
crops and forages); perennial crops (including trees and shrubs, orchards, vine-
yards and plantations such as cocoa, coffee, tea, oil palm, coconut, rubber trees,
bananas, and others), and their combination with herbaceous crops (e.g., agro-
forestry); arable land which is normally used for cultivation of annual crops, but
which is temporarily used for forage crops or grazing as part of an annual crop—
pasture rotation (mixed system), is to be included under croplands. Grazing
lands include different land uses permanently dedicated to livestock production
with a predominant herbaceous cover, including intensively managed perma-
nent pastures and hay land, extensively managed grasslands and rangelands,
savannas, and shrublands. Since the proposed standardized methodology and
the defined model are neither parameterized nor recommended for use on or-
ganic, sandy, saline, and waterlogged soils, soils with SOC stocks higher than
200 tC/ha, sand contents higher than 90 percent and/or electrical conductivity
higher than 4 dS/m at 0-30 cm depth, paddy rice lands, peatlands and wetlands

18
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will be masked out from the global results in this first version. Excluded condi-
tions and land uses can be included in future versions of the GSOCseq map, as
harmonized procedures for specific conditions are developed. Countries are nev-
ertheless encouraged to provide supplementary maps developed using preferred
alternative SOC models and methodologies, especially for excluded conditions.

5.2 Potential SOC sequestration after implement-
ing SSM practices

In order to assess the SOC sequestration potential, SOC stocks in 0-30 cm of
mineral soils shall be projected using the RothC model over a 20—year period,
under business as usual (BAU) land use and management, and after adoption of
SSM practices in croplands and grazing lands (See Chapter 2). A 20—year period
is assumed to be the default period during which SOC stocks are approaching
a new steady state, to be able to compare results among regions and countries,
and with other estimation methods (e.g. IPCC, 2006 Tier 1-2; IPCC, 2019).
For some systems, it is acknowledged that the new steady state may take much
longer, even more than 100 years, depending on soil and climate characteristics
(e.g. Poulton et al, 2018). Together with the 20—years projection, countries can
project SOC stocks over 50 or 100 years or more, and determine the stocks and
the period at which a new steady state is attained according to local condi-
tions, and produce additional sequestration maps (See mandatory and optional
products, Technical Specifications, sections 4.1 and 4.2). As stated in Chapter
2, SOC sequestration potential after the adoption of SSM practices in current
agricultural lands shall be estimated by: an ‘absolute SOC sequestration’ (SOC-
seq abs), expressed as the change in SOC stocks over time relative to a base
period (or reference period, t0); and a ‘relative SOC sequestration’ (SOCseq
rel), expressed as the change in SOC stocks over time relative to the business as
usual scenario. Absolute and relative sequestration and sequestration rates for a
20—year period shall be estimated following the equations described in Chapter
2 (eq. 2.1 and 2.2)
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5.3 Business as usual and SSM scenarios

SOC stocks in 0-30 cm of mineral soils in current agricultural lands shall be
projected over a 20—year period, under a business as usual scenario (BAU) and
under sustainable soil management (SSM) scenarios. The BAU scenario refers
to the land use, land management, production practices or technologies that are
currently being implemented (as in time = 0, or 2020) in croplands and grazing
lands. BAU practices represent typical, prevailing practices in a specific agro—
ecological zone and productive system. SSM practices refer to management
practices that are expected to remove COs from the atmosphere and retain it
as SOC, to enhance SOC accumulation, or to mitigate or reverse SOC losses
compared to the BAU (See Fig. 2.1). Although there is no universal soil man-
agement practice, basic principles are widely applicable, such as those identified
in the Voluntary Guidelines for Sustainable Soil Management (VGSSM; FAO,
2017) for increasing soil carbon inputs to soil and enhancing soil organic matter
content:

e increasing biomass production and residue returns to the soil;

o using cover crops and/or vegetated fallows;

o implementing a balanced and integrated soil fertility management scheme;

e implementing crop rotations, combining legumes and pulses with high
residue crops, or improving the crop—mix;

o effectively using organic amendments, manure, or other carbon-rich wastes
(which are not currently applied to soils);

e promoting agro—forestry and alley cropping;

e managing crop residues and grazing to ensure optimum soil cover; among
others.

A very wide range of management practices are currently being implemented and
can potentially be introduced into the world’s agricultural systems, depending
on climatic, soil, socio—cultural and economic conditions. In turn, different SSM
C-oriented practices are often combined, making it difficult to dissociate their
effects on SOC dynamics. Thus, as a first step, and to harmonize the results on
a global map, and because soil carbon turnover models are the most sensitive
to carbon inputs (FAQO, 2019), these guidelines propose to group SSM practices
into three scenarios as a standard method, based on their expected relative
effects on C inputs compared to BAU: Low, Medium and High increase in C
inputs (referred as SSM1, SSM2, and SSM3 scenarios; for technical procedures,
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refer to section 5.4). National experts’ opinion and local data are essential to
accurately estimate or validate the target areas and carbon input levels for the
different SSM scenarios in forthcoming versions.

5.4 General modeling procedures

The modeling approach proposed in the current Technical Manual is based on
the studies by Smith et al. (2005; 2006; 2007), Gottschalk et al. (2012) and
Dechow et al. (2019). The following sections describe the different modeling
phases of the approach.

5.4.1 Initialization: spin up

Prior to the simulation of SOC stocks and sequestration under the different
scenarios, model initialization is required to set the initial SOC condition (total
SOC and partition of the different pools) at the start of the simulation period,
and to adjust the C inputs estimates. This modeling phase is referred to as
initialization or “spin up’ through this document. This is a key step, as the
outputs of this phase will be used as inputs for the next modeling phase (see
sections 5.4.2 and 5.4.3).

Two methodologies to estimate initial carbon pools and initial C inputs are
provided:

1. Initialization based on equilibrium runs

2. Initialization based on an analytical approach

5.4.1.1 Spin up phase: initialization with equilibrium runs

This approach is based on studies by Smith et al. (2005; 2006; 2007), Gottschalk
et al. (2012) in large scale studies. The standard procedure is to have a spin
up period to initialize the model, so the soil carbon pools are in approximate
equilibrium with the initial conditions regarding soil and climate variables, veg-
etation and land management. The length of the spin up simulation period
needed to approach a steady state pool distribution can usually vary between
100s to 1 000s years (FAO, 2019). The C input is adjusted so that the modelled
final SOC of this period, and hence initial SOC of the following phases, matches
a known SOC stock. In a first initialization step, RothC shall be run iteratively
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to equilibrium to calculate the size of the SOC pools and the annual plant car-
bon inputs using constant environmental conditions (Phase 1, Figure 5.1), for
each grid cell on the map. Ideally, a first equilibrium run for a standard 10
000—year period should be performed, considering constant climatic conditions
as the average of historic climate data from 1980 to 2000 (see Chapter 6, Cli-
mate data sets), clay contents (see Chapter 6, soil data sets), and land use as in
year 2000 (see Chapter 6, land use data sets). Due to the simulated time span
and depending on the size of the target area, this modelling phase is the most
time consuming and computationally demanding . The duration of the equilib-
rium run can be reduced if the data suggests that the equilibrium is reached
with fewer iterations. A minimum of 500 years is suggested to approach equi-
librium with reduced computational time to generate national maps. However,
it must be noted that spin up runs for 500 years may not necessarily end up
in equilibrium SOC stocks, depending on soil, climate and land use conditions.
Increasing the duration (1 000-2 000 years) will reduce deviations with the cost
of additional computation time. The total annual plant C input can be initially
assumed to be 1t C ha™' yr'! and the proportions of plant material added to the
soil for each month are set to describe the typical input pattern for each land
use class (Smith et al., 2007; Mondini et al., 2017). After the first equilibrium
run, the annual C inputs from plant residues need to be optimized so that the
results of the spin up phase fit with the estimates of total SOC stocks of 0-30 cm
provided in the FAO-ITPS GSOCmap. C equilibrium inputs can be adjusted
using the following equation (Smith et al., 2005):

SOCgsocmap — IOM]
(SOC.im — IOM

Ceq = Cz X [ (51)

where C, is the estimated annual C input at equilibrium, C} is the initial annual
C addition (the sum of the proportions of the C input in the first equilibrium
is 1), SOCgsocmap is the estimated soil C given in FAO-ITPS GSOCmap,
SOC;m, is the simulated soil C after the first equilibrium run, and TOM is the
C content of the inert organic matter fraction in the soil (all in tC/ha). The
size of the IOM fraction (tC/ha) can be set according to the equation given by
Falloon et al. (1998):

TOM = 0.049 x SOCEES cmap (5.2)

A second long term (minimum 1 000 years) equilibrium run shall be performed
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using the estimated Cp,, (under the same conditions as the first run), in order
to obtain the size of the different SOC pools (tC/ha) at year 2000.

An alternative to further reduce computational time is to avoid this second run
by estimating the size of the different SOC pools using pedotransfer functions
(Weihermiiller et al., 2013). The R implementation the spin up phase can be
found in Chapter 10 (section 10.1). The equilibrium run is a widely known ap-
proach to initialize RothC and other SOC models (FAO, 2019), and it has been
implemented in other global and regional modeling—mapping studies to analyze
SOC dynamics (e.g. Smith et al., 2005; 2006; 2007; Gottschalk et al., 2012).
Compared to the analytical approach, which is presented in this Technical Man-
ual as an alternative spin up approach, the equilibrium run allows for further
user—defined modifications such as running the model under non—homogeneous
conditions (e.g. not constant climatic conditions, land use and management for
a specified time period). The approach can be also used to estimate the re-
quired period to attain equilibrium SOC stocks under certain environmental
conditions, among other relevant research questions. However, although users
may be in general more familiar with this initialization approach, it can be
considerably time consuming as well as computationally demanding, depending
on the simulation area. If homogeneous environmental conditions are assumed
during the spin up phase, other approaches (see following section) may be the
preferred option.

5.4.1.2 Spin up phase: initialization by analytical solution

Based on the Introductory Carbon Balance Model (ICBM B2) in Kétterer and
Andren (2001) and pool-specific differential equations for the RothC model in
Sierra and Miiller (2015), Dechow et al. (2019) developed an analytical solu-
tion of RothC which describes the topsoil SOC development assuming temporal
homogeneous climatic and management conditions. This novel approach allows
quantification of pool distribution and C input for RothC at equilibrium. The
structure of the approach is based on the linear relationship between C input
amounts and initial SOC that follow from the analytical solution of the RothC
model. Under homogeneous conditions, the SOC at time t is linearly correlated
to the initial SOC (Cp) and the carbon input rate I (equation 5.3):
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C(t) = SimpiCo + Z NIi(uppmyppm; + urPMYRPM,+ o)
i=1 5.1

Uhum’)/humi)COflOM[Mg C h’ail]

Where Cy is the initial SOC stock (which corresponds to SOCgsocmap, the
estimated soil C given in FAO GSOCmap). Simpi,uppar, Urpy and Upym are
functions integrating model structure and parametrization of RothC. Param-
eters Yppa, YrRPM, YHUM are the partition coefficients. These 7 coefficients
will depend on the decomposability of the incoming residues. For example, in
conditions with carbon inputs with a DPM/RPM of 1.44, the v DPM equals
0.59 and v DPM equals 0.41 . N is the number of input substrates characterized
by a specific set of partition coefficients and f;oas is the fraction of inert SOC
(IOM, equation 5.2). For stationary conditions time is assumed to be infinite
and therefore the effect of initial active SOC (Cy - IOM) negligible (equarion
5.4):

N
Co = Z Li(vyppm,uppm + vaum,vaum) + fromCo (5.4)

i=1
First, the fractions f; of the DPM, RPM, BIO and HUM pools at equilibrium
are estimated following the set of equations described in in the supplementary
material of Dechow et al.  (2019) (https://www.fao.org/fileadmin/user
upload/GSP/GSOCseq/supplementary material _analytical _spinup.pdf).
The estimated fractions of each SOC pool at equilibrium will depend on:

o the decomposition rates constants (k) of the different carbon pools

o an average of the different modifying factors (temperature, soil moisture,
vegetation factors)

« initial SOC stock (total SOC stock at equilibrium) clay content

o the product ratio CO2/decomposed C remaining (depending on clay con-
tent)

« the ratio of C fluxes to BIO and HUM partition coefficients of the C input
(DPM/RPM ratio)

e IOM fraction compared to total C

These equations simplify when assuming an infinite time t (equilibrium). Equa-
tions 5.5-5.8 quantify the fraction of each C pool related to the active C (Cy -
IOM):


https://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/supplementary_material_analytical_spinup.pdf
https://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/supplementary_material_analytical_spinup.pdf
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UDPMYDPM
fopm = (5.5)
UpPMYDPM + URPMYRPM + UHUMYHUM
URPMYRPM
frRPM = i (5.6)

UDPMYDPM + URPMYRPM + UHUMYHUM

UBIO DPM YDPM + UBIO RPMYRPM + UBIO HUM YHUM

fBro = (5.7)

UpPM YDPM + URPM YRPM + UHUM YHUM

_ UHUM DPMYDPM + UHUM RPM7YRPM + UHUMYHUM

foum = (5.8)

UppMYDPM + URPMYRPM + UHUMYHUM

IOM
from = C (5.9)
0

Where ~ are the partition coefficients of the incoming carbon inputs
as explained in equation 5.3, and wu coefficients are the result of func-
tions integrating model structure and parametrization of RothC, fol-
lowing the equations in the supplementary material of Dechow et el.
(2019) (https://www.fao.org/fileadmin /user upload/GSP/GSOCseq/
supplementary material analytical spinup.pdf). Once the fractions of
the different pools are estimated, the amount of Carbon (tC/ha) in each pool
is estimated from the total and active (other than IOM) SOC stocks:

SOC etive = SOCGSOCmap —IOM (5.10)

SOCPOOIi = prOZi X SOCctive (511)

where SOC,tive represents the SOC stocks of all the active pools of RothC
model in tC/ha (DPM, RPM, BIO and HUM), IOM represents the Inert Organic
Carbon estimated from equation 5.2, SOCgsocmap is the estimated soil C
given in FAO-ITPS GSOCmap in tC/ha (representing the total SOC stocks at
equilibrium), SOC}0;; represents the SOC stock of each of the active pools in
tC/ha, and fpoo, represents the fraction of each active pool estimated by the
analytical procedure and equations 5.5 to 5.8. Finally, Carbon inputs (C;) at
equilibrium can be estimated as:


https://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/supplementary_material_analytical_spinup.pdf
https://www.fao.org/fileadmin/user_upload/GSP/GSOCseq/supplementary_material_analytical_spinup.pdf
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C - SOOGSOCmap —IOM
’ YDPMUDPM + YRPMURPM + YHUMUHUM

(5.12)

Pool distributions and equilibrium C input quantification can be more accurate
(closer to equilibrium) and is computationally faster with the analytical solution.
The complete R implementation of this procedure can be found in Chapter 10
(section 10.1).

5.4.2 Warm up

Since FAO GSOCmap SOC was generated from individual SOC measurements
taken over different decades (i.e. 1960s to 2000s), a temporal harmonization
of SOC stocks can be performed as a second initialization step to minimize
differences in current SOC stocks at year 0 (i.e. initial SOC stocks at year
2020), and account for climatic variations in the 2000-2020 period:

e SOC stocks from the GSOCmap shall be considered to be the stocks twenty
years prior to the simulation (t = -20 yr; i.e. year 2000).

e A 20-year ‘short spin up’ run can be performed to adjust for major devi-
ations among different measurement periods on the GSOCmap (figure 5,
Phase 2), using year—to—year climatic conditions for the period 2001-2020
(See Chapter 6, Climate data sets), clay contents (See Chapter 6, soil data
sets), the stocks in the different SOC pools from the results of the ‘long
spin up’ run, and land use as in year 2020 (land use representative of the
period 2001-2020; or yearly land use data shall be used when available).

e Year-to—year C inputs over the period 2001-2020 should be adjusted
considering year—to—year changes in estimated Net Primary Production
(NPP), (details in Chapter 6, monthly carbon inputs). SOC stocks can
either increase or decrease during this ‘short spin up’ stage.

This ‘short spin up’ period is intended to: reduce the effects of different time
measurements in the GSOCmap (over— or underestimation of current initial
SOC stocks); minimize initialization effects (e.g. deviations in the estimation
of initial pool sizes); and account for the effects of sub-regional, regional and
global climatic and land use changes over the period 2001-2020 and their effects
on NPP. If recent (2015-2020) national SOC monitoring campaigns have been
undertaken to generate the latest version of the FAO-ITPS GSOCmap, the SOC
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stocks from the GSOCmap can be considered as the current stocks (t = 0 y;
i.e. year 2020), and the ‘short spin up’ phase is not required.

5.4.3 Forward runs

After the equilibrium and ‘short spin up’ runs, SOC sequestration due to SSM
practices can be estimated in a forward run (Figure 5.1, phase 3). SOC stocks
can be simulated from 2020 (t=0) to 2040 (t = +20) for the BAU and the three
SSM scenarios, using average mean monthly climate variables (2001-2020), C
inputs adjusted as described in Chapter 6 and land use maps from 2020. It
should be noted that global climatic changes are to be expected over the next
20 years. However, climate change projections diverge significantly in the sec-
ond half of the century, after the year 2050 (IPCC, 2014; 2018). As there is a
lack of consensus over which climate projections to use for future scenarios as
well as a significant divergence in terms of climatic trends after 2050, the use
of monthly average climatic variables from 2001-2020 for the period 2020-2040
is set as the standard for the forward run. However, the proposed methodology
allows for the integration of climate change scenarios, especially for longer—term
projections (i.e. + 2050) in future versions.

The absolute SOC sequestration is estimated as the difference between the cor-
responding SOC stocks from the forward modeling at year +20 (2040) for the
different scenarios and the estimated baseline SOC stocks for year 0 (year 2020;
refer to equation 2.1). The relative SOC sequestration is to be determined as
the difference between the corresponding SOC stocks from the forward at year
+20 (2040) for the SSM scenarios and the simulated SOC stocks at year +20
(2020) for the BAU scenario (refer to equation 2.2).

5.5 Summary

The different modeling phases and their data requirements are summarized in
in Figure 5.1 and Table 5.1.



28 5.5. Summary
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The different data sets required to run the RothC model for the different
modeling phases are described in Chapter 6.
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Summary of the modeling phase 1 and data requirements

Variables

Phase 1 Long spin up Equilibrium

Time span

Climatic inputs

Soil inputs
Initial SOC stocks and pools

Carbon inputs

Vegetation cover

Land Use

Modeled Scenarios

Expected Results

Minimum 500 years

(using equilibrium runs procedure)
Infinite (Analytical solution procedure)
1980-2000 series monthly average:
Rain, Temperature, Evaporation/

Evapotranspiration

Topsoil clay content

Inert organic matter (IOM) as determined by
equation 5.2 “= 0” for all other fractions
(when using equilibrium runs)

First run : 1tC.ha-1

Adjusted C inputs from equation 5.1

(using equilibrium runs)

From equation 5.12 (using analytical solution)
Monthly cover determined: by expert opinion,

NDVI 2000-2020 or preferred spectral index
(see section 3.3.4)
Representative land use of the 1980-2000 period

(or layer for year 2000; or best available layer)
BAU

C inputs at equilibrium
Total SOC and SOC pools at year t= -20 (2000)
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Summary of the modeling phase 2 and data requirements

Variables Phase 2 Short spin up

Time span 20 years

Climatic inputs 2001-2020 year to year monthly data:
Rain, Temperature, Evaporation/
Evapotranspiration

Soil inputs Topsoil clay content

Initial SOC stocks and pools Inert organic matter (IOM, determined by eq. 5.2)
Other fractions equal to final SOC pools
modeled in Phase 1

Carbon inputs NPP
year-to year adjusted C inputs, from equation 7

Vegetation cover Monthly cover determined: by expert opinion,
NDVI 2000-2020 or preferred spectral index
(see Ch. 3.3.4)

Land Use Year to year Land use 2000-2020
(or representative land use of the period;

or best available layer)
Modeled Scenarios BAU
Expected Results Total SOC and SOC pools at year t=0 (2020)
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Summary of the modeling phase 3 and data requirements
Variables Phase 3 Forward modeling
Time span 20 years

Climatic inputs

Soil inputs
Initial SOC stocks and pools

Carbon inputs

Vegetation cover

Land Use

Modeled Scenarios

Expected Results

2001-2020 series monthly average:
Rain, Temperature ,Evaporation/
Evapotranspiration
Topsoil clay content

Inert organic matter (IOM)

as determined by equation 5.2

Other fractions equal to the final SOC pools
modeled in phase 2

NPP year-to year

adjusted C inputs for the BAU, from equation 7
Estimated from % increase vs.

BAU for SSM scenarios

Monthly cover determined: by expert opinion,
NDVI 2000-2020 or preferred spectral index

(see Ch. 3.3.4)

Last available land use layer
(e.g. 2015, 2018; 2020)

(or best available layer)
BAU

SSM Low

SSM Medium

SSM High

Total SOC and SOC pools at year t=420 (2040)
for the BAU, and SSMs scenarios

Absolute and relative total sequestration
(3 SSMs)
Absolute and relativesSequestration rates
(3 SSMs)




Chapter 6

Data sets and inputs

A careful harmonization of data sets and input estimation procedures is essential
to obtain consistent results across regions and countries. This Chapter describes
the required data sets, the potential data sources and the methodologies to
estimate required inputs for the modeling approach described in Chapter 5.
Procedures for the preparation and harmonization of input data are explained
in Chapter 9.

6.1 Climate data sets

Gridded climate data shall be obtained from:

a.) National Sources or a preferred regional data source;
b.) Global data sets, when national or regional gridded historical climate data
sets are not available.

The latest version of this Technical Manual has identified and recommends
the TerraClimate dataset as an improved global alternative. TerraClimate is
a dataset of monthly climate and climatic water balance for global terrestrial
surfaces from 1958-2019. It has a monthly temporal resolution, a ~4x4 km spa-
tial resolution and was created by combining high—spatial resolution climatolog-
ical normals from the WorldClim data set, with coarser spatial resolution, but

32
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time—varying data from Climate Research Unit (CRU) Ts4.0 and the Japanese
55—year Reanalysis (JRA55) (Abatzoglou et al., 2018).

The following variables and data sets are required to run the model (See Chapter
5, General modeling procedures):

o Monthly average air temperature (°C),

o Monthly precipitation (mm),

o Monthly potential evapotranspiration (Penman—Monteith; mm)

o data sets: 1981-1990 (series average); 1991-2000 (series average); 2011—
2010 (year to year); 2011-2018 (year to year).

The same data sources must be used in all modeling phases.

6.2 Soil data sets

6.2.1 Initial total SOC stocks

Initial total SOC stocks to 30cm depth (in tC/ha) are to be derived from the
GSOCmap (30 arc seconds; ~ 1 km x 1 km resolution grid), latest revised
version (FAO-ITPS, 2019). Countries wishing to include an updated or im-
proved estimate of current SOC stocks, compared to the latest version of the
GSOCmap, are encouraged to submit their updated national SOCmap to the
GSP Secretariat and use it for modeling. Since the GSOCmap was generated
from national measurements taken between the 1960s and the 2000s, and no
temporal corrections have been developed in many countries, GSOCmap val-
ues will represent SOC stocks for the year 2000. A ‘short spin—up’ model run
(20 years) with climate variables and management forcing for the period 2000
2020 shall be performed to reduce the effect of temporal deviations. Thus, the
simulated SOC content at 2020 after the ‘short spin—up’ run will represent the
initial SOC stocks prior to implementation of SSM practices (See Chapter 6,
General modeling procedures). If recent national SOC monitoring campaigns
(2015-2020) have been undertaken to generate the latest version of the FAO-
ITPS GSOC map, the SOC stocks from the GSOCmap can be considered as
the current stocks (t = 0 y; i.e. year 2020), and the ‘short spin—up’ phase is not
required.
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6.2.2 Initial C pools

The initial C stocks in the different pools (in tC/ha) considered in the RothC
model (DPM, RPM, BIO, HUM and IOM, Fig. 4.1) shall be estimated following
the ‘long spin—up’ and ‘short spin—up’ procedure described in Chapter 6.

6.2.3 Soil texture: clay content

The average clay contents over 0-30 cm depth is to be obtained from gridded
data (raster format) from:

 national Sources (1 km x 1 km resolution);
e global data sets, where national or regional data sets are not available.

The topsoil clay content (0-30 cm, percent mass fraction; 1 km x 1 km resolu-
tion) from the Harmonized World Soil Database (HWSD) or SoilGrids developed
by the— International Soil Reference and Information Centre (ISRIC) (see Table
6.2) shall be used as the standard global database if national or regional data is
not available in the required format or resolution. Clay content can be averaged
at finer resolutions to obtain 1 km x 1 km grids. However, countries are encour-
aged to produce their own texture and clay content maps to be used as inputs
for the SOCseq map, following the digital soil mapping approaches described in
the GSOCmap Cookbook (FAO, 2018). Average clay contents over a 0-30 cm
depth interval can be derived by taking a weighted average of the predictions
over the depth interval using numerical integration (Hengl et al., 2017).

2

-1

(k41 — o) (f(2r) + f(Th41)) (6.1)

DN | =

10 1
b—a/a flw)de ~ (b—a)

where N is the number of depths; b is 30 cm, a is 0 cm, xk is the k—th depth
and f(xk) is the value of the target variable (i.e., clay content) at depth xk. For
example, for the 0-30 cm depth interval, with soil clay values at the first four
standard depths (0, 5, 15 and 30 cm) equal to 14.5, 25.0, 25.3 and 25.0, clay
content 0-30 cm equals:

b
Il
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(5—0) x (14.5+ 25.0) + (15 — 5) x (25.0 + 25.3) + (30 — 15) x (25.3 + 25.0)
30 x 0.5

= 24.25
(6.1)

6.3 Land cover data sets
The gridded land cover data layers shall be obtained from:

e national or regional sources;
e global data sets, where national or regional land use or land cover data
sets are not available.

Since land cover may vary substantially between data sources and estimates of
past and current land cover may have important deviations from real land cover
and land use, users should estimate land use from the source that best reflects
national and subnational conditions. Land cover data sets should cover the
2000—2020 (or approximate) period. The ESA (European Space Agency) land
cover Global dataset (See Table 6.2), and its reclassification into FAO Global
Land Cover — SHARE (GLC-SHARE; See Table 6.2) classes will be provided
by the GSP Secretariat, if no national land use dataset is available. However,
users should estimate land use from the source that best reflects national and
subnational conditions. Other global and regional data sets are provided in
Table 6.2 at the end of this Chapter. The land cover classes will affect the
decomposability of the incoming plant material (DPM/RPM ratio; See Section
6.6). A spatialized R—version of RothC is provided by the GSP Secretariat (See
Chapter 7, software environment) and runs considering the 13 classes defined in
the FAO Global Land Cover — SHARE (GLC-SHARE). A default DPM/RPM
value is assigned to each class (Table 6.1). Thus, when using this spatialized
R—version of RothC without modifying its scripts, the land use classes from
the possible different data sets need to be re—classified into FAO Global Land
Cover — SHARE (GLC-SHARE) land use classes. However, users can model
alternative land use classes, and modify these default DPM/RPM values. If
so, modifications in the R—version must be then introduced (See Chapter 7).
Examples of land cover reclassification from the ESA land cover database into
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the RothC land use categories are presented (Table 6.4) at the end of this
Chapter.

FAO Land cover classes, land cover number and default DPM/RPM ratios.
"Tree-crops" is shown as an example of the disaggregation of a land use class.

FAO Land aggregated cover class Land cover code Default DPM RPM ratio

Artificial surfaces 1/
Cropland 2 1.44
Grassland 3 0.67
Tree covered 4 0.25
Shrub covered 5 0.67
Herbaceous vegetation 6 0.67
Mangroves T/
Spare vegetation 8 0.67
Bare soil 9 /
Snow and Glaciers 10 /
Water bodies 1/
Cropland-Tree crops* 12 1.44
Paddy fields 13 144

As a minimum, land use for the year 2000 and land use for the year 2020 (or last
available year) at 1x1 km resolution shall be defined. The predominant land use
category in each cell of the 1x1 km grid shall be selected if finer resolutions are
available.

6.4 Monthly vegetation cover

It is required to indicate the approximate annual distribution of monthly vege-
tation cover for the simulations in order to:

o adjust the topsoil moisture deficit estimations (See Chapter 4, Fig. 4.1);
o consider the effects of soil cover on SOC decomposition rates (See Chapter
4, Fig.4.1).

The annual distribution of vegetation cover can be derived from:
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 public statistics of national and/or administrative units considering the
predominant agricultural systems in a temporal series (2000-2020);

o derived from NDVT (normalized difference in vegetation index) values from
historic satellite images (See data sets, Table 6.2).

The occurrence of plant cover can be assumed to be constant in grasslands,
shrublands and savannas and during specific months (e.g. 1-6 months for crop-
lands) (e.g. Smith et al., 2005; Smith et al., 2007). The following coefficients
can be set for based on the specific land cover and/or land use:

o Perennial tree—crops, forests and grasslands (¢=0.6);
o Months with predominantly bare soil and unvegetated fallows (c=1);
o Annual crops (¢=0.6).

Considering a temporal series (2000-2020), the proportion of images with NDVI
values greater than a specified threshold, indicating active vegetation growth,
can be estimated (e.g. NDVI > 0.6). The monthly probability of being vegetated
(P veg) can be estimated for each cell grid and each month of the year (1-12),
as:

_ Number of images NDVI > 0.6

P,
ves Total images

(6.3)

NDVT is proposed as an alternative for estimating vegetation cover when no
vegetation cover data or local knowledge is available. The proposed threshold
may vary according to local conditions. Global monthly vegetation cover data
sets estimated by NDVT (2000-2020) will be provided by the GSP Secretariat.
However, NDVI may be a biased indicator in areas with low vegetation cover
(e.g. drylands, shrublands), or high nubosity. In these cases, countries are en-
couraged to use other locally validated spectral indices to accurately estimate
monthly vegetation cover (e.g. Multi Sensor Vegetation Index; Moradizadeh and
Saradjian, 2016).

6.5 Monthly carbon inputs
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6.5.1 C inputs under BAU practices

Carbon inputs for the BAU scenarios shall be estimated using the approach
proposed by Smith et al. (2005; 2006; 2007) and Gottschalk et al. (2012).
Total plant C inputs to the soil, which include plant litter, root exudates and
fine root turnover, are rarely known. To overcome this problem, RothC shall
be run in ‘equilibrium mode’ to calculate the initial plant carbon inputs to the
soil (or ‘equilibrium Carbon inputs’, Ceq), which led to the initial SOC stocks
(GSOCmap), under historic forcing conditions. The Ceq thus represents the
historical average of annual carbon input of the BAU scenario up to the year
2000. For further details on the equilibrium run and initialization to estimate
Ceq, refer to section 3.2 (General modeling procedures). Once these initial
carbon inputs have been established (from the year 2000 onwards), year—to—year
changes can be adjusted in accordance with changes in Net Primary Production
(NPP), as changes in C inputs to the soil are assumed to be associated with
changes in NPP (Smith et al., 2005). Thus, annual C inputs for the BAU
scenario can be adjusted as:

BAUgy = Cy_y x (NPP,_y) — 1 x NPP, (6.4)

where BAU¢, is the annual carbon input of a specific year ¢; C;_1 is the annual
carbon input of the previous year; N PP; is the net primary production of year
t, and NPP —t is the NPP of the previous year (in tC/ha). Thus, the average
NPP over the initialization period shall be associated with Ceq and the annual
C inputs for the BAU scenario can be adjusted as:

BAUGt 2001 = Ceq X NPPlgso 2000 X NPPagor (6.5)

where BAU¢ 2001 is the annual carbon input for the first year of the ‘short
spin—up’ phase; C., is the estimated annual C input at equilibrium derived
through the ‘long spin—up’ process; NP Pjggg-2000 is the estimated average net
primary production over the initialization period (1980-2000); and NP Psp1
is the estimated annual net primary production for the first year of the ‘short
spin—up’ phase. The annual C inputs for the BAU scenario can be then adjusted
following equation 7, according to changes in the NPP. The estimation of NPP
using the MTAMI model (Lieth, 1975) is defined as the standard method in this
document. It requires little input and is easily applicable worldwide, can be
used to estimate NPP under future climatic conditions, and can act as a baseline
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for different NPP data sets or projections (e.g. Gottschalk et al., 2012). NPP
estimated with the MTAMI model is computed with the following equations:

NPPM[AM]:min(NPPT,NPPp) (66)
3000

NPPTyramr = 1+ el:315-0.119 x T (6.7)

NPPPyran = 3000 x 1 — ¢~ 0-000664F (6.8)

where NPP is the climatic net primary production in dry matter (DM;
g/m?/yrt), NPPr is the temperature dependency term of NPP, where T is
the annual mean temperature (°C) and NPPp is the moisture dependency
term of NPP, where P is the mean annual sum of precipitation (mm). NPP is
limited by either temperature or precipitation. MIAMI model annual NPP can
be expressed in tC/ha as:

NPPuypang tCha'yr™ = NPPuypaner(DM; gm™2yr=1) x 0.01 x 0.48 (6.9)

The annual NPPMIAMI shall be estimated for each grid cell from the climatic
data sets described in section 6.1 for the different simulation periods (1981-
1990; 1991-2000; 2001-2010; 2011-2020; 2021-2040). The NPPMIAMI is used
to estimate BAU carbon inputs under current and projected climatic conditions.
The change in NPP is used as a surrogate for estimating the change in C input
and assumes that a similar proportion remains in the field (e.g. Smith et al.,
2005; Gottschalk et al., 2012). In a first instance, countries should focus on C
inputs in agricultural lands in 2020, the use of which has not changed since the
year 2000. Changes in land use and management over the period 2000-2020
and associated changes in C inputs can nevertheless be taken into account, if
trends in biomass removal are known, in order to adjust C inputs (e.g. Schulze
et al., 2010; Plutzar et al., 2016; Neumann and Smith, 2018). Thus, the annual
changes in C inputs by equations 7 and 8 can be adjusted using annual land
cover data. For example, by assuming and approving an NPP of 12, 28 and 47
percent for forests, grasslands and croplands (Schulze et al., 2010), the annual
NPP of a specific year (NPPt) can be adjusted using these coefficients (equations
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6.9 to 6.11), and the annual C inputs can then be estimated by equations 6.3
and 6.4:

NPPtforeStsiNPPM[AMI x 0.88 (610)
NPPtgrasslands = NPPMIAMI x 0.72 (6.11)
NPPtcroplands = NPPM]AM[ x 0.53 (612)

6.5.2 C inputs under SSM practices

SSM practices shall be grouped into three scenarios as a standard method, based
on their expected relative effects on C inputs compared to BAU: Low, Medium
and High C inputs. The SSM practices considered in this approach are practices
that affect C inputs to the soil, as changes in C inputs have been identified as
one of the factors to which models are most sensitive when projecting changes
in SOC stocks (FAO, 2019). As with estimates of BAU C inputs, total plant C
inputs to the soil, including plant litter, root exudates and fine root turnover,
are rarely known. Thus, C inputs of SSM scenarios will represent a percent
increase from BAU C inputs:

A%CSSM — BAU = (Cinputsssy — Cinputspay) X Cinputspay  (6.13)

As a standard, the expected effects (percent increase in C inputs) of 3 scenarios
have been conservatively set at:

e Low: 5 percent increase in C inputs
e Medium: 10 percent increase C inputs
o High: 20 percent increase in C inputs

These percentages (based on Smith, 2004; Wiesmeier et al., 2016) shall be used
to produce the mandatory maps for the global product. An additional ‘High
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increase’ scenario, considering a 30 percent increase in C inputs, can be mod-
eled, to compare results with recent ‘top—down’ modeling approaches (e.g. CIR-
CASA). The use of default percentages in C input increase can be applied glob-
ally without complex configuration. However, countries should carefully check
whether these scenarios are reasonable and under what type of management
practices they are achievable. Countries are encouraged to produce and pro-
vide additional maps, taking into account their own estimates of the effects of
different selected practices or land use changes, based on expert knowledge and
local capacities. These effects can be determined on the basis of expert opin-
ion and available information at the country level. A meta—analysis should be
conducted based on the latest available local and regional studies to estimate
how agricultural practices affect average annual C inputs (and the percent in-
crease in C input compared to BAU practices). These practices may include,
for example, the use of cover crops, rotation with high residue yielding crops
or perennials, residue retention, grazing management, plant nutrition, species
introduction, manure or organic amendment application, among others. If no
data is directly provided in the compiled studies, carbon inputs and percent in-
crease in C inputs relative to BAU practices shall be estimated considering the
framework proposed by Bolinder et al. (2007). The annual C inputs required
to model the effects of SSM practices under 3 scenarios (Low, Medium, High)
for each modeling unit (i.e. grid cells) shall be estimated from the annual BAU
C inputs:

SSMcytCha™1Vr~1=BAUq, + %ACSSM; — BAU x BAU¢;  (6.14)

where SSM¢; represents the estimated annual C inputs for a specific scenario
(i =Low, Medium, High) for year t; BAU¢; represents the estimated annual
C inputs for the BAU scenario for year t (determined from C inputs at equi-
librium, as explained at the beginning of this section and in Chapter 5), and
BACSSM; — BAU is the representative percent increase in C inputs for a
specific scenario (i=Low, Medium, High).

6.6 Residue decomposability: DPM/RPM

Default values for the decomposability of incoming plant material reflected in
the ratio of decomposable plant material (DPM) to resistant plant material
(RPM)(DPM/RPM) can be used (e.g. 1.44 for crops and improved grasslands;
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0.67 for unimproved grasslands and shrublands, and 0.25 for forests, woodlands
and tree crops; Falloon and Smith, 2009). Table 6.1 (Land cover data sets)
show default DPM/RPM for FAO land use classes. These default values can be
modified according to region—specific data and local knowledge.

6.7 Required data sets and global data sources.

The required data sets described in this chapter are summarized here:



Global and regional data sources to generate national SOCseq maps.

Type Source Address Resolution
Climatic monthly data TerraClimate https://developers.google.com/earth-engine/ 4 x4 km
datasets/catalog/
IDAHO_EPSCOR_TERRACLIMATE
SOC stocks 0-30 cm GSOCmap - FAO-ITPS http://54.229.242.119/GSOCmap/ 1x1km
Soil Texture Harmonized World http://www.fao.org/soils-portal/ 1x1km
Soil Database v1.2
Soil Texture OpenGeoHub Foundation https://doi.org/10.5281/zenodo.1476854 250m
Soil texture, Soil Grids -ISRIC http://soilgrids.isric.org 250 m
(including uncertainties)
NDVI- Historic images (2001-2020) MODIS https://lpdaac.usgs.gov/ 1 x 1km
every 16 days products/mod13a2v006/
Land Cover MODIS Land Cover https://modis.gsfc.nasa.gov/ 500 x 500m
Dynamics MCD12Q2 data/dataprod/mod12.php 1x1km
Land Cover European Space Agency (ESA) https:/ /www.esa-landcover-cci.org/ 300 x 300m
Climate Change Initiative (CCI)
Copernicus Climate
Change Service (C3S)
Land Cover — Land Use FAO http://www.fao.org/land-water /land/ 1 x 1km
Global Land Cover SHARE
land-governance/land-resources-
planning-toolbox/category/details/en/c/1036355/
Land Cover USGS Global Land Survey https://lta.cr.usgs.gov/GLS 30 x 30m
Land Cover CORINE land cover(Europe only) https://land.copernicus.eu/ 100 x 100 m

pan-european/corine-land-cover
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The proposed regional and global data sources to obtain the required input data
when no quality national or regional data is available are described here:

Land cover aggregation schemes into RothC land use classes. Example from
ESA.

ESA Land Cover Class ESA class RothC Land Use type
Cropland rainfed 10 Agricultural crops/
improved grassland
Cropland rainfed 11 Agricultural crops/
herbaceous cover improved grassland
Mosaic Cropland > 50% 30 Agricultural crops/
improved grassland
Cropland - Tree/shrub cover 12 Forest/Deciduous/
tropical woodland
Cropland irrigated flooding 20 Waterlogged soils
Grasslands 130 -9999
Mosaic Natural vegetation 40 Unimproved grassland and
herbaceous >50% cropland scrub (including Savanna)
Mosaic herbaceous cover >50%/ 110 Agricultural crops/
trees-shrubs improved grassland
Shrubland 120 Unimproved grassland
and scrub/Savanna
Shrubland evergreen 121 Unimproved grassland
and scrub/Savanna
Shrubland deciduous 122 Unimproved grassland
and scrub/Savanna
Tree cover broadleaved 62 Unimproved grassland
deciduous open 15-40% and scrub/Savanna
Tree cover needle leaved 82 Unimproved grassland
deciduous open 15-40% and scrub/Savanna
Tree cover broadleaved 50 Unimproved grassland
evergreen closed to open >15% and scrub/Savanna
Tree cover broadleaved 60 Forest/Deciduous/
deciduous closed to open >15% tropical woodland
Tree cover broadleaved 61 Forest/Deciduous/
deciduous closed >40% tropical woodland

Tree cover needle leaved 70 Forest /Deciduous/
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the RothC model.

ESA Land Cover Class ESA class RothC Land Use type
evergreen closed to open >15% tropical woodland
Tree cover needle leaved 71 Forest/Deciduous/
evergreen closed >40% tropical woodland
Tree cover needle leaved 72 Forest/Deciduous/
evergreen open >40% tropical woodland
Tree cover needle leaved 80 Forest /Deciduous/
deciduous closed to open >15% tropical woodland
Tree cover needle leaved 81 Forest /Deciduous/
deciduous closed >40% tropical woodland
Tree cover mixed leave type 90 Forest/Deciduous/
tropical woodland
Mosaic tree-shrub >50%/ 100 Forest /Deciduous/
herbaceous cover tropical woodland
Shrub or herbaceous flooded 180 Forest/Deciduous/
fresh /saline/brackish water tropical woodland
Tree cover flooded fresh or 160 Waterlogged
brackish water
Tree cover flooded saline water 170 -9999
Urban areas 190 -9999
Lichens and mosses 140 -9999
Bare areas 200 Others - No data-9999
Sparse vegetation 150 Others - No data-9999
tree-shrub-herbaceous (<15%)
Sparse tree (<15%) 151 Others - No data-9999
Sparse Shrub (<15%) 152 Others - No data-9999
Sparse herbaceous (<15%) 153 Others - No data-9999
Consolidated bare areas 201 Others - No data-9999
Unconsolidated bare areas 202 Others - No data-9999
Permanent snow/ice 220 Others - No data-9999
Water bodies 210 Others - No data-9999
No data 0 Others - No data-9999
cover classes= “-9999” denotes areas to be excluded without local adaptations in
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Software environment

A spatially explicit version of the RothC model (e.g. Gottschalk et al., 2012;
Mondini et al. 2017; Morais et al.; 2019) is required to generate national SOC se-
questration maps. A spatialized version of the model was developed by the GSP
Secretariat using an open source R—environment, based on the SoilR package
developed by Sierra et al. (2012; downloadable from the Max Planck Insti-
tute of Biogeochemistry (https://www.bge\T1\textendashjena.mpg.de/TEE/
software/soilr/). Other spatialized versions have been developed in Fortran
(e.g. Gottschalk et al., 2012) and MATLAB (e.g. Morais et al., 2019) envi-
ronments. Users can use these and other alternative local adaptations of a
spatialized RothC model by following the general procedures and input data
described in Chapter 5 and 6 to obtain consistent results. Users are asked to
provide evidence, i.e. .peer—reviewed scientific journal papers university theses
etc.,, demonstrating that the use of the modified version and changes in model
parameters are appropriate for the selected agro—ecological conditions. This
Chapter summarizes the steps required to set—up the software environment (R,
RStudio) to prepare the input data and run the spatialized R-version of the
RothC model through scripts provided by the GSP. Additional supplementary
scripts for QGIS and Google Earth Engine (GEE) are also provided. Users are
required to download the following open source software:

o RStudio (latest stable version, https://rstudio.com/products/rstudio/
download/)
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o QGIS (latest stable version, https://qgis.org/en/site/forusers/download.
html)

In order to use Google Earth Engine users must register an account. The
instructions in this Chapter will guide users through installing and manually
configuring the software to be used for Microsoft Windows desktop platform.
Instructions for the other platforms (e.g. Linux Flavours, Mac OS) can be found
through free online resources.

7.1 Setting up the R environment: R, RStudio, and
R Packages

R is a language and environment for statistical computing. It provides a wide
variety of statistical (e.g. linear modeling, statistical tests, time-series, classifi-
cation, clustering, etc.) and graphical methods. It is highly extensible through
packages, which are collections of R functions, data and documentation.

7.1.1 Obtaining and installing R

In order to run RStudio, R base needs to be installed according to the user’s
environment. Installation files and instructions can be downloaded from the
Comprehensive R Archive Network (CRAN) following these steps:

1. Go to the following link https://cloud.r\T1\textendashproject.org/index.
html to download and install R.
2. Pick an installation file for your platform.

7.1.2 Obtaining and installing RStudio

Since R base does not have a Graphical User Interface (GUI), first time users
may encounter some difficulties in running the provided scripts. There are some
GUIs which offer some of the functionality of R. RStudio makes R easier to use.
It includes a code editor, debugging and visualization tools. Similar steps need
to be followed to install RStudio:


https://qgis.org/en/site/forusers/download.html
https://qgis.org/en/site/forusers/download.html
https://cloud.r\T1\textendash project.org/index.html
https://cloud.r\T1\textendash project.org/index.html
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1. Go to https://www.rstudio.com/products/rstudio/download/ to down-
load and install RStudio’s open source edition.

2. On the download page, RStudio Desktop, Open Source License option
should be selected.

3. Pick an installation file for your platform.

7.1.3 Getting started with R

One of the main benefits of using R is that this programming language relies
on a wide and active community of developers and end—users. Several manuals,
including the one found on CRAN below, guiding material, tutorials and web
pages dedicated to debugging errors, such as stackoverflow (listed below) can
be found online:

e R manuals: http://cran.r-project.org/manuals.html

o Contributed documentation: http://cran.r-project.org/other-docs.html

o Quick-R: http://www.statmethods.net/index.html

e Stackoverflow R community: https:/ /stackoverflow.com/questions/

tagged /r

7.2 R packages

As mentioned previously, the main advantage of R is its extensibility. The
scope of the possible implementations of R can be greatly increased with the
vast collection of packages that extend its basic functionalities. Packages are
the equivalent of add—ons that developers can freely write and make available
through the open—source platform that constitutes R.

7.2.1 Finding R packages

The primary source for R packages is CRAN’s official website, where currently
about 12 000 available packages are listed. For spatial applications, various
packages are available. You can obtain information about the available packages
directly on CRAN with the available.packages() function. The function returns
a matrix of details corresponding to the packages currently available at one or


https://www.rstudio.com/products/rstudio/download/
http://cran.r-project.org/manuals.html
http://cran.r-project.org/other-docs.html
http://www.statmethods.net/index.html
https://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r
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more repositories. An easier way to browse the list of packages is using the
Task Views link, which groups together packages related to a given topic. The
following Subsections present some of the most used packages related to digital
soil mapping.

7.2.2 Some useful R—packages for the SOCseq maps

R has a large and growing number of spatial data packages. We recommend
taking a quick browse on R’s official website to see the spatial packages available:
http://cran.r-project.org/web/views/Spatial.html. Some of these packages that
will be useful to generate the national SOCseq maps include:

o raster: Reading, writing, manipulating, analyzing and modeling of gridded
spatial data. The package implements basic and high-level functions,
processing of very large files is supported.

e rgdal: Provides bindings to the ‘Geospatial’ Data Abstraction Library
(‘GDAL’) (>=1.11.4) and access to projection/transformation operations
from the ‘PROJ’ library. Use is made of classes defined in the ‘sp’ package.
Raster and vector map data can be imported into R, and raster and vector
‘sp’ objects exported.

e ncdfj: Provides a high-level R interface to data files written using
unidata’s netCDF library (version 4 or earlier), which are binary data
files that are portable across platforms and include metadata information
in addition to the data sets. Using this package, netCDF files (either
version 4 or “classic’’ version 3) can be opened and datasets read in
easily.

e SoilR: This package contains functions for modeling Soil Organic Matter
decomposition in terrestrial ecosystems. See https://cran.r-project.org/
web /packages/SoilR /SoilR.pdf.

e abind: Combine multidimensional arrays into a single array. This is a
generalization of ‘cbind’ and ‘rbind’. Works with vectors, matrices, and
higher—dimensional arrays. Also provides functions ‘adrop’, ‘asub’, and
‘afill’ for manipulating, extracting and replacing data in arrays.

e soilassessment: Soil assessment builds information for improved decision
in soil management. It analyzes soil conditions with regard to agriculture
crop suitability requirements (such as those given by FAO http://www.fao.
org/land-water/databases-and-software/crop-information/en/ soil fertil-
ity classes, soil erosion models and soil salinity classification. Suitability


http://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/packages/SoilR/SoilR.pdf
https://cran.r-project.org/web/packages/SoilR/SoilR.pdf
http://www.fao.org/land-water/databases-and-software/crop-information/en/
http://www.fao.org/land-water/databases-and-software/crop-information/en/
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requirements are for crops grouped into cereal crops, nuts, legumes, fruits,
vegetables, industrial crops, and root crops.

7.2.3 Installation of R—packages used in this technical manual

The authors of this Technical Manual used a number of different R packages
(summarized in Table 7.1). All required packages can be installed using the
following code and the install.packages() function when starting a new SOC
sequestration mapping project:

install.packages("name_of_the_package")

Alternatively, the code for the installation of the needed packages is included
at the beginning of each Chapter.

Required R—packages for the national SOC sequestration potential maps using
an R—environment.

Protocol application area R package Reference

Import and export raster data raster Hijmans et col. (2020)
Import and export raster data ncdf4 David Pierce (2019)
Import and export vector data rgdal Bivand et col (2019)
Harmonization raster Hijmans et col. (2020)
Harmonization rgdal Bivand et col (2019)
RothC model SoilR Sierra and Mueller (2014)
Data manipulation abind Plate (2016)

RothC model, NPP MIAMI model soilassessment Omuto (2020)

7.3 Considerations when using R
It is important to note the following points when using R:

e Asshown in Figure 7.1, R is a case—sensitive scripting software. More than
90 percent of its commands are scripted in a text—editor and executed by
running the line/script.
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o Hash (#) denotes the beginning of a comment and is not executed by
the software. Consequently, it can be used to insert comments in a line.
All comments after hash (#) are colored green (like green traffic light)
implying “pass” without execution.

o With the default editor theme errors and warnings are given in red, while
functions and numbers are given in blue and commands and variables are
given in black.

e When using RStudio text—editor, four panes are available in which the
top left pane is the text editing window, top right pane is for the data
environment, bottom right pane is for display and help, and the bottom
left is the console for executing the scripts.

o Implemented scripts and reports (warning or errors) are shown in the
console panel.

e Some commands may run for some time and patience is recommended to
enable the software to progress to completion. During such time, a red
icon will be shown at the top left corner of the console panel.

e The execution of a line or script can be stopped if necessary by clicking
on the “STOP” button from the tools bar.

° ] R w7 Envieonment History Coamections Tutorial —

X 7 - “hn % Souce - 7 import Dotaset * st -

1 #This is a comment T Gobs Emorment =
2 Random_variable <- rnorm(100, mean =2 values
3 hist(Ran iable Random_variable num [1:100] 2.45 2.44 3.58 2.78 3.21 ...

6
Flles  Plots  Packages Help Viewer =0
A zoom Pops ©
Histogram of Random_variable

Console  Terminal - Jobs —

15

> Random_variable <- rnorm(100, mean =2)
> hist(Random_variable)

> random_variable

Error: object ‘random_variable’ mot found
>

Frequency
10

Random_variable

Overview of RStudio’s windowpanes and functionalities
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Running the scripts: overview

8.1 Summary of steps and scripts

The generation of national SOC sequestration potential maps using the spatially
explicit R—version of the RothC model shall be divided in three stages (Figure
8.1.):

1. Preparation and Harmonization of data (consists of eleven R scripts, one

QGIS model script, and one Google Earth Engine script)

Running the model in three phases (three R scripts),

3. Transformation of vector data to raster data (map generation, one R
script).

o

8.2 Stage 1: Preparation of data

Running the model over an area will require several spatial layers of information
(climate, clay content, land use, vegetation cover, NPP layers) and defining
target points where the model will be run. So before running the model, we
will “harmonize” the different spatial layers, in order to have the same extent,
same pixel size and same Coordinate Reference System (CRS). On the other
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8.2. Stage 1: Preparation of data

STEP I

STEP Il
Map Generation

NPP LAYERS VEGETATION

LAND USE

(MIAMI) COVER

Data Preparation

-
14 15

0
) 1
=
<
E
= 13
1

MAP GENERATION

Seript Number

Workflow for generating the national GSOCseq layers.
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hand, each modeling phase (spin up, short spin—up/warm up, forward runs)
will require a different selection of layers for the different time series. So we will
create ‘stacks’ of the different layers for the single modeling phases. Land cover
classes need to be re—classified into land use types that the model will recognize.
We will reclassify land cover classes (like the ones provided by ESA; European
Space Agency) to match the FAO land cover classes. At this stage, we will
also create other input layers (like NPP and vegetation cover layers) which are
necessary to run the model. Finally, we will create target points over the land
use classes of interest (agricultural lands). These target points will become the
modeling units (where the model is to be run). So, the first step (Fig. 8.1; see
Chapter 9) is aimed at:

e preparing, organizing and harmonizing all the required input data layers
to run the model in the different phases

e creating supplementary input data layers

o creating target points for land use classes of interests

Eleven R scripts, one QGIS script and one Google earth engine script are pro-
vided to complete these tasks (Table 8.1.).

8.3 Stage 2: Running the model

Once the input data layers are prepared and stacked, we will run the spatialized
RothC model at each target point using three specific scripts (Table 8.1. in the
following three phases (Chapter 10):

1. Long spin up phase: he equilibrium carbon inputs (annual carbon inputs
in t/ha required to reach SOC stocks in year 2000) and the initial stocks
of the different SOC pools are calculated;

2. Short spin up or Warm Up phase: SOC stocks are adjusted for the 2000—
2020 period;

3. Forward” phase: SOC stocks are projected (2020 to 2040) under a “busi-
ness as usual” scenario (no changes in carbon inputs), “low” scenario (5
percent increase in carbon inputs), “medium” scenario (10 percent increase
in carbon inputs), and “high” scenario (20 percent increase in carbon in-
puts).
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8.4 Stage 3: generation of the map

After the “forward” modeling phase, in the final step we will calculate the
average absolute and relative SOC sequestration rates over a 20—years period
for each scenario and for each target point. The vector target points will be
then rasterized and saved to geotiff format to obtain the final product, using a
specific R script. All the provided scripts are summarized in Table 8.1.



Summary of the scripts for the complete modelling process.

Type of Layer

Script

Objective

SOC layer

Climate layers

NPP layers
Vegetation Cover (VC)

R- Script number 7
Clay layers

Land Use layer

STACK for SPIN UP
STACK for WARM UP
STACK for FORWARD
Target points

SPIN UP

WARM UP
FORWARD

POINTS TO RASTER

R- Script number 0
R- Script number 1
R~ Script number 2
R- Script number 3
R- Script number 5

GEE Script number
(Google Earth Engine)

R-Script number 8

R-Script number 9
R-Script number 10
R-Script number 11
R-Script number 12
QGis model script

R- Script number 13
R- Script number 14
R- Script number 15
R~ Script number 16

Cut the SOC layer by the area of interest polygon
Rearrangement of climate layers
(TerraClimate layers from .ncd to .tif)

Creation of NPP layers
Creation of VC layers

Obtaining clay contents 0-30 cm
from different depths (ISRIC)

Re-classification into FAO land cover classes
Stack input data layers for the spin up phase
Stack input data layers for the warm up phase
Stack input data layers for the forward phase
Creation of target points

Run long spin up phase
Run warm up phase
Run forward phase
Rasterize points
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Stage 1: preparation of input
data

This stage is aimed at:

e preparing, organizing and harmonizing all the required input data layers
to run the model in the different phases;

e creating supplementary input data layers;

o creating target points for land use classes of interests.

During this stage we will need to arrange and prepare climate datasets for the
different modelling phases, generate NPP estimates for each phase, generate
vegetation cover data, prepare clay content data layers, and harmonize and
stack all layers for each modelling phase. Finally, we will have to create target
points to run the model. This stage requires the most effort and is the most
time consuming of the entire process. Eleven R scripts, one QGIS script and
one Google earth engine script are provided to complete these tasks.

9.1 Preparation of SOC layer

As a default option, users are invited to use the GSOCmap to retrieve their SOC
data for their area of interest (AOI). This can be achieved easily, by clipping
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SOC layer AOI

Input Output
FAO SOC map: SOC map of AOI
GSOCmap_ v1.5.0.tif SOC_MAP_ [country_ code].tiff

Area of interest (AOI):
COUNTRY_POLYGON:.shp

the GSOCmap to the extent of a shapefile making up the borders of the chosen
study area or country. All data sources can be found in Table 6.3 of Chapter 6.

9.1.1 Script Number 0: “SOC_MAP_AOI.R". Preparation of
the SOC layer. Inputs and Outputs

First, open the script SOC_MAP__AOLR in RStudio. If you haven’t done so
previously, install the necessary packages. Then create two user-defined vari-
ables containing the paths to the two working directories: * “WD_ AOI” which
contains the vector polygon of the AOI; * “WD_ GSOC”, which contains the
GSOCmap raster layer

#Install all necessary packages
install.packages(c("raster","rgdal","SoilR",
"Formula","soilassessment","abind","ncdf4",

"foreach","doParallel"))

#Load the packages into R
library(raster)
library(rgdal)

# Set the path to GSOCmap and Area of interest (AOI) wvector.
WD_AQI<-("C:/TRAINING_MATERIAL/INPUTS/AOI_POLYGON")
WD_GS0C<-("C:/TRAINING MATERIAL/INPUTS/SOC_MAP")

# Open the shapefile of the AOI (region/country)
setwd (WD_AQI)
A0I<-readOGR("Departamento_Pergamino.shp")
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#0Open FAO GSOC MAP
setwd (WD_GS0OC)
SOC_MAP <- raster("GSOCmap_1.6.1.tif")

Finally, we clip the SOC layer with the vector polygon of the AOI and save the
result to the WD__SOC folder. This layer will become the master layer of the
process.

SOC_MAP_AQI<-crop(SOC_MAP,AQI)

SOC_MAP_AQI<-mask (SOC_MAP_AOI,AQI)

writeRaster (SOC_MAP_AQI,filename="S0C_MAP_AOI.tif",
format="GTiff", overwrite = TRUE)

9.2 Preparation of climate Layers (based on Terra-
Climate)

The climate variables needed for the three modeling phases are:

1. Monthly rainfall (mm/month);

2. Monthly Evapotranspiration (mm/month);
3. Average monthly mean air temperature (average °C/month).

We will need to arrange these climatic variables into three datasets:

o 1980-2000 (monthly average values for the complete series)
e 2001-2020 (year to year monthly values)
o 2001-2020 (monthly average values for the complete series)

Gridded climate data shall be obtained from either National Sources or
regional or global datasets when national gridded historical climate datasets
are not available. The recommended global data source of these layers
is TerraClimate (readily available from the Google Earth Engine cata-
log:  https://developers.google.com/earth-engine/datasets/catalog/IDAHO
EPSCOR_ TERRACLIMATE#citations)


https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE#citations
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE#citations
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For countries that want to use the TerraClimate dataset, several scripts will
be presented on how to obtain and reformat the climate spatial layers, and to
run the three modelling phases. Users can prepare the necessary input climate
datasets using other data sources. However, these scripts may still be helpful to
guide the preparation process of other datasets, and as a guide of the required
outputs that will be needed as inputs for the different modeling phases.

The preparation of the climate data with the TerraClimate dataset is presented
in the flowchart below (Figure 9.0). To make use of the TerraClimate dataset,
users need to first download the data for the time periods 1980-2000 and 2001-
2018 using two scripts for Google Earth Egine (GEE) and subsequently prepare
the target climatic variables using two R scripts.

SOC ma p Script 0. SOC_MAP_AOI.R

TerraClimate

1 TERRACLIMATE_DOWNLOAD GEE_SPIN_UPixt
2 TERRACLIMATE DOWNLOAD GEE WUP WARM UPixt

Climate
variables
3 TERRACLIMATE_variables SPIN_UPR
2 TERRACLIMATE_variables WARM_UPR
5_TERRACLIMATE_MIAM|_MODEL_NPP_MIAMI_MEAN_81
NPP layers e

Script order to follow for TerraClimate data sets.
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9.2.1 Script Number 1. TerraClimate GEE Spin up phase

The TerraClimate dataset can be downloaded directly from Google Earth En-
gine, a powerful and free cloud computing platform. First, the user will need
to activate a Google Earth Engine account. To run the Google Earth Engine
(GEE) tool, the user will need to copy and paste the script (provided below)
into the GEE code editor (central panel, Fig. 9.1).

<« C & code.earthengine.googlecom ® %« » =

5 Apps & Pillard Working Spa.. () Globs! Soi Partners.. 4 GeoNode @8 GeoNetwork @ Technical Manus! G. RGuides @ Typandoc! ) GSOCseq-Technica Reading it
Go g|e Earth Engine  Search places and datasets m oem g

ol Assets [Newseript TN | | ETEE 8 3 B || nspector £ Tasks

m 0 ADD A PROJECT 1 Use print(...) to write to this console.
|mage Upload You can now use Earth Engine with Google

Cloud Projects! Use the Account menu in
GeoTIFF (., 1iff) or TFRecord (tfrecord + json) the top right to select a project or

click here to learn more.
Table Upload

Shape files (.shp, .sh,.dbf, pr, or 2ip)
Csvfile (esv)

Image collection

wrominG
Folder . chiczgo
1LLINOS

¥ NEVADA United States INDIANA
A" COLORADO | KaNsAS Son

Map  Satelite
NEBRASKA

0" o
New Yark
DG ey

KENTU
TENNESSEE

Google Earth Engine code editor

To run the script the user can input a new geometry using the geometry tools
panel (Figure 9.2) or by uploading a shapefile (.shp) together with the other
dependent files. To import the file, it is necessary to click on ‘IMPORT”’ in the
top right corner of the window. Then, we move to the code editor.

In the code editor (central panel), we see at the very top the section ‘Imports
(1 entry)’. In the line below we have to modify the name of our shapefile from

‘polygon’ to ‘geometry’ This is necessary to run the following code without
modifications.
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Asset details DELETE ~ SHARE  IMPORT W Edit

Table: Departamento_Pergamino

» I -
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TR >4

DESCRIPTION FEATURES PROPERTIES

No description.

Table ID

D

users/mfmainka/Departamenta_Pergamino
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Start date: NA
End date: NA
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dataset.select("tunx ")
var mxT = maximunTemperature .toBands();
var minimmTemperature = dataset.select( tmmn’);
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After copying and pasting the following script in GEE, we run the script.
The outputs are shown in the right panel under ‘Tasks’. In the section
‘Unbsubmitted tasks’, we click on ‘RUN’ to export our generated files into a
selected google drive folder (see Figure 9.3). The following script can be copied
and pasted into GEE without any further modifications:
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// Climate data sets for the Spin Up phase 1980-2001
// calculate the average temperature

// from minimum and maximum temperatures

// download the Minimum and Mazimum Temperature

// dounload the Average temperature

// dounload the PET

// download the Precipitation

var dataset = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
.filter(ee.Filter.date('1981-01-01",
'2001-01-01"));

var maximumTemperature = dataset.select('tmmx');
var mxT = maximumTemperature.toBands();
var minimumTemperature = dataset.select('tmmn');
var mnT = minimumTemperature.toBands();

var precipitation =dataset.select('pr');
var pre =precipitation.toBands();

var evapotranspiration = dataset.select('pet');
var pet =evapotranspiration.toBands() ;

var diff = mxT.add(mnT);
var avT = diff.divide(2);

var avT =avT.clip(geometry);
var pre =pre.clip(geometry);
var pet =pet.clip(geometry);

Map.addLayer (avT, {}, 'default RGB');
Map.addLayer (pre, {}, 'default RGB');
Map.addLayer(pet, {}, 'default RGB');

var regionJSON = JSON.stringify(avT.getInfo());
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Export.image.toDrive ({
image: avT,
folder: "TerraClimate",
description: 'AverageTemperature_1981-2001"',
scale: 4000,
region: geometry

IDR

var regionJSON = JSON.stringify(pre.getInfo());
Export.image.toDrive ({
image: pre,
folder: "TerraClimate",
description: 'Precipitation_1981-2001"',
scale: 4000,
region: geometry

b

var regionJSON = JSON.stringify(pet.getInfo());
Export.image.toDrive ({

image: pet,

folder: "TerraClimate",

description: 'PET_1981-2001"',

scale: 4000,

region: geometry

B

9.2.2 Script Number 2. TerraClimate GEE Warm up and For-
ward phase

To retrieve the necessary climatic data (2001-2018/20) to be used as input for
the warm up and subsequent forward phase the same steps are repeated as for
Script 2.1. After defining a geometry or inputting a shapefile the following code
can be copied and pasted into the GEE code editor.

// Climate data sets for the Warm Up phase and
// Forward phase 2001 - 2020
// calculate the average temperature
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// from minimum and mazimum temperatures
// download the Average temperature

// dounload the PET

// download the Precipitation

var dataset = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
.filter(ee.Filter.date('2001-01-01', '2020-01-01'));

var maximumTemperature = dataset.select('tmmx');
var mxT = maximumTemperature.toBands();
var minimumTemperature = dataset.select('tmmn') ;
var mnT = minimumTemperature.toBands();

var precipitation =dataset.select('pr');
var pre =precipitation.toBands() ;

var evapotranspiration = dataset.select('pet');
var pet =evapotranspiration.toBands() ;

var diff = mxT.add(mnT);
diff.divide(2);

var avT

var avl =avT.clip(geometry) ;
var pre =pre.clip(geometry) ;
var pet =pet.clip(geometry);

Map.addLayer (avT, {}, 'default RGB');
Map.addLayer (pre, {}, 'default RGB');
Map.addLayer(pet, {}, 'default RGB');

var regionJSON = JSON.stringify(avT.getInfo());
Export.image.toDrive ({

image: avT,

folder: "TerraClime",
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description: 'AverageTemperature_2001-2021"',
scale: 4000,
region: geometry

B

var regionJSON = JSON.stringify(pre.getInfo());
Export.image.toDrive ({
image: pre,
folder: "TerraClime",
description: 'Precipitation_2001-2021"',
scale: 4000,
region: geometry

1D

var regionJSON = JSON.stringify(pet.getInfo());
Export.image.toDrive ({

image: pet,

folder: "TerraClime",

description: 'PET_2001-2021"',

scale: 4000,

region: geometry

B

9.2.3 Script Number 3. TerraClimate Variables Spin up phase

Once the data has been downloaded using GEE for the time period 1981-2000,
the necessary target variables for the spin up phase can be prepared using the
following scripts. For each modelling phase we will need a different selection
of climate layers. For phase 1 (“Long Spin up”), we will need to stack 12
spatial layers (the output file will be a multiband raster layer) for each climate
variable mentioned above (temperature, precipitation and evapotranspiration).
The time series for this initial phase goes from 1981 to 2000. The script number
3 will transform the downloaded TerraClimate files to obtain monthly averages
(temperature, precipitation, evapotranspiration) for the 1981-2000 series, ready
to be used in the spin up modelling phase.
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#DATE: 2/11/2020

# MSc Ing Agr Luciano E. Dt Paolo

# Dr Ing Agr Guillermo E Peralta

HARRRAARR AR RR AR AR AR
library(raster)

library(rgdal)

# TerraClimate FROM GOOGLE EARTH ENGINE

#Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks,

# K.C. Hegewisch, 2018, Terraclimate,

#a high-resolution global dataset of monthly climate
#and climatic water balance from 1958-2015, Scientific Data,
HAHRRAARR R RR A RR R RR A RR AR

#Set working directory
WD<-("C:/TRAINING_MATERIAL/INPUTS/TERRA_CLIMATE")
setwd (WD)

# Open the TerraClimate data from GEE
tmp<-stack("AverageTemperature_1981-2001.tif")

pre_81_00<-stack("Precipitation_1981-2001.tif")

pet_81_00<-stack("PET_1981-2001.tif")

# TEMPERATURE
# Get one month temperature ( January)
tmp_Jan_1<-tmp[[1]]

dim(tmp_Jan_1)
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# Create empty list
Rlist<-1list()
# Average of 20 years (j7) and 12 months (%)

######Lor loop starts#H#####H
for (i in 1:12) {

var_sum<-tmp_Jan_1%0
k<-i

for (j in 1:20) {
print (k)

var_sum<-(var_sum + tmp[[k]])

k<-k+12
}

#Calculate each month average.
var_avg<-var_sum/20

# Save the average of each month (%)
Rlist[[i]]<-var_avg

}

#i#####LOor 1loop ends#H##HHH#HHAH

#save a stack of months averages
Temp_Stack<-stack(Rlist)
Temp_Stack<-Temp_Stack*0.1 # rescale to C
writeRaster(Temp_Stack,

filename='Temp_Stack_81-00_TC.tif',"GTiff",overwrite=TRUE)

#PRECIPITATION
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# Get one month Precipitation ( January)
pre_Jan_1<-pre_81_00[[1]]

dim(pre_Jan_1)

# Create empty list

Rlist<-1ist ()

# Average of 20 years (j) and 12 months (%)

######Lor loop starts######H
for (i in 1:12) {

var_sum<-pre_Jan_1%0
k<-i

for (j in 1:20) {

print (k)

var_sum<-(var_sum + pre_81_00[[k]])
k<-k+12

}

#Save each month average.
var_avg<-var_sum/20

Rlist[[i]]<-var_avg
}

######Lor loop ends#######
#save a stack of months averages
Prec_Stack<-stack(Rlist)

writeRaster (Prec_Stack,
filename='Prec_Stack_81-00_TC.tif',"GTiff",overwrite=TRUE)
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# POTENTIAL EVAPOTRANSPIRATION

# Get one month PET ( January)
pet_Jan_1<-pet_81_00[[1]]

dim(pet_Jan_1)

# Create empty list

Rlist<-list()

# Average of 20 years (j) and 12 months (%)

######for loop starts#######
for (i in 1:12) {

var_sum<-pet_Jan_1x0
k<-i

for (j in 1:20) {
print (k)
var_sum<-(var_sum + pet_81_00[[k]])

k<-k+12

}

#Save each month average.
var_avg<-var_sum/20
Rlist[[i]]<-var_avg

}

######Tor loop ends#H######

#save a stack of months averages
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PET_Stack<-stack(Rlist)

PET_Stack<-PET_Stack#0.1

writeRaster (PET_Stack,
filename='PET_Stack_81-00_TC.tif',"GTiff",overwrite=TRUE)

9.2.4 Script Number 4. TerraClimate variables warm-up phase

Once the data has been downloaded using GEE for the time period 2001-
2018/20, the necessary target variables for the warm up and forward phases
can be prepared using the following script. The purpose of the “Warm up”
phase is to adjust the initial SOC stock and initial pools for the “forward”
phase. Once the input climate layers have been harmonized, the model will run
for each year from 2001 to 2018/20, using the monthly climate data of each
year of the series (for 216/240 values for each month of the time series). The
script number 4 is prepared to arrange the necessary TerraClimate files for this
phase. We will need to generate one raster stack of 216/240 spatial layers for
each climate variable mentioned above (216 spatial layers if we use just 18 years
period instead of a 20 year period; from 2001 to 2018, depending on the avail-
able climate data). Each stack will have one layer for each month from 2001
to 2018/2020. For phase number 3, the “Forward” phase, we will need monthly
averages of the time series 2001-2018/20. We will use the same arrangement as
used in phase number one (one stack of 12 bands for each variable) but instead
of using the averages of the 1981-2000 period we will use the climatic data of
the 2001-2018/20 period. We will assume that there is no climate change in the
next 20 years. Thus, script number 2 will also prepare the climate files for the
“forward phase”.

#DATE: 12/02/2021

# MSc Ing Agr Luciano E. Di Paolo
# Dr Ing Agr Guillermo E Peralta

# TerraClimate FROM GOOGLE FARTH ENGINE

#Abatzoglou, J.T., S.Z. Dobrowskr, S.A. Parks,

# K.C. Hegewisch, 2018, Terraclimate,

#a high-resolution global dataset of monthly climate

# and climatic water balance from 1958-2015, Scientific Data,
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RUHBARUHARBH AR R HH
HARBHHHHHHHARARRRH

library(raster)
library(rgdal)

HARBHARBRBU AR R HY

WD<—(
"C:/TRAINING_MATERIALS/INPUTS/TERRA_CLIMATE")
setwd (WD)

# OPEN LAYERS

# Open the TerraClimate data from GEE
tmp<-stack("AverageTemperature_2001-2018.tif")
pre_01_18<-stack("Precipitation_2001-2018.tif")
pet_01_18<-stack("PET_2001-2018.tif")

# TEMPERATURE

# Get one month temperature ( January)
tmp_Jan_1<-tmp[[1]]
dim(tmp_Jan_1)

# Create empty list
Rlist<-list()

# Average of 20 years (j) and 12 months (i)
#i#####H###TOr 1loop starts#HARHH#H##HAHAAALR
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for (i in 1:12) {
var_sum<-tmp_Jan_1*0
k<-i

for (j in 1:(dim(tmp) [3]1/12)) {
print (k)
var_sum<-(var_sum + tmp[[k]])

k<-k+12

3

#Save each month average.
var_avg<-var_sum/ (dim(tmp) [3]1/12)
#writeRaster(ra, filename=name, format="GTiff")
Rlist[[i]]<-var_avg

}

#i###H#####for loop ends##H###HRHHNHHAH
#save a stack of months averages

Temp_Stack<-stack(Rlist)

Temp_Stack<-Temp_Stack*0.1 # rescale to C

writeRaster (Temp_Stack,
filename='Temp_Stack_01-19_TC.tif',"GTiff",overwrite=TRUE)

#PRECIPITATION

# Have one month Preciptitation ( January)

pre_Jan_1<-pre_01_18[[1]]

dim(pre_Jan_1)

# Create empty list
Rlist<-list()
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# Average of 20 years (j) and 12 months (%)

#########LTOr 1loop starts#H##H##ARU##H
for (i in 1:12) {

var_sum<-pre_Jan_1x*0
k<-i

for (j in 1:(dim(pre_01_18)[3]1/12)) {
print (k)
var_sum<-(var_sum + pre_01_18[[k]])

k<-k+12

3

#Save each month average.

var_avg<-var_sum/(dim(pre_01_18) [3]/12)

#writeRaster(ra, filename=name, format="GTiff", overwrite=TRUE)

Rlist[[i]]<-var_avg

b

#H#HH#####Lor loop ends#H###HHHHHH

#save a stack of months averages

Prec_Stack<-stack(Rlist)

writeRaster (Prec_Stack,
filename="'Prec_Stack_01-19_TC.tif',"GTiff",overwrite=TRUE)

# POTENTIAL EVAPOTRANSPIRATION

# Have one month ETP ( January)

pet_Jan_1<-pet_01_18[[1]]

dim(pet_Jan_1)
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# Create empty list
Rlist<-list()

# Average of 18 years (j7) and 12 months (%)
RE##RR#HARR# T Or loop starts#H####AR##AAI##R
for (i in 1:12) {

var_sum<-pet_Jan_1*0
k<-i

for (j in 1:(dim(pet_01_18)[3]1/12)) {
print (k)
var_sum<-(var_sum + pet_01_18[[k]])

k<-k+12

}

#Save each month average.
var_avg<-var_sum/(dim(pet_01_18) [3]1/12)

#writeRaster(ra, filename=name, format="GTiff", overwrite=TRUE)
Rlist[[i]]<-var_avg

b

#########Tor loop ends#H##H##HHHHHHH

#save a stack of months averages

PET_Stack<-stack(Rlist)

PET_Stack<-PET_Stackx*0.1

writeRaster (PET_Stack,
filename='PET_Stack_01-19_TC.tif',"GTiff",overwrite=TRUE)
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9.2.5 Script Number 5. TerraClimate MIAMI model NPP
mean 1981-2000

To adjust yearly C inputs during the warm up phase according to annual NPP
values, we will need to estimate an average annual NPP 1981-2000, that will be
used as the starting point to adjust C inputs during the “warm up” phase (See
chapter 6). Script number 5 uses the TerraClimate climate raster outputs from
script number 3 and estimates an annual NPP mean 1981-2000 value.

#DATE: 2-12-2020

# MSc Ing.Agr. Luciano E. DI Paolo
# PHD Ing.Agr. Guillermo E. Peralta
# MIAMI MODEL

library(raster)
library(rgdal)

WD_NPP<-("C:/TRAINING_MATERIALS/INPUTS/NPP")

WD_AOQI<-(
"C:/TRAINING_MATERIALS/INPUTS/AQI_POLYGON")

WD_GS0C<—(
"C:/TRAINING_MATERIALS/INPUTS/SOC_MAP")

WD_TC_LAYERS<-(
"C:/TRAINING_MATERIALS/INPUTS/TERRA_CLIMATE")

setwd (WD_TC_LAYERS)

# Open Annual Preciptitation (mm) and
# Mean Annual Temperature (grades C) stacks

Temp<-stack("AverageTemperature_1981-2001.tif")
Prec<-stack("Precipitation_1981-2001.tif")
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setwd (WD_AQOI)
AOI<-readOGR("Departamento_Pergamino.shp")

#Temp<-crop (Temp,AOI)
#Prec<-crop (Prec,A0I)

# Temperature Annual Mean

k<-1

TempList<-1list()

#######1oop For starts#######H##
for (i in 1:(dim(Temp) [3]/12)){

Templ<-mean(Templ[[k: (k+11)1])
TempList [1] <-Templ

k<-k+12

}

#######Loop For ends#H##HHARAHHHH#
TempStack<-stack(TempList)
TempStack<-TempStack*0.1 # rescale to C

#Annual Precipitation

k<-1

PrecList<-list()

#i######Loop for starts#######
for (i in 1:20){

Preci<-sum(Prec[[k: (k+11)]1]1)
PrecList[i]<-Precl

k<-k+12

}

#i######1oop Ffor ends#H#####H
PrecStack<-stack(PrecList)

# Calculate eq 1 from MIAMI MODEL (g DM/m2/day)
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NPP_Prec<-3000* (1-exp(-0.000664*PrecStack))

# Calculate eq 2 from MIAMI MODEL (g DM/m2/day)
NPP_temp<-3000/ (1+exp(1.315-0.119*TempStack))

# Calculate eq 3 from MIAMI MODEL (g DM/m2/day)
NPP_MIAMI_List<-list()

########LoOp for starts#######

for (i in 1:20){
NPP_MIAMI_List([i]<-min(NPP_Prec[[i]],NPP_temp[[i]])
3

#H#######1loop Ffor ends#H#H#####
NPP_MIAMI<-stack(NPP_MIAMI_List)

#NPP_MIAMI gDM/m2/year To tn DM/ha/year
NPP_MIAMI tnDM _Ha Year<-NPP_MIAMI*(1/100)

#NPP_MIAMI tn DM/ha/year To tn C/ha/year
NPP_MIAMI tnC_Ha_Year<-NPP_MIAMI tnDM_Ha_Year0.5

# Save WORLD NPP MIAMI MODEL tnC/ha/year
setwd (WD_NPP)
writeRaster (NPP_MIAMI_tnC_Ha_Year,
filename="NPP_MIAMI tnC_Ha_ Year_ STACK_81-00.tif",
format="GTiff",overwrite=TRUE)

#NPP_MIAMI_tnC_Ha_Year<-stack("NPP_MIAMI_tnC_Ha
# _Year STACK_81-00.tif")

# NPP MEAN

NPP_MIAMI_MEAN 81 00<-mean(NPP_MIAMI tnC_Ha_Year)

#0Open FAO GSOC MAP
setwd (WD_GSOC)
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SOC_MAP_AOI<-raster("SOC_MAP_AQI.tif")

# Crop & mask
setwd (WD_NPP)

NPP_MIAMI_MEAN_81_00_AOI<-crop(NPP_MIAMI_MEAN_81_00,A0I)

NPP_MIAMI_MEAN_81_00_AOI<-resample (NPP_MIAMI_MEAN 81_00_AQI,
SOC_MAP_AOI)

NPP_MIAMI_MEAN_81_00_AOI<-mask (NPP_MIAMI_MEAN_81_00_AOI,A0I)

writeRaster (NPP_MIAMI_MEAN_81_00_AOI,
filename="NPP_MIAMI MEAN 81-00 AQI.tif",
format="GTiff",overwrite=TRUE)
writeRaster (NPP_MIAMI_MEAN 81 00,
filename="NPP_MIAMI_MEAN_81-00.tif",
format="GTiff",overwrite=TRUE)

#UNCERTAINTIES MINIMUM TEMP , PREC
Temp_min<-Temp*1.02
Prec_min<-Prec*0.95

# Temperature Annual Mean

k<-1

TempList<-1list ()

#i######LoOp for starts#######
for (i in 1:20){

Templ<-mean(Temp_min[[k: (k+11)1])
TempList [1] <-Templ

k<-k+12
X
#i######1oop Ffor ends#H###A##H

TempStack<-stack(TempList)
TempStack<-TempStack*0.1 # rescale to C
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#Annual Precipitation

k<-1
PrecList<-1list()

#i######LoOp for starts#######
for (i in 1:20){

Preci<-sum(Prec_min[[k: (k+11)11)
PrecList[i]<-Precl

k<-k+12

}

#i######1oop for ends#H####HAH
PrecStack<-stack(PrecList)

# Calculate eq 1 from MIAMI MODEL (g DM/m2/day)
NPP_Prec<-3000%* (1-exp(-0.000664*PrecStack))

# Calculate eq 2 from MIAMI MODEL (g DM/m2/day)
NPP_temp<-3000/ (1+exp(1.315-0.119*TempStack))

# Calculate eq 3 from MIAMI MODEL (g DM/m2/day)
NPP_MIAMI List<-list()

#i######1oop for starts#######

for (i in 1:20){
NPP_MIAMI_List[i]<-min(NPP_Prec[[i]],NPP_temp[[i]])
}

#i######Loop for ends#H###H#HAH

NPP_MIAMI<-stack(NPP_MIAMI_List)

#NPP_MIAMI gDM/m2/year To tn DM/ha/year
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NPP_MIAMI tnDM Ha_ Year<-NPP_MIAMIx(1/100)

#NPP_MIAMI tn DM/ha/year To tn C/ha/year

NPP_MIAMI_tnC_Ha_Year<-NPP_MIAMI_tnDM_Ha_Year*0.5

# Save WORLD NPP MIAMI MODEL tnC/ha/year

setwd (WD_NPP)

writeRaster (NPP_MIAMI_tnC_Ha_Year,
filename="NPP_MIAMI tnC_Ha_ Year_ STACK_81-00_MIN.tif",
format="GTiff",overwrite=TRUE)

# NPP MEAN

NPP_MIAMI MEAN 81 00<-mean(NPP_MIAMI tnC_Ha Year)

# Crop & and mask

setwd (WD_NPP)

NPP_MIAMI_MEAN_81_00_AOI<-crop (NPP_MIAMI_MEAN_81_00,AOI)

NPP_MIAMI_MEAN_81_00_AOI<-resample (NPP_MIAMI MEAN_81_00_AOI,

SOC_MAP_AQI)

NPP_MIAMI MEAN 81 _00_AOI<-mask(NPP_MIAMI_MEAN 81 00_AOI,AOI)

writeRaster (NPP_MIAMI_MEAN 81 00_AOI,
filename="NPP_MIAMI MEAN 81-00 AOI MIN.tif",
format="GTiff",overwrite=TRUE)

writeRaster (NPP_MIAMI_MEAN_81_00,
filename="NPP_MIAMI MEAN 81-00 MIN.tif",
format="GTiff",overwrite=TRUE)

#UNCERTAINTIES MAXIMUM TEMP , PREC

# Open Annual Precipitation (mm) and
# Mean Annual Temperature (C) stacks
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Temp_max<-Temp*0.98
Prec_max<-Precx*1.05

# Temperature Annual Mean

k<-1
TempList<-list()

#i######1oop for starts#######
for (i in 1:20){

Templ<-mean(Temp_max[[k: (k+11)11)
TempList[i]<-Templ

k<-k+12

b
#i######Loop for ends#H#####H

TempStack<-stack(TempList)
TempStack<-TempStack*0.1 # rescale to C

#Annual Precipitation

k<-1
PrecList<-1list()

#i######LoOp for starts#######
for (i in 1:20){

Preci<-sum(Prec_max[[k: (k+11)11)
PrecList[i]<-Precl

k<-k+12
X
#i######1oop for ends#H####HAH

PrecStack<-stack(PrecList)
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# Calculate eq 1 from MIAMI MODEL (g DM/m2/day)
NPP_Prec<-3000* (1-exp(-0.000664*PrecStack))

# Calculate eq 2 from MIAMI MODEL (g DM/m2/day)
NPP_temp<-3000/ (1+exp(1.315-0.119%TempStack))

# Calculate eq 3 from MIAMI MODEL (g DM/m2/day)
NPP_MIAMI List<-list()

#i######Loop for starts#######

for (i in 1:20){

NPP_MIAMI List[i]<-min(NPP_Prec[[i]],NPP_temp[[i]])
i#######loop for ends#######

NPP_MIAMI<-stack (NPP_MIAMI_List)

#NPP_MIAMI gDM/m2/year To tn DM/ha/year
NPP_MIAMI_ tnDM_Ha Year<-NPP_MIAMI#*(1/100)

#NPP_MIAMI tn DM/ha/year To tn C/ha/year
NPP_MIAMI_tnC_Ha_Year<-NPP_MIAMI_tnDM_Ha_Year*0.5

# Save NPP MIAMI MODEL tnC/ha/year

setwd (WD_NPP)

writeRaster (NPP_MIAMI_tnC_Ha_Year,
filename="NPP_MIAMI_tnC_Ha_Year_ STACK_81-00_MAX.tif",
format="GTiff",overwrite=TRUE)

# NPP MEAN
NPP_MIAMI_MEAN 81 00<-mean(NPP_MIAMI tnC_Ha_Year)

# Crop & and mask
setwd (WD_NPP)



84 9.2. Preparation of climate Layers (based on TerraClimate)

Monthly Vegetation Cover. Google Earth Engine.

Input Output
Country polygon NDVI_2015-2019_prop_gt_06__
geometry [country__code]  MONTH__

[Number of the month]
(12 Layers to be saved in a googledrive account)

NPP_MIAMI_MEAN_81_00_AOI<-crop(NPP_MIAMI_MEAN_81_00,AOI)

NPP_MIAMI_MEAN_81_00_AOI<-resample (NPP_MIAMI_MEAN_81_00_AOI,
SOC_MAP_AQI)

NPP_MIAMI_MEAN_81_00_AOI<-mask (NPP_MIAMI_MEAN_81_00_AOI,AOI)

writeRaster (NPP_MIAMI_MEAN 81 00_AOI,
"NPP_MIAMI_MEAN 81-00 AOI_MAX.tif",
"GTiff", TRUE)
writeRaster (NPP_MIAMI_MEAN_81_00,
"NPP_MIAMI MEAN 81-00 MAX.tif",
"GTiff", TRUE)

9.2.6 Script Number 6. “Monthly_vegetation_cover” from
Google Earth Engine.

Script number 6 is a Google Earth Engine script. It is aimed at estimating an
average vegetation cover status for each month of the year. It estimates, within
a specified time series, the probability for each pixel to present NDVI values
greater than a specified threshold, over which the soil is vegetated (for example
NDVI > 0.6). The result will vary between 0 and 1. Users may modify the time
series and NDVT threshold as desired and according to local knowledge.

In order to run the script, the instructions shown for Script number 1 should be
followed to select the Area of Interest (AOI). The script is run one time. The
user will need to specify the name of the output folder and the name of the
output raster. The following lines need to be edited:

e Line 5, the name of the folder where the output raster file is to be saved
(in the Google Drive Account);
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e Line 6, the name of the country;

e At the end of the document, in the indicated lines: name folder where the
output raster file is to be saved (in the Google Drive Account) and name
output file

//Google Earth Engine

// Monthly Vegetation Cover for Roth C Model

// Provide a polygon geometry

// Select the Modis dataset. MOD13A2 is an NDVI product.
var folder='inputs_NDVI'//change folder

var country='country'//change

var threshold =4000 //NDVI threshold

var maxpx= 267685348

var ndviVis = {
min: 0.0,
max: 1.0,
palette: [
'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163',
'99B718', '74A901', '66A000', '529400', '3E8601',
'207401', '056201', '004C00', '023BO1', 'O12E01',
'011D0O1', '011301'
1,
};

// January

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee.Filter.date('2015-01-01", '2020-12-31"'))
.filter(ee.Filter.calendarRange (1,1, 'month'));

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
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var ndvi_06=ndvi.map (mask06) ;

var ndvi_06_nn=ndvi_06.reduce(ee. .count());
var ndvi_nn=ndvi.reduce(ee. .count());

var prop_coverOl= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_coverOl.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_01')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+' NDVI_2015-2020_prop_gt04_MO1',
scale: 1000,
region:geometry,
maxPixels: maxpx

});

//// Febraury

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01"', '2020-12-31'))
.filter(ee. .calendarRange (2,2, 'month'));

var ndvi = dataset.select('NDVI');

var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

g

var ndvi_06=ndvi.map (mask06) ;
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var ndvi_06_nn=ndvi_06.reduce(ee. .count());
var ndvi_nn=ndvi.reduce(ee. .count()) ;

var prop_cover02= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_cover02.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_02')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+'_ NDVI_2015-2020_prop_gt04_MO02',
scale: 1000,
region:geometry,
maxPixels: maxpx

B

//// March

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01"', '2020-12-31"'))
filter(ee. .calendarRange (3,3, 'month')) ;

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold) ;

return image.updateMask (mask) ;

I8
var ndvi_06=ndvi.map(mask06) ;

var ndvi_06_nn=ndvi_06.reduce (ee. .count());
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var ndvi_nn=ndvi.reduce(ee. .count());
var prop_cover03= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_cover03.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_03')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+'_NDVI_2015-2020_prop_gt04_MO3',
scale: 1000,
region:geometry,
maxPixels: maxpx

1

/// April

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01", '2020-12-31'))
.filter(ee. .calendarRange (4,4, 'month'));

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

Ig
var ndvi_06=ndvi.map (mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee. .count());

var ndvi_nn=ndvi.reduce(ee. .count());
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var prop_cover04= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_cover04.clip(geometry) ;
Map.addLayer(Recorte, ndviVis, 'Recorte_CR_04')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+' NDVI_2015-2020_prop_gt04_MO04',
scale: 1000,
region:geometry,
maxPixels: maxpx

s

/// May

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01"', '2020-12-31"'))
.filter(ee. .calendarRange (5,5, 'month'));

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold) ;

return image.updateMask (mask) ;

};
var ndvi_06=ndvi.map(mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee. .count());
var ndvi_nn=ndvi.reduce(ee. .count ()) ;

var prop_cover05= ndvi_06_nn.divide(ndvi_nn);
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var Recorte = prop_cover05.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_05')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+'_ NDVI_2015-2020_prop_gt04_MO5',
scale: 1000,
region:geometry,
maxPixels: maxpx

b

// June

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01"', '2020-12-31'))
.filter(ee. .calendarRange (6,6, 'month')) ;

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map(mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee. .count()) ;
var ndvi_nn=ndvi.reduce(ee. .count());
var prop_cover06= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_cover06.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_06')
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var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+'_NDVI_2015-2020_prop_gt04_MO6',
scale: 1000,
region:geometry,
maxPixels: maxpx

1);

/7 July

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01"', '2020-12-31"'))
.filter(ee. .calendarRange (7,7, 'month'));

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map (mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee. .count());
var ndvi_nn=ndvi.reduce(ee. .count());
var prop_cover07= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_coverQ7.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_07')
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var regionJSON = JSON.stringify(Recorte.getInfo());
Export. .toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+' NDVI_2015-2020_prop_gt04_MO7',
scale: 1000,
region:geometry,
maxPixels: maxpx

s

// August

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee. .date('2015-01-01"', '2020-12-31"'))
.filter(ee. .calendarRange (8,8, 'month'));

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map(mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee. .count());
var ndvi_nn=ndvi.reduce(ee. .count()) ;
var prop_cover08= ndvi_06_nn.divide(ndvi_nn);
var Recorte = prop_cover08.clip(geometry) ;

Map.addLayer (Recorte, ndviVis, 'Recorte_CR_08')

var regionJSON = JSON.stringify(Recorte.getInfo());
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Export.image.toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+' NDVI_2015-2020_prop_gt04_MO8',
scale: 1000,
region:geometry,
maxPixels: maxpx

1

// September

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee.Filter.date('2015-01-01"', '2020-12-31"'))
.filter(ee.Filter.calendarRange(9,9, 'month'));

var ndvi = dataset.select('NDVI');

var mask06= function(image) {

var mask = image.select('NDVI').gt(threshold) ;

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map (mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee.Reducer.count());
var ndvi_nn=ndvi.reduce(ee.Reducer.count());
var prop_cover09= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_cover09.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_09')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export.image.toDrive ({
image: Recorte.select("NDVI_count"),
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folder: folder,

description: country+'_ NDVI_2015-2020_prop_gt04_MO09',
scale: 1000,

region:geometry,

maxPixels: maxpx

B

// October

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee.Filter.date('2015-01-01', '2020-12-31"'))
.filter(ee.Filter.calendarRange (10,10, 'month'));

var ndvi = dataset.select('NDVI');

var mask06= function(image) {

var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map (mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee.Reducer.count());
var ndvi_nn=ndvi.reduce(ee.Reducer.count());
var prop_coverl0= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_cover10.clip(geometry) ;
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_10')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export.image.toDrive ({

image: Recorte.select("NDVI_count"),

folder: folder,

description: country+' NDVI_2015-2020_prop_gt04_M10',
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scale: 1000,
region:geometry,
maxPixels: maxpx

s

// November

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee.Filter.date('2015-01-01"', '2020-12-31'))
.filter(ee.Filter.calendarRange(11,11, 'month'));

var ndvi = dataset.select('NDVI');

var mask06= function(image) {

var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map(mask06) ;
var ndvi_O06_nn=ndvi_06.reduce(ee.Reducer.count());
var ndvi_nn=ndvi.reduce(ee.Reducer.count());
var prop_coverll= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_coverll.clip(geometry);
Map.addLayer (Recorte, ndviVis, 'Recorte_CR_11')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export.image.toDrive ({
image: Recorte.select("NDVI_count"),
folder: folder,
description: country+' NDVI_2015-2020_prop_gt04_Mi11',
scale: 1000,
region:geometry,
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maxPixels: maxpx
b

/// December

var dataset = ee.ImageCollection('MODIS/006/MOD13A2")
.filter(ee.Filter.date('2015-01-01"', '2020-12-31'))
.filter(ee.Filter.calendarRange (12,12, 'month'));

var ndvi = dataset.select('NDVI');
var mask06= function(image) {
var mask = image.select('NDVI').gt(threshold);

return image.updateMask(mask) ;

};
var ndvi_06=ndvi.map(mask06) ;
var ndvi_06_nn=ndvi_06.reduce(ee.Reducer.count());
var ndvi_nn=ndvi.reduce(ee.Reducer.count());
var prop_coverl2= ndvi_06_nn.divide(ndvi_nn);

var Recorte = prop_coverl2.clip(geometry);
Map.addLayer (Recorte, ndviVis, 'Recorte CR_12')

var regionJSON = JSON.stringify(Recorte.getInfo());
Export.image.toDrive ({

image: Recorte.select("NDVI_count"),

folder: folder, // change folder name

description: country+' _NDVI_2015-2020_prop_gt04_M12',

scale: 1000,

region:geometry,

maxPixels: maxpx
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B

After running the script, the layer must be saved to the Google Drive account.
To accomplish this, the user will need to click on the “task” button and then
click the “run” button (Fig. 9.3)

) [ ipector comale gz |

Refresh
B NDVI_20152019_prop_qt_04_CR_MES_12 [ o |

Saving the task in GEE.

Once the procedure is completed, the layers should be downloaded from the
Google Drive and saved into a local folder

9.2.7 Script Number 7. “Vegetation_Cover_stack.R”

The script number 7 is an R script that uses the monthly vegetation cover layers
(0-1 values) created with the GEE script number 6 to create a raster stack. It
also linearly rescales the values from “0 to 1” (proportion of vegetated pixels in
a time series) to “1 to 0.6” (being 1 = bare soil and 0.6 = full vegetated pixel).
This transformation will allow us to use the calculated values as modifying
factors of the decomposition rates in the RothC model.

Once the monthly vegetation cover layers are downloaded from Google Drive,
we will generate a stack of those layers. We will first open script number 7
“Vegetation__Cover__stack.R” and the required packages. Then, we will need
to open the country polygon vector and set the working directory for the input
and the output layers.
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Monthly Vegetation Cover Stack.

Input Output
Country polygon geometry Cov__Stack__[country__code].tif
FAO SOC map (master layer): (12 layer stack)

GSOCmapV1.5.0.tif
12x NDVI__2015-2019_ prop__
gt_06__[country_ code]__

MONTH_ [Number of the month)]

library(raster)

library(rgdal)
WD_AQI<-("C:/Training_Material/INPUTS/AOI_POLYGON")
WD_S0C<-("C:/Training_Material/INPUTS/SOC_MAP")
WD_COV<-("C:/Training Material/INPUTS/COV")

# Open the shapefile of the region/country

setwd (WD_AQI)

A0I<-readOGR("Departamento_Pergamino.shp")

#0Open SOC MAP FAO

setwd (WD_S0C)

SOC_MAP_AQI<-raster("SOC_MAP_AQI.tif")

# Open Vegetation Cover layer based only

# in proportion of NDVI pizels grater than 0.6

setwd (WD_COV)

Covi<-raster("Pergamino NDVI_2015-2020_prop_gt04_MO1.tif")
Covil[is.na(Covi[1)] <- 0

Covl_crop<-crop(Covl,A0I)

Covl_mask<-mask(Covl_crop,AOI)
Covl_res<-resample(Covl_mask,SOC_MAP_AOI,method='ngb')
Cov2<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO2.tif")
Cov2[is.na(Cov2[])] <- 0

Cov2_crop<-crop(Cov2,A0I)

Cov2_mask<-mask(Cov2_crop,A0I)
Cov2_res<-resample(Cov2_mask,SOC_MAP_AQOI,method='ngb')
Cov3<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO3.tif")
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Cov3[is.na(Cov3[])] <- 0

Cov3_crop<-crop(Cov3,A0I)

Cov3_mask<-mask(Cov3_crop,A0I)
Cov3_res<-resample(Cov3_mask,SOC_MAP_AQOI, 'ngb')
Cov4<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO4.tif")
Cov4[is.na(Cov4[])] <- 0

Cov4_crop<-crop(Cov4,A0I)

Cov4_mask<-mask(Cov4_crop,A0I)
Cov4_res<-resample(Cov4_mask,SOC_MAP_AOI, 'ngb')
Covb<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO5.tif")
Cov5[is.na(Cov5[])] <- 0

Covb_crop<-crop(Cov5,A0I)

Covb5_mask<-mask(Cov5_crop,A0I)
Covb_res<-resample(Cov5_mask,SOC_MAP_AQOI, 'ngb')
Cov6<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO6.tif")
Cov6[is.na(Cov6[])] <- 0O

Cov6_crop<-crop(Cov6,A0I)

Cov6_mask<-mask(Cov6_crop,A0I)
Cov6_res<-resample(Cov6_mask,SOC_MAP_AQOI, 'ngb')
Cov7<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO7.tif")
Cov7[is.na(Cov7[])] <- 0O

Cov7_crop<-crop(Cov7,A0I)

Cov7_mask<-mask(Cov7_crop,A0I)
Cov7_res<-resample(Cov7_mask,SOC_MAP_AQOI, 'ngb')
Cov8<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO8.tif")
Cov8[is.na(Cov8[])] <- 0

Cov8_crop<-crop(Cov8,A0I)

Cov8_mask<-mask(Cov8_crop,A0I)
Cov8_res<-resample(Cov8_mask,SOC_MAP_AQOI, 'ngb')
Cov9<-raster("Pergamino_NDVI_2015-2020_prop_gt04_MO9.tif")
Cov9[is.na(Cov9[])] <- 0

Cov9_crop<-crop(Cov9,A0I)

Cov9_mask<-mask(Cov9_crop,A0I)
Cov9_res<-resample(Cov9_mask,SOC_MAP_AQOI, 'ngb')
Cov10<-raster("Pergamino_NDVI_2015-2020_prop_gt04_M10.tif")
Cov10[is.na(Cov10[1)] <- ©

Cov10_crop<-crop(Cov10,A0I)
Cov10_mask<-mask(Cov10_crop,AO0I)
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Cov10_res<-resample(Cov10_mask,SOC_MAP_AOI,method='ngb')

Covli<-raster("Pergamino_NDVI_2015-2020_prop_gt04_M11l.tif")

Covil[is.na(Covi1[])] <- 0

Cov1l_crop<-crop(Covi1l,AQI)

Covll_mask<-mask(Covll_crop,AO0I)

Covll_res<-resample(Covll_mask,SOC_MAP_AOI,method='ngb')

Covl2<-raster("Pergamino_NDVI_2015-2020_prop_gt04_M12.tif")

Covi2[is.na(Covi2[])] <- 0

Cov12_crop<-crop(Cov12,A0I)

Cov12_mask<-mask(Cov12_crop,A0I)

Cov12_res<-resample(Covl2_mask,SOC_MAP_AOI,method='ngb')

Stack_Cov<-stack(Covl_res,Cov2_res,Cov3_res,Cov4_res,
Covb_res,Cov6_res,Cov7_res,Cov8_res,
Cov9_res,Covl0_res,Covll_res,Covl2_res)

# rescale wvalues to 1 if it is bare soil

# and 0.6 if it ©s wvegetated.

Cov<-((Stack_Cov)*(-0.4))+1

writeRaster(Cov,filename="'Cov_stack AOI.tif',6format='GTiff')

Once the monthly vegetation cover layers are downloaded from Google Drive,
we will generate a stack of those layers. We will first open script number 7
“Vegetation_ Cover_stack.R” and the required packages. Then, we will need
to open the country polygon vector and set the working directory for the input
and the output layers.

9.2.8 Script Number 8. “ISRIC_Clay_Layer.R”

ISRIC clay layers represent the clay content (0-2 micrometer; in g/100g; w%)
at four standard depths (sl1=0-1lcm; sl2=1-5; s13=>5-15cm; s14=15-30 cm) at a
250m resolution. The objective of this script is to aggregate the different layers
into one layer by estimating the weighted average of the four depths:

library(raster)
library(rgdal)

WD_AQI<-("C:/Training Material/INPUTS/AOI_POLYGON")
WD_ISRIC<-("C:/Training Material/INPUTS/CLAY")
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Clay layers from ISRIC

Input Output
Country polygon geometry Clay__ [country__code]__Avg.tif
Clay inputs from ISRIC: (1 layer)

CLYPPT M sll_250m_ ILtif
CLYPPT_M_sl2_ 250m_ ILtif
CLYPPT_M_sl3_250m__ ILtif

CLYPPT_M_ sl4_250m_ ILtif

WD_CLAY<-("C:/Training_Material/INPUTS/CLAY")

# Open the shapefile of the region/country

setwd (WD_AOT)

A0I<-readOGR("Departamento_Pergamino.shp")

# Open Clay layers (ISRIC)

setwd (WD_ISRIC)

Clayl<-raster("CLYPPT_M_s11_250m_11_subs.tif")

Clay2<-raster ("CLYPPT_M_s12_250m_11_subs.tif")

Clay3<-raster("CLYPPT_M_s13_250m_11_subs.tif")

Clay4<-raster("CLYPPT_M_sl14_250m_11_subs.tif")

Clayl_AR<-crop(Clayl,AOI)

Clay2_AR<-crop(Clay2,A0I)

Clay3_AR<-crop(Clay3,A0I)

Clay4_AR<-crop(Clay4,A0I)

# Average of four depths

WeightedAverage<-function(rl,r2,r3,r4){

return(ri*(1/30)+r2%(4/30)+r3+(10/30)+r4*(15/30))}
Clay_WA<-overlay(Clayl_AR,Clay2_AR,
Clay3_AR,Clay4_AR,fun=WeightedAverage)

Clay_WA_AOI<-mask(Clay_WA,AOI)

setwd (WD_CLAY)

writeRaster(Clay_WA_AOI,filename="Clay_WA_AQI.tif",
format='GTiff', overwrite = TRUE)
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9.3 Preparing the land use layer

The land use layer is one of the most important layers in the process, as it
defines the target areas and production systems to be modeled. The land use
layer will be needed:

e to account for major land use changes during the 2000-2020 period;

 to obtain the DPM/RPM ratios required in the RothC model ( See Chap-
ter 4);

o to define the modeling units/target points where the model is to be run
(agricultural lands in 2020).

Each modeling phase will require specific land use layers. For the ‘spin up’
phase, users should use a representative land use layer for the period 1980-2000
(e.g. land use layer as in year 2000), or best available land use layer. For the
‘warm-up’ phase, users can use year to year land use layers (2000 to 2020), or a
representative land use layer for the period, depending on the available informa-
tion. The ‘warm-up’ land use layer accounts for year to year changes in the land
use during the period (for example a pixel that changes from forest to cropland).
The script will need a stack of land use layers, one layer for each year of the
warm up phase. If the user does not want to model changes in the land use layer
over the warm up phase, or information is not available, the same land use layer
for each year can be used over the warm-up phase. For the ‘forward’ phase, the
latest best available land use layer should be used. As a minimum, the last avail-
able land use data at 1x1 km resolution shall be defined. The predominant land
use category in each cell of the 1x1 km grid shall be selected if finer resolutions
are available. The land use classes can be derived from land cover classes from
different national, regional or global datasets which best correlate with national
land use. The land use layers are used in the three modelling phases to gener-
ate a decomposition rate DR layer (generated through scripts 10, 11, and 12,
See sections 9.8-9.10), that represents the above mentioned DPM/RPM ratios
for the different land use classes. In scripts 10,11 and 12, default DPM/RPM
values are assigned to each FAO Global Land Cover (GLC-SHARE) class (See
Table 6.1 Chapter 6; Section 6.7; and scripts 10,11 and 12). For more informa-
tion on this classification refer to FAO (2014) and to the FAO Land and Wa-
ter site: http://www.fao.org/land-water/land /land-governance /land-resources-
planning-toolbox/category/details/en/c/1036355/ Thus, land cover classes ob-
tained from different datasets (e.g. European Space Agency - ESA) need to


http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
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be re-classified into FAO land cover classes in a Geotiff format if the scripts
10,11 and 12 are to be run with the default land classes and DPM/RPM ra-
tios provided with the training material. In this section, we provide a script to
transform ESA land use cover classes to FAO land use classes (script 9), which
can be used as a model to convert and use classes from other datasets. Users can
however modify the DPM/RPM default values (See Table 6.1, Chapter 6) based
on local knowledge and available information, create additional land use classes
or disaggregate the FAO land use classes, and assign DPM/RPM ratios to those
new classes by modifying the provided scripts. Users are encouraged to leverage
available local knowledge and data to produce the most accurate SOCseq maps
possible. With this in mind, if more detailed land use maps, i.e. containing
information about the types of cropping systems present, and local data on the
DPM/RPM for the specific land use types are easily accessible, the provided
script should be edited accordingly.

Finally, the land use layer is also needed to define the target points where the
three phases of the protocol will be run. In section 9.7 we provide a Qgis model
to generate the target points from the land use layer. Defining the target points
out of the land use layer will allow us to run the model just in the pixels with
the land use classes of interest.

Depending on whether yearly land use layers are available for the forward
phase, this technical manual contains alternative scripts both for the data
preparation phase (Scripts 9 Land_Use ESA_to_ FAO_ classes_ LUsim.R
and 11_WARM_UP_STACK_V5_LUsim.R) and the modelling phase (Script
14 ROTH_C_WARM_UP_UNC_v3_ LUsim.R). Figure illustrates the script
sequence to be followed depending on whether yearly land use change layers
are available for the warm up phase.

9.3.1 Script Number 9 “Land_Use_ESA_to_FAO_classes.R”
No land use change

Script number 9 transforms the ESA (European Space Agency 2015; 300 m
resolution; ESA CCI Land cover website) land cover classes to the FAO land
use classes. This script can be modified to be used with any other land use
dataset.
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8_Script_CLAY_from_ISRIC.R

Clay layer

Sequence without Land Use simulation Sequence with Land Use simulation

9_land_Use_ESA_to_FAO_classes.R

LU layers

10_SPIN_UP_STACK V3.R 10_SPIN_UP_STACK V3.R

Sta CkS creation 11 WARM_UP_STACK_V5.R

12_FOWARD_STACK.R 12_FOWARD_STACK.R

Rot h Cm od e | 13_ROTH_C_SPIN_UP_UNC v2.R 13_ROTH_C_SPIN_UP_UNC v2.R

14_ROTH_C_WARM_UP_UNC V3R
o) h ases 15_ROTH_C_FOWARD_UNC_v3.R 15 ROTH_C_FOWARD_UNC_v3.R

Maps Generation 16_Points_To_Raster.R

Script sequence based on whether yearly land use change layers for the warm up
phase are available
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Conversion of ESA land use to FAO land use classes

Input Output

Country polygon geometry ESA_Land_ Cover_ 12clases FAO_ s.tif
FAO SOC map (master layer): (1 layer)

GSOCmapV1.5.0.tif

ESA Land use:

ESACCI-LC-L4-LCCS-Map-

300m-P1Y-2015-v2.0.7.tif

First, we will need to open the R packages, open the shapefile of the re-
gion/country to be modelled, and open the land use/land cover data set to
be re-classified into FAO land use classes:

library(raster)

library(rgdal)

WD_AOI<-("C:/Training Material/INPUTS/AQI_POLYGON")

WD_LU<-("C:/Training_Material/INPUTS/LAND_USE")

WD_S0C<-("C:/Training_Material/INPUTS/SOC_MAP")

# Open the shapefile of the region/country

setwd (WD_AOTI)

ADI<-readOGR("Departamento_Pergamino.shp")

# Open Land Use Layer (ESA)

setwd (WD_LU)

ESA_LU<-raster ("ESACCI-LC-L4-LCCS-Map-
300m-P1Y-2015-v2.0.7_subs.tif")

plot (ESA_LU)

# Cut the LU layer by the country polygon

ESA_LU_AOI<-crop(ESA_LU,AQI)

plot (ESA_LU_AQI)

# Reclassify ESA LAND USE to FAO LAND USE classes

# 0 =0 No Data

190 = 1 Artificial

10 11 20 30 40 = 2 Croplands

130 = 3 Grassland

50 60 61 62 70 71 72 80 81 82 90 100 110 = 4 Tree Covered

120 121 122= 5 Shrubs Covered

B OWH OR R R
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160 180 = 6 Herbaceous vegetation flooded

170 = 7 Mangroves

150 151 152 153= 8 Sparse Vegetation

200 201 202 = 9 Baresotl

220 = 10 Snow and Glactiers

210 = 11 Waterbodies

12 = 12 Treecrops

# 20 = 13 Paddy fields(rice/ flooded crops)

# Reclassify matrixz. "Is" to "become"

is<-c(0,190,10,11,20,30,40,130,50,60,61,62,70,71,72,
80,81,82,90,100,110,120,121,122,160,180,170,
150,151,152,153,200,201,202,220,210,12)

become<-c(0,1,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,

4,4,4,5,5,5,6,6,7,8,8,8,8,9,9,9,10,11,12)

recMat<-matrix(c(is,become) ,ncol=2,nrow=37)

# Reclasstfy

ESA_FAD <- reclassify(ESA_LU_AOI, recMat)

# Resample to SOC map layer extent and resolution

setwd (WD_S0C)

SOC_MAP_AQI<-raster("SOC_MAP_AQOI.tif")

ESA_FAO_res<-resample(ESA_FAQ,SOC_MAP_AQOI,method='ngb")

ESA_FAO_mask<-mask(ESA_FAO_res,SOC_MAP_AQI)

# Save Land Use raster

setwd (WD_LU)

writeRaster (ESA_FAO_mask,

filename="ESA_Land_Cover_12clases_FAO_AOI.tif",

format='GTiff', overwrite = TRUE)

HOWH R R R R R

9.3.2 Script Number 9 “Land_Use_ESA_to_FAQO_classes
_LUsim.R” Land use change simulation

Script number 9 transforms the ESA (European Space Agency 2000 to 2018;
300 m resolution; ESA CCI Land cover website) land cover classes to the FAO
land use classes. This script allows for the preparation of a stack with yearly
land use layers to simulate land use change during the warm up phase.
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#DATE: 11-02-2021

# MSc Ing Agr Luciano E Di Paolo
# Dr Ing Agr Guillermo E Peralta

#### Prepare Land Use layer
rm(list = 1s())

library(raster)
library(rgdal)

WD_AQTI<(

"C:/TRAINING_MATERIALS/INPUTS/AOI_POLYGON")

WD_LU<-(

"C:/TRAINING_MATERIALS/INPUTS/LAND_USE")

WD_S0C<(
"C:/TRAINING_MATERIALS/INPUTS/SOC_MAP")

# Open the shapefile of the region/country

setwd (WD_AOI)

AOI<-readOGR("Departamento_Pergamino.shp") # change for your

# own Area of interest
# Open Land Use Layer (ESA)

setwd (WD_LU)

ESA_LU<-stack("ESA_Land_Cover_ESA_Stack.tif")

plot(ESA_LUL[111)
# Cut the LU layer by the country polygon
ESA_LU_AOI<-crop(ESA_LU,AOI)

plot (ESA_LU_AOI[[1:4]11)
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# Reclassify ESA LAND USE to FAO LAND USE classes

0=20 No Data
190 = 1 Artificial
10 11 30 40 = 2 Croplands
130 = 3 Grassland
50 60 61 62 70 71 72 80 81 82 90 100 110 = 4 Tree Covered
120 121 122= 5 Shrubs Covered
160 180 = 6 Herbaceous wvegetation flooded
170 = 7 Mangroves
150 151 152 153= 8 Sparse Vegetation
200 201 202 = 9 Bare sotl
220 = 10 Snow and Glacters
210 = 11 Waterbodies
12 12 Tree crops
20 = 13 Paddy fields(rice/ flooded crops)

oW KR R R W W OW R R R R W™ W

# Create a reclassification matriz. "Is" to "become"

is<-¢(0,190,10,11,30,40,130,50,60,61,62,70,71,72,
80,81,82,90,100,110,120,121,122,160,180,
170,150,151,152,153,200,201,202,220,210,12,20)

become<-c (0, ,4,4,4,4,4,4,4,
8,9,9,9

,8,9,9,9,10,11,12,13)
recMat<-matrix(c(is,become) ,ncol=2,nrow=37)

# Reclassify

ESA_FAQO <- reclassify(ESA_LU_AQOI, recMat)

# Resample to SOC map layer extent and resolution
setwd (WD_S0C)

SOC_MAP_AQI<-raster("SOC_MAP_AOI.tif") # change for

# your own SOC MAP

ESA_FAO_res<-resample(ESA_FAO,SOC_MAP_AQI,method='ngb')
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ESA_FAO_mask<-mask(ESA_FAO_res,SOC_MAP_AQI)

# Save Land Use raster

setwd (WD_LU)

writeRaster (ESA_FAO_mask,
filename="ESA_Land_Cover_12clases_FAO_Stack AOI.tif",
format='GTiff',overwrite=TRUE)

# We save separately the land use from 2018

# to perform the target's points creation

writeRaster (ESA_FAO_mask([[18]],
filename="ESA_Land_Cover_12clases_FAO_2018_AOI.tif",
format='GTiff',overwrite=TRUE)

9.4 Harmonization of soil, climate and vegetation
layers.

Once all soil, climate, vegetation and land use layers are created, they need to
be harmonized in order to run the model. The harmonization of layers consists
of three steps. First, if the model is to be run for an entire country, layers need
to be harmonized to the extents of the country boundaries (country polygon
layer extents). Second, a resampling process is required in order to match the
spatial resolution to the master layer (SOC FAO layer). Finally, a masking
process is required to cut the layer with the vector polygon boundaries. After
the harmonization of all layers, we will generate a raster stack of all layers needed
to run the model. The harmonization/stacking process will be performed three
times (scripts 10,11,12), one for each modelling phase.

9.4.1 Script Number 10. “SPIN_UP_STACK.v3.R”

Script number 10 is intended to harmonize all layers needed to complete phase
1 (long spin-up) of the spatial RothC model. The result of this script is a
simple raster stack which contains all the data to perform the spin-up phase.
To generate the stack we will need the SOC FAO layer (master layer), the clay
layer (from script number 8), the three climate stacks (from script number 1),
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the land use layer (from script number 9), and the vegetation cover stack (from
script number 7).

Spin-up stack

Input Output
Country polygon geometry Stack_Set_ SPIN_UP__
FAO SOC map (master layer): [country__code].tif

GSOCmapV1.5.0.tif
Clay inputs (from script number 8):
Clay_ [country_ code] Avg.tif

(1 layer)

TerraClimate layers (from Script number 1):
Temp_ Stack_ 81-00_TC.tif

Prec_ Stack 81-00 TC.tif

PET _Stack_81-00_TC.tif

Land use layer (from script number 9):

ESA_ Land Cover 12clases. FAO s.tif

(1 layer)

Vegetation cover layer (from script number 7):
Cov__Stack_[country_ code].tif

(12 layer stack)

First, we will open the required R-packages and a shapefile (polygon) which
represents the country boundary. In the script below we will be using an example
but when running it (AR), the user will have to replace the file according to
the target country. The user can also modify the names of the variables inside
the script. However, as these variables will only exist inside the script, it is not
necessary.

# Prepare the layers for the SPIN-UP process of the Roth C Model.
rm( 1s0))

library(raster)

library(rgdal)

WD_AQI<-("C:/Training Material/INPUTS/AQI_POLYGON")
WD_S0C<-("C:/Training_Material/INPUTS/SOC_MAP")
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WD_CLAY<-("C:/Training_Material/INPUTS/CLAY")
WD_CLIM<-("C:/Training Material/INPUTS/TERRA_CLIMATE")
WD_LU<-("C:/Training_Material/INPUTS/LAND_USE")
WD_COV<-("C:/Training_Material/INPUTS/COV")
WD_STACK<-("C:/Training Material/INPUTS/STACK")

# Open the shapefile of the region/country

setwd (WD_AOI)
A0I<-readOGR("Departamento_Pergamino.shp")

The second step is to load the latest version of

FAD Soil Organic Carbon map layer (Master Layer),

created in script number O.

#0pen SOC MAP FAO

setwd (WD_S0C)

SOC_MAP_AOI<-raster("SOC_MAP_AOI.tif")

Next, we will open the clay content layer (from script number 8):

# Open Clay layer

setwd (WD_CLAY)

Clay_WA_AOI<-raster("Clay_WA_AOI.tif")

Clay_WA_AOI_res<-resample(Clay_WA_AOI,SOC_MAP_AQOI,
method='bilinear')

#Clay_AR_Avg<-crop (Clay_AR_Avg,AR)

#Clay_AR_Avg<-mask(Clay_AR_Avg,AR)

#Clay_AR_Avg_res<-resample(Clay_AR_Avg,SOC_MAP_AR,

# method="'bilinear')

Next, we will open the climate raster layers (generated in script number 1).
These layers come from the TerraClimate database, but the user can choose
local layers if desired, as long as they match the arrangement and format needed
for running the model.

#0Open Precipitation layer

setwd (WD_CLIM)
PREC<-stack("Prec_Stack_81-00_TC.tif")
PREC_AOI<-crop(PREC,AQI)
PREC_AOI<-resample (PREC_AOI,SOC_MAP_AQI)
PREC_AOI<-mask (PREC_AOI,AOQI)
PREC_AQOI<-stack(PREC_AQOI)
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#0Open Temperatures layer
TEMP<-stack("Temp_Stack_81-00_TC.tif")
TEMP_AOI<-crop(TEMP,AQI)
TEMP_AOI<-resample (TEMP_AOI,SOC_MAP_AOQI)
TEMP_AOI<-mask (TEMP_AOI,AOI)
TEMP_AOI<-stack(TEMP_AQI)

#0pen Potential Evapotranspiration layer
PET<-stack("PET_Stack_81-00_TC.tif")
PET_AOI<-crop(PET,AQI)
PET_AOI<-resample (PET_AOI,SOC_MAP_AOI)
PET_AOI<-mask (PET_AOI,AQI)
PET_AOI<-stack(PET_AOI)

Next, we will open, resample and mask the land use raster layer to be used in
the spin up phase (representative 1980-2000 period).
In this example we will use the ESA land used reclassified into FAO land use

classes (script 9).

0 No Data

1 Artifictal

2 Croplands

3 Grassland

4 Tree Covered

5 Shrubs Covered

6 Herbaceous wvegetation flooded
7 Mangroves

8 Sparse Vegetation
9 Baresotl

10 Snow and Glactiers
11 Waterbodies

12 TreeCrops

13 Paddy ftields
setwd (WD_LU)

HORH KR R R W oW W OR R R W W™ OW W

Open Land Use layer reclassify to FAO classes

LU_AOI<-raster("ESA_Land_Cover_12clases_FAO_2018_AOI.tif")
Then, we will open the vegetation cover layers

(created in script number 7):
# Open Vegetation Cover layer
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setwd (WD_COV)
Cov_AOI<-stack('Cov_stack AOI.tif')

The script then creates a DR layer (DPM/RPM ratio). Here the DR layer is
derived from the Land use layer, assigning default DPM/RPM ratios to each
FAO land cover class (See Table 9.13). Users can modify these ratios according
to local expertise and available local information.

# Use Land use layer to convert it to DR layer

#DPM/RPM (decomposable vs resistant plant material)

#(1) Most agricultural crops and timproved grassland

# and tree crops 1.44

#(2) Unimproved grassland and shrub 0.67

#(3) Deciduous and tropical woodland 0.25

DR<-(LU_AOI==2 | LU_AOI==12| LU_AO0I==13)*1.44+ (LU_AO0I==4)%0.25 +

(LU_ADI==3 | LU_AOI==5 | LU_AOI==6 | LU_A0I==8)%0.67
Finally, we will create a stack with all the raster layers
that have been prepared.
# STACK all layers

Stack_Set_AO0I<-stack(SOC_MAP_AOI,
Clay_WA_AOI_res,TEMP_AOI,PREC_AOI,PET_AOI,DR,LU_AOI,Cov_AOI)

setwd (WD_STACK)

writeRaster (Stack_Set_AOI,
filename=("Stack_Set_SPIN_UP_AOI.tif"),
format="GTiff", overwrite = TRUE)

9.4.2 Script Number 11. “WARM_UP_STACK_V5.R” No
Land use change

Script number 11 is intended to harmonize all layers required to run the phase
2 (WARM UP) of the spatial RothC model. The result of this script is a simple
raster stack which contains most of the layers needed for the warm-up phase.
To generate the stack we will need the latest version of SOC FAO layer (master
layer), the clay layer (from script number 8), land use layers (from script number
9), a land use stack (one land use layer per year), a vegetation cover stack (from
script number 7) and the NPP stack (from script number 4). The climate layers
and the NPP mean are additional layers that will be needed in the WARM UP
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phase but will not be part of this stack because of the final size of the output
file.

Warm-up stack

Input Output
Country polygon geometry Stack_Set_ WARM__UP__
SOC layer (from script no. 10): [country__code].tif

SOC_MAP_ [country_ code].tif
Clay inputs (from script no. 8):
Clay__[country__code]__Avg.tif

(1 layer)

Land use layer (from script no. 9):

ESA Land Cover 12clases FAO_s.tif
(18 layer, 1 per year)

Vegetation cover layer (from script no. 7):

Cov__Stack__[country__code].tif
(12 layer stack)

First, we will load the packages, set the number of years of the warm up phase
and set the directories of each layer. Then we will open the country vector
polygon boundaries:

rm(list = 1s())

library(raster)

library(rgdal)

# Set the number of years of the warm up

nWUP<-18
WD_AQI<-("C:/Training_Material/INPUTS/AQI_POLYGON")

WD_S0C<-("C:/Training_Material/INPUTS/SOC_MAP")
WD_CLAY<-("C:/Training_Material/INPUTS/INPUTS/CLAY")
WD_CLIM<-("C:/Training_Material/INPUTS/TERRA_CLIMATE")
WD_LU<-("C:/Training Material/INPUTS/LAND_USE")
WD_COV<-("C:/Training_Material/INPUTS/COV")
WD_STACK<-("C:/Training_Material/INPUTS/STACK")
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WD_NPP<-("C:/Training_Material/INPUTS/NPP")
# Open the shapefile of the region/country
setwd (WD_AQI)

A0I<-readOGR("Departamento_Pergamino.shp")

Then, we will open the harmonized FAO GSOCmap of the country created in
script number 0:

#0pen SOC MAP

setwd (WD_S0C)

SOC_MAP_AOI<-raster("SOC_MAP_AOI.tif")

Then we will open the clay layer created in script number 8:

# Open Clay layers (ISRIC)

setwd (WD_CLAY)

Clay_WA_AOI<-raster("Clay_WA_ADI.tif")
Clay_WA_AOI_res<-resample(Clay_WA_AOI,

SOC_MAP_AOI,method='bilinear"')

Then, we will open the Land Use layers required for the warm up phase (2000-
2020). In this example we used the ESA land use (2015) reclassified into to the
FAO land use classes.

# OPen Land Use layer (ESA)
setwd (WD_LU)
LU_AOI<-raster("ESA_Land_Cover_12clases_FAO_2018_AO0I.tif")

We will then open the vegetation cover layer previously created in the script
number 7:

# Open Vegetation Cover layer
setwd (WD_COV)
Cov_AOI<-stack('Cov_stack_AOI.tif')

If year to year land use layers are available for the warm up phase (2000-2020),
we will open the Land Use stack of the annual land use layers. If annual land
use layers are not available, we will just replicate a representative land use layer
for the warm-up phase, as previously loaded.
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# Open Land Use Stack , One Land use layer for each year (in
# this ezample we use the same LU for the 18/20 year

# period set previously in the nWUP variable

# here 18 years are replicated for the Warm-up

nWUP <- 18

LU_Stack <-stack(replicate(nWUP, LU_AOI))

Then, we will create a “DR” stack layer, one DR layer per year of the WARM
UP phase.

# Create DR Layer from LU layer (ESA land use , 14 classes)

#DPM/RPM (decomposable vs resistant plant material)

#(1) Most agricultural crops and timproved

# grassland or tree crops 1.44

#(2) Unimproved grassland and shrub 0.67

#(3) Deciduous and tropical woodland 0.25

DR<-(LU_AOI==2 | LU_AOI==12| LU_AOI==13)%1.44+ (LU_AOI==4)%0.25 +
(LU_ADI==3 | LU_AOI==5 | LU_AOI==6 | LU_A0I==8)%0.67

DR_Stack<-LU_Stack

for (i in 1:nlayers(LU_Stack)){

DR_Stack[[i]1<-(LU_Stack[[i]]1==2 | LU_Stack[[i]]==12)%1.44 +
(LU_Stack[[i]]==4)*0.25 + (LU_Stack[[i]]==3 | LU_Stack[[i]]==

| LU_Stack[[i]l]l==6 | LU_Stack[[i]1]1==8)*0.67

Finally, we will run the rest of the code and save the raster stack containing all
the necessary layers to run the ‘warm up’ phase.

# STACK all layers
Stack_Set_A0I<-stack(SOC_MAP_AOI,Clay_WA_AOI_res,
Cov_AOI,LU_Stack,DR_Stack)
setwd (WD_STACK)
writeRaster (Stack_Set_AOI,
filename=("Stack_Set WARM_UP_AOI.tif"),
format="GTiff", overwrite = TRUE)
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9.4.3 Script Number 11. WARM_UP_STACK_V5_LUsim.R
Land use change simulation

The following script is to be used if yearly land use layers to simulate land
use change are available. This script uses the output from script numer 9

Land Use ESA to FAO_ classes LUsim.R

#DATE 11-2-2021
# ADD NPP_MIN AND NPP_MAX TO THE STACK TO CALCULATE UNCERTAINTIES

# MSc Ing Agr Luciano E D% Paolo

# Dr Ing Agr Guillermo E Peralta

#### Prepare the layers for the WARM UP Roth C Model.
mm(list = 1s())

library(raster)
library(rgdal)

# Set the number of years of the warm up
nWUP<-18

WD_A0I<-(
"C:/TRAINING_MATERIALS/INPUTS/AOI_POLYGON")

WD_S0C<-("C:/TRAINING MATERIALS/INPUTS/SOC_MAP")
WD_CLAY<-("C:/TRAINING MATERIALS/INPUTS/CLAY")

WD_CLIM<-(
"C:/TRAINING_MATERIALS/INPUTS/TERRA_CLIMATE")

WD_LU<-("C:/TRAINING MATERIALS/INPUTS/LAND USE")

WD_COV<-("C:/TRAINING MATERIALS/INPUTS/COV")
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WD_STACK<-("C:/TRAINING_MATERIALS/INPUTS/STACK")
WD_NPP<-("C:/TRAINING_MATERIALS/INPUTS/NPP")

# Open the shapefile of the region/country

setwd (WD_AOI)

A0I<-readOGR("Departamento_Pergamino.shp") # change the AOI

#0Open SOC MAP

setwd (WD_S0C)
SOC_MAP_AQI<-raster("SOC_MAP_AOI.tif") # change the SOC_MAP

# Open Clay layers (ISRIC)
setwd (WD_CLAY)
Clay_WA_AOI<-raster("Clay_WA_AOI.tif")

Clay_WA_AOI_res<-resample(Clay_WA_AOI,SOC_MAP_AOI,
method='bilinear"')

H*

OPen Land Use layer (ESA)

0 No Data

1 Artifictal

2 Croplands

3 Grassland

4 Tree Covered

5 Shrubs Covered

6 Herbaceous vegetation flooded
7 Mangroves

8 Sparse Vegetation
9 Baresotl

10 Snow and Glaciers
11 Waterbodies

12 TreeCrops

oW O OR R W oW W OWR R R RR
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# 13 Paddy fields

setwd (WD_LU)
LU_AOI<-stack("ESA_Land_Cover_12clases_FAO_Stack_AOI.tif")

# Open Vegetation Cover layer

setwd (WD_COV)
Cov_ADI<-stack('Cov_stack AOI.tif')

# Open Land Use Stack , One Land use layer for each year
#(in this ezample we use the same LU for the 18 year period)

#LU_Stack <-stack(replicate(nWUP, LU_AOI))
#LU Stack <-stack(ESA[2001:2015],2015,2015,2015)
LU Stack<-LU_AQI

# Convert LU layer to DR layer (ESA land use , 14 classes)

#DPM/RPM (decomposable vs resistant plant material)
#(1) Most agricultural crops and

# tmproved grassland or tree crops 1.44

#(2) Unimproved grassland and shrub 0.67

#(3) Dectiduous and tropical woodland 0.25

#DR<-(LU_AOI==2 | LU AOI==12 | LU AOI==13)+1.44+
#(LU_AOI==4)*0.25 + (LU_AOI==3 | LU_AOI==5 |
# LU AOI==6 | LU_AOI==8)%0.67

DR_Stack<-LU_Stack

for (i in 1:nlayers(LU_Stack)){
DR_Stack[[i]]1<-(LU_Stack[[i]]==2 | LU_Stack[[i]l]==12 |
LU_Stack[[i]]==13)*1.44+
(LU_Stack[[i]1==4)%0.25 + (LU Stack[[i]]==3 |
LU _Stack[[i]]==5 | LU_Stack[[i]]==6 |
LU_Stack[[i]]==8)*0.67
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# STACK all layers

Stack_Set_AOI<-stack(SOC_MAP_AOI,
Clay_WA_AOI_res,Cov_AOI,LU_Stack,DR_Stack)

setwd (WD_STACK)
writeRaster(Stack_Set_AOI,
("Stack_Set WARM UP_AQI.tif"),
"GTiff", TRUE)

9.4.4 Script Number 12. “FORWARD_STACK.R”

Script number 12 harmonizes all layers needed to run phase 3 (forward) of the
spatial Roth C model. The result of the script is a simple raster stack which
contains the layers needed to perform the forward phase. To generate the stack
we will need the SOC FAO layer (master layer), the clay layer (from script
number 8), the three climate stacks required for the forward phase (from script
number 2), the land use layer or the forward phase (from script number 9), and
the vegetation cover stack (from script number 7).
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Warm-up stack

Input Output
Country polygon geometry Stack_Set_ FORWARD
SOC layer (from script no. 10): _ [country code].tif

SOC_MAP_[country code].tif
Clay layer (from script no. 8):
Clay__[country__code]__Avg.tif

TerraClimate layers (from Script no. 2):
Temp_ Stack_ 81-00_ TC.tif

Prec Stack 81-00 TC.tif

PET_ Stack_81-00__TC.tif

Land use layer (from script no. 10):

LU_res.tif

Vegetation cover layer (from script no. 7):
Cov__Stack__[country__code].tif

(12 layer stack)

First, we will load the packages, set path to the files directories and open the
country vector polygon boundaries.

9.4.4.1 Prepare the layers for the FORWARD Mode Roth C Model.

m(list = 1s())
library(raster)
library(rgdal)

WD_AQI<-("C:/Training_Material/INPUTS/AQI_POLYGON")
WD_S0C<-("C:/Training_Material/INPUTS/SOC_MAP")
WD_CLAY<-("C:/Training_Material/INPUTS/CLAY")
WD_CLIM<-("C:/Training_Material/INPUTS/TERRA_CLIMATE")
WD_LU<-("C:/Training_Material/INPUTS/LAND_USE")
WD_COV<-("C:/Training_Material/INPUTS/COV")
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WD_STACK<-("C:/Training_Material/INPUTS/STACK")

# Open the shapefile of the region/country

setwd (WD_AQI)

A0I<-readOGR("Departamento_Pergamino.shp")

Then, we will open the SOC layer and the clay layer.

#0Open SOC MAP

setwd (WD_S0C)

SOC_MAP_AQOI<-raster("SOC_MAP_AOI.tif")

# Open Clay layers (ISRIC)

setwd (WD_CLAY)

Clay_WA_AOI<-raster("Clay_WA_ADI.tif")

Clay_WA_AOI_res<-resample(Clay_WA_AQOI,SOC_MAP_AOI,
'bilinear"')

Then we will open the 2000-2020 average climate layers created
(as the one created in script number 2)
#0Open Precipitation layer

setwd (WD_CLIM)
PREC<-stack("Prec_Stack_01-18_TC.tif")
PREC_AOI<-crop(PREC,AQ0I)
PREC_AOI<-resample (PREC_AOI,SOC_MAP_AQI)
PREC_AOI<-mask(PREC_AOI,AOI)
PREC_AOI<-stack(PREC_AOI)

#0Open Temperatures layer
TEMP<-stack("Temp_Stack_01-18_TC.tif")
TEMP_AQI<-crop(TEMP,AQI)
TEMP_AOI<-resample (TEMP_AOI,SOC_MAP_AQOI)
TEMP_AOI<-mask(TEMP_AOI,AOI)
TEMP_AOI<-stack(TEMP_AOI)

#0pen Potential Ewvapotranspiration layer
PET<-stack("PET_Stack_01-18_TC.tif")
PET_AOI<-crop(PET,AQI)
PET_AOI<-resample(PET_AOI,SOC_MAP_AOI)
PET_AOI<-mask(PET_AOI,AQI)
PET_AOI<-stack(PET_AOI)

Then, we will open the land use layer (latest available year)
created in script number 10.

setwd (WD_LU)
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LU_AOI<-raster("ESA_Land_Cover_12clases_FAO_2018_AOI.tif")

Then, we will open the vegetation cover

layer created in script number 7.

# Open Vegetation Cover

setwd (WD_COV)

Cov_ADI<-stack('Cov_stack_ AOI.tif')

As in the previous scripts, this script creates a

DR layer (DPM/RPM ratio), assigning default DPM/RPM ratios

to each FAO land cover class (See Table 9.13).

Users can modify these ratios according to local expertise

and available local information.

# Open Land use layer and convert it to DR layer

# (mod 12 , 14 classes)

#DPM/RPM (decomposable vs resistant plant material)

#(1) Most agricultural crops and improved

# grassland or tree crops 1.44

#(2) Unimproved grassland and shrub 0.67

#(3) Dectiduous and tropical woodland 0.25

DR<-(LU_AOI==2 | LU_AOI==12| LU_AQ0I==13)%1.44+ (LU_A0I==4)%0.25 +
(LU_ADI==3 | LU_AOI==5 | LU_AOI==6 | LU_A0I==8)%0.67

We will create a stack for the forward modelling phase. We will have to define
the filename and save the output stack.

# STACK all layers
Stack_Set_AR<-stack(SOC_MAP_AQI,Clay_WA_AOI_res,TEMP_AOI,
PREC_AOI,PET_AOI,DR,LU_AOI,Cov_AOI)
setwd (WD_STACK)
writeRaster(Stack_Set_AR,filename=("Stack_Set FORWARD.tif"),
format="GTiff")

9.5 Defining target points to run the model

At this point we have three raster stacks for the different modelling phases.
We need to create the points where those simulations will be run in order to
accelerate the modelling process. These points will be the center of the pixels
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QGIS Procedure No. 1

Input Output

Land use layer : Points vector for agriculture,
(from script number 10)  forests, tree crops, grasslands,
LU_ res.tif and shrubland classes (empty)

of the master layer (GSOCmap layer, script number 7). Later, we will convert
the points containing the modelling output values back to a raster layer format.

9.5.1 QGIS Procedure number 1 (model)

We will need the land use data of each pixel (we already corregistered the land
use layer with the master layer at script number 7). Then we will use the land
use layer of the country to generate the points. For this, we can use a QGIS
model to create target points.

We will open Qgis, go to ‘Processing’ and select ‘Toolbox’, and click on the
“open existing model” button. We will have to search for the model in the
provided folder, called “7_TARGET POINTS_COUNTRY”. We will have to
load the model called “Qgis_Procedure number 1.model3”. Once this is done,
we can run the model from the processing toolbox.

We will click the Empty_ Points button and a window will pop up. We will
select the Land use layer created in script number 10 (already resampled to
match the extent and pixel size of the GSOCmap), set the path and the name
of the output file, and click on the Execute button.

This process will create vector points. Each point will be created in the centroid
of each pixel of the land use layer. This vector will contain no fields. The
scripts to run the model for each phase (SPIN_UP, WARM_UP, FORWARD)
will attach all the necessary data from the stacks (scripts number 10, 11 and
12) to each point.
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Chapter 10

Stage 2: running the model

Once all input layers are prepared, harmonized and stacked, we will run the
three modeling phases (spin up, warm up and forward phase). At this stage,
we will run the model three times, once for each phase using three different
scripts (scripts 13 A (equilibrium run) or 13 B (analytical solution), 14 and 15),
which use the same RothC function. For each script we will need the previously
created raster stacks and target points. Each script will generate output vector
points (containing the modeling results, i.e. SOC stocks of the different carbon
pools of the RothC model). The output vector of each phase will be used as
an input of the next modeling phase. Finally, after running the final modeling
phase, the forward phase, we will obtain an output vector containing the SOC
data for each projected scenario. This output vector will be used as input for
the final script (script 16) to generate the raster files to build the sequestration
potential maps.

10.1 The main commands to perform the RothC
calculations

The RothC function is the core of the next three scripts and will be used to
simulate the different C pools over the defined time periods. In the following
a brief overview of the commands we will be running to perform the RothC
calculations will be provided.

127
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# ROTH C MODEL FUNCTION .

#ER#H##### function set up starts#HH#HARHHH#HHHHH

Roth_C<-function(Cinputs,years,DPMptf, RPMptf, BIOptf,
HUMptf, FallIOM,Temp,Precip,Evp,Cov,Covl,Cov2,
soil.thick,S0C,clay,DR,barel){

This function will calculate first the “Temperature factor per month” using a
function from the SOILR package called “fT.RothC” :

#Temperature factor per month
fT=fT.RothC(Temp[,2])

Then the function will calculate the “Moisture factor per month” (this function
was modified from the original SOILR moisture function, to include the soil
cover effect, as in the original RothC model (See Chapter 4):

#Moisture effects per month .

fwlfunc<-function(P, E, 30, 32.0213,
1, bare)

{

M=P-E % pE
Acc.TSMD = NULL
for (i in 2:length(M)) {
B = ifelse(bare[i] == FALSE, 1, 1.8)
Max.TSMD = -(20 + 1.3 * pClay - 0.01 * (pClay~2)) *
(S.Thick/23) * (1/B)
Acc.TSMD[1] = ifelse(M[1] > 0, 0, M[1])
if (Acc.TSMD[i - 1] + M[i] < 0) {
Acc.TSMD[i] = Acc.TSMD[i - 1] + M[i]
}
else (Acc.TSMD[i] = 0)
if (Acc.TSMD[i] <= Max.TSMD) {
Acc.TSMD[i] = Max.TSMD
}

}
b = ifelse(Acc.TSMD > 0.444 * Max.TSMD, 1, (0.2 + 0.8 *
((Max.TSMD - Acc.TSMD)/(Max.TSMD -
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0.444 * Max.TSMD))))
b<-clamp (b, lower=0.2)
return(data.frame(Acc.TSMD, b, Max.TSMD))
}

fW_2<- fwlfunc(P=(Precipl[,2]), E=(Evp[,2]), S.Thick = soil.thick,
pClay = clay, pE = 1, bare=barel)$b

Then the function will calculate the “vegetation cover factor” effect:

#Vegetation Cover effects
fC<-Cov2[,2]

In each script, we will need to set the factor frame to run the model (500 years
for spin up, 18/20 years for the warm-up, 20 years for the forward), and run the
model. We will have two options: one from the SoilR package (using “lsoda”
function to solve the differential equations) and one from the soil assessment
package that allows to change the differential equation solver, by default we will
use the “euler” method, which is faster.

# Set the factors frame for Model calculations
xi.frame=data.frame(years,rep(fT*fW_2*fC*fPR,
length.out=length(years)))

# RUN THE MODEL from sotlassessment
#Roth C soilassesment
Model3_spin=carbonTurnover (tt=years,
CO=c(DPMptf, RPMptf, BIOptf, HUMptf, FallIOM),
In=Cinputs,Dr=DR,clay=clay,effcts=xi.frame, "euler")
Ct3_spin=Model3_spin[,2:6]

# RUN THE MODEL FROM SOILR

#Model3_spin=RothCModel (t=years,

# CO=c(DPMptf, RPMptf, BIOptf, HUMptf, FallIOM),

# In=Cinputs,DR=DR, clay=clay,zi=z%. frame, pass=TRUE)
#Ct3_spin=getC(Model3_spin)
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# Get the final pools of the time series
poolSize3_spin=as.numeric(tail (Ct3_spin,1))

return(poolSize3_spin)

1
####ARR##AR function set up ends#H##HAH#HAARHHHLH

10.2 Initialization - Spin up phase

To estimate initial carbon pools and equilibrium carbon inputs, two alterna-
tives are provided. Users can run the initialization phase using the equilibrium
procedure (explained in section 5.4.1.1) implemented in Script 13 A; or use
the analytical procedure (explained in section 5.4.1.2) implemented in Script
13 B. Users may be more familiar with the equilibrium procedure (e.g. Smith
et al. 2005; 2006; 2007; Gottschalk et al., 2012) and run Script 13A However,
depending on the size of the target area and selected equilibrium period this
approach might require a considerable execution time. A minimum of 500 years
is suggested to reach equilibrium with reduced computational time. However,
it must be noted that spin up runs for 500 years may not necessarily end up
in equilibrium SOC stocks, depending on soil, climate and land use conditions.
Increasing the duration (1 000-2 000 years) will reduce deviations with the cost
of additional computation time. The analytical approach implemented in Script
13.B (see section 10.1.2) was developed as a time-effective and precise alternative
to overcome these issues.

10.2.1 Script number 13.A. “ROTH_C_SPIN_UP_UNC_
v2.R” (equilibrium runs)

Script number 13.A implements the first modeling phase (spin up) using the
original equilibrium run approach (see section 5.4.1.1). In this script we will
load the stack generated in script number 10 and the target points (Section
9.7, QGIS model number 1). We will obtain an output vector containing our
target points. This script runs the RothC model for a minimum of 500 years to
calculate the equilibrium carbon inputs (the carbon inputs needed to reach the
2001 SOC stocks) and the SOC stocks for the different pools. It first runs using
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a standard C input of 1 tC ha™! yr™!', and then equilibrium inputs are estimated
from the obtained results and GSOCmap stocks (See Chapters 5 and 6). In
this script we will use pedotransfer functions to estimate the SOC stocks of the
different pools from the total SOC stock (Weihermiiller et al., 2013) to accelerate
the spin up process. All that information will be saved to the output vector
(shapefile file). The SPIN UP Phase will allow us to calculate two outputs that
will be saved to a point vector layer called “C_INPUT_EQ.shp”: equilibrium
carbon inputs (Ceq) and the carbon stocks of the different soil C pools to run
the second phase (WARM UP phase). First, the following packages are loaded
into R:

rm( 1s0)
library(SoilR)
library(raster)
library(rgdal)
library(soilassessment)

Then we will set the working directory.

WD_FOLDER<-("C: /TRAINING_MATERIALS")

Then, we need to load the target points created in the “qgis procedure number
17

# Vector must be an empty points wvector.

setwd (WD_FOLDER)

Vector<-read0OGR(
"INPUTS/TARGET_POINTS/target_points_sub.shp")

Then we need to open the stack with all the spin-up variables to run the model
(from script number 7).

# Stack_Set_1 is a stack that contains the spatial variables
Stack_Set_1<- stack("INPUTS/STACK/Stack_Set_SPIN_UP_AOI.tif")

We will run the next lines of the code and create an empty vector variable to
save the outputs results of the model and the pedotransfer functions:
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# Create A vector to save the results
C_INPUT_EQ<-Vector

Now, we need to extract the input variables from the raster stack to the target
points (now called “Vector”). This step will allow us to continue working with
a “dataframe” instead of a raster stack layer.

# extract variables to points
Vector_variables<-extract(Stack_Set_1,Vector, TRUE)

The next lines will define the different variables from the Vector_variables pool.
We need to individualize them in separate variables. The last line of this block
will set the number of years to run the RothC function.

# Extract the layers from the Vector
S0C_im<-Vector_variables[[2]] # first band of the stack
# 1s the second column of the wvector
clay_im<-Vector_variables[[3]]
DR_im<-Vector_variables[[40]]
LU_im<-Vector_variables[[41]]

# Define Years for Cimputs calculations
years=seq(1/12,500, 1/12)

Once we have defined the variables and time frame, we can start using the the
RothC function.

# ROTH C MODEL FUNCTION . function set

# up starts####AAAAAHHEEY

Roth_C <- function(Cinputs, years, DPMptf,
RPMptf, BIOptf, HUMptf, FallIOM, Temp,
Precip, Evp, Cov, Covl, Cov2, soil.thick,
S0C, clay, DR, barel, LU) SOC,
S0C, clay, DR, barel, LU) clay,
sS0C, clay, DR, barel, LU) DR,
S0C, clay, DR, barel, LU) barel,
s0C, clay, DR, barel, LU) LU)
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# Paddy fields coefficient fPR =
# 0.4 tf the target point is class
# =13 , else fPR=1 From Shirato
# and Yukozawa 2004

fPR = (LU == 13) * 0.4 + (LU != 13) %
1

# Temperature effects per month
fT = fT.RothC(Temp[, 2]1)

# Moisture effects per month .

fwifunc <- function(P, E, 30,
32.0213, 1, bare) {

M=P-E # pE
Acc.TSMD = NULL
for (i in 2:length(M)) {
B = ifelse(bare[i] == FALSE,
1, 1.8)
Max.TSMD = -(20 + 1.3 * pClay -
0.01 * (pClay~2)) * (S.Thick/23) x

(1/B)
Acc.TSMD[1] = ifelse(M[1] > O,
0, M[11)
if (Acc.TSMD[i - 1] + M[i] <
0) {
Acc.TSMD[i] = Acc.TSMD[i -
1] + M[i]

} else (Acc.TSMD[i] = 0)

if (Acc.TSMD[i] <= Max.TSMD) {
Acc.TSMD[i] = Max.TSMD

}

[oa '

= ifelse(Acc.TSMD > 0.444 * Max.TSMD,
1, (0.2 + 0.8 * ((Max.TSMD -
Acc.TSMD)/(Max.TSMD - 0.444 *



134

10.2. Initialization - Spin up phase

Max.TSMD))))
b <- clamp(b, lower = 0.2)
return(data.frame (b))

}

fW_2 <- fwifunc(P = (Precip[, 2]), E = (Evpl[,
2]), S.Thick = soil.thick, pClay = clay,
pE = 1, bare = barel)$b

# Vegetation Cover effects
fC <- Cov2[, 2]

# Set the factors frame for Model
# calculations

xi.frame = data.frame(years, rep(fT *
fW_2 * £C * fPR, length.out = length(years)))

# RUN THE MODEL from sotlassessment
# Roth C soilassesment
Model3_spin = carbonTurnover(tt = years,
CO = c(DPMptf, RPMptf, BIOptf, HUMptf,
FallIOM), In = Cinputs, Dr = DR,
clay = clay, effcts = xi.frame, "euler")
Ct3_spin = Model3_spin[, 2:6]

# RUN THE MODEL FROM SOILR

# Model3_spin=RothCModel (t=years,CO=c (DPMptf,

# RPMptf, BIOptf, HUMptf,

# FallIOM),In=Cinputs,DR=DR,clay=clay,zi=z%. frame,
# pass=TRUE)

# Ct3_spin=getC(Model3_spin)

# Get the final pools of the time
# series
poolSize3_spin = as.numeric(tail(Ct3_spin,

1))
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return(poolSize3_spin)
}
#H######### function set up
HHAARHARHARH endsHEHRHARHABHAH# AR

After setting the RothC function we will iterate it over each one of the target
points.

For each target point we extract the climate variables and the monthly vegeta-
tion cover values. Each variable will be assigned to an R variable.

# Iterates over the area of interest
########TOr loop starts####H##AARUHHARIH

for (i in 1:dim(Vector_variables) [1]) {

# Extract the variables
Vect<-as.data.frame(Vector_variables[i,])
Temp<-as.data.frame(t(Vect[4:15]))
Temp<-data.frame( 1:12, Temp[,1])
Precip<-as.data.frame(t(Vect[16:27]))
Precip<-data.frame( 1:12, Precip[,1])
Evp<-as.data.frame(t(Vect[28:39]))
Evp<-data.frame( 1:12, Evp[,11)
Cov<-as.data.frame(t(Vect[42:53]))
Covl<-data.frame( Covl[,11)
Cov2<-data.frame( 1:12, Covl[,11)

The next line will avoid running the model over points with unreliable data,
that may contain missing values or unrealistic values.

#Avoid calculus over Na wvalues

if (any(is.na(Evp[,2])) | any(is.na(Temp[,2])) |
any(is.na(S0C_im[i])) | any(is.na(clay_im[i])) |
any(is.na(Precip[,2])) | any(is.na(Cov2[,2])) |
any(is.na(Covi[,1])) | any(is.na(DR_im[i])) |
(S0C_im[i]1<0) | (clay_im[i]l<0)) {C_INPUT_EQ[i,2]<-0}else{

Now we will set the value of each variable (SOC, Clay, DR, and Land Use)
needed to run the model. The barel variable is used to derive the moisture
factor.
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# Set the wvariables from the images

soil.thick = 30 #Sotl thickness (org. layer topsoil), in cm
S0C <- SO0C_im[i] #Sotl organic carbon in Mg/ha

clay <- clay_im[i] #Percent clay /

DR <- DR_im[i]l # DPM/RPM (decomposable vs resistant

# plant material.)

barel <- (Covl > 0.8) # If the surface is bare or wvegetated
LU <- LU_im[i]

The next line will calculate the IOM fraction of the SOC, from the SOC value:

#I0M using Falloon method
FallIOM=0.049*S0C" (1.139)

Now there are two options to calculate the uncertainties. One is to use your own
SOC uncertainty layer: by loading it into R with the following lines of code:

If you use a SOC uncertainty layer
turn on this. First open the layer
SOC_UNC (it must have the same extent
and resolution of the SOC layer)
S0C_min<-(1-(SOC_UNC/100))*S0C
SOC_max<-(1+(SOC_UNC/100))*SOC Define
SOC min, maxz Clay min and max.
SO0C_min <- SOC * 0.8

S0C_max <- SOC * 1.2

clay_min <- clay * 0.9

clay_max <- clay * 1.1

H oW R R R R R

The script then uses the RothC function with the parameters listed below.
We want to estimate the annual Carbon inputs needed to reach the actual
GSOCmap value (equilibrium C inputs). We will first run the model assuming
“Cinputs” equal 1. We can assume that SOC stock values when there are
no C inputs (“Cinputs” equal to 0) will be equal to the inert organic carbon
stocks (SOC=FalllOM). We can then build a simple linear model to estimate the
“Cinputs” value needed to reach SOC FAO actual value (equilibrium C inputs,
See modeling approach, Chapter 5 and 6).
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b <-1

# C input equilibrium. (Ceq)

fb <- Roth_C(Cinputs = b, years = years,
DPMptf = 0, RPMptf = 0, BIOptf = 0, HUMptf = O,
FallIOM = FallIOM, Temp = Temp, Precip = Precip,
Evp = Evp, Cov = Cov, Covl = Covl, Cov2 = Cov2,
soil.thick = soil.thick, SOC = SOC, clay = clay,
DR = DR, barel = barel)

fb_t <- fb[1] + fb[2] + fb[3] + fb[4] + fb[5]

m <- (fb_t - FallIOM)/(b)

Ceq <- (SOC - FallIOM)/m

We will repeat the “C input eq. code” to calculate minimum and maximum
carbon inputs at equilibrium, using the combination of environmental variables
listed in chapter 12 (Uncertainties).

# UNCERTAINTIES C input equilibrium

# (MINIMUM)

FallIOM_min = 0.049 * SOC_min~(1.139)

fb_min <- Roth_C(Cinputs = b, years = years,
DPMptf = O, RPMptf = 0, BIOptf = 0, HUMptf = O,
FallIOM = FallIOM, Temp = Temp * 1.02,
Precip = Precip * 0.95, Evp = Evp, Cov = Cov,
Covl = Covl, Cov2 = Cov2, soil.thick = soil.thick,
50C = S0C_min, clay = clay_min, DR = DR,
barel = barel)

fb_t_MIN <- fb_min[1] + fb_min[2] + fb_min[3] +
fb_min[4] + fb_min[5]

m <- (fb_t_MIN - FallIOM_min)/(b)

Ceq_MIN <- (SOC_min - FallIOM_min)/m

# UNCERTAINTIES C input equtlibrium

# (MAXIMUM)

FallIOM_max = 0.049 * SOC_max~(1.139)

fb_max <- Roth_C(Cinputs = b, years = years,
DPMptf = 0, RPMptf = 0, BIOptf = 0, HUMptf = O,
FallIOM = FallIOM, Temp = Temp * 0.98,
Precip = Precip * 1.05, Evp = Evp, Cov = Cov,
Covl = Covl, Cov2 = Cov2, soil.thick = soil.thick,
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S0C_max, clay_max, DR,
barel)
fb_t_MAX <- fb_max[1] + fb_max[2] + fb_max[3] +
fb_max[4] + fb_max[5]
m <- (fb_t_MAX - FallIOM_max)/(b)
Ceq_MAX <- (SOC_max - FallIOM_max)/m

Now for each land use, we will run the “pedotransfer functions” (Wei-
hermé&uuller et al., 2013) to estimate the values of the SOC pools. Here is the
example for the croplands land use. Then the same code will be executed for
the rest of the land use classes.

# SOC POOLS AFTER 500 YEARS RUN WITH C INPUT EQUILIBRIUM

if (LU==2){

RPM_p_2<-((0.184*S0C + 0.1555)*(clay +
1.275)7(-0.1158))*0.9902+0.4788

BIO_p_2<-((0.014*S0C + 0.0075)*(clay +
8.8473) " (0.0567))*1.09038+0.04055

HUM_p_2<-((0.7148xS0C + 0.5069)*(clay +
0.3421)°(0.0184))*0.9878-0.3818

DPM_p_2<-S0C-FallIOM-RPM_p_2-HUM_p_2-BI0_p_2

feq_t<-RPM_p_2+BIO_p_2+HUM_p_2+DPM_p_2+FallIOM

#uncertainties MIN

RPM_p_2_min<-((0.184*S0C_min + 0.1555)*(clay_min +
1.275)°(-0.1158))*0.9902+0.4788

BIO_p_2_min<-((0.014%S0C_min + 0.0075)*(clay_min +
8.8473) " (0.0567))*1.09038+0.04055

HUM_p_2_min<-((0.7148%S0C_min + 0.5069)*(clay_min +
0.3421)°(0.0184))*0.9878-0.3818

DPM_p_2_min<-SOC_min-FallIOM_min-

RPM_p_2_min-HUM_p_2_min-BIO_p_2_min
feq_t_min<-RPM_p_2_min+BIO_p_2_min+
HUM_p_2_min+DPM_p_2_min+FallIOM_min
#uncertainties MAX
RPM_p_2_max<-((0.184*S0C_max + 0.1555)*(clay_max +
1.275)°(-0.1158))*0.9902+0.4788
BIO_p_2_max<-((0.014%S0C_max + 0.0075)*(clay_max +
8.8473) " (0.0567))*1.09038+0.04055
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HUM_p_2_max<-((0.7148*S0C_max + 0.5069)*(clay_max +
0.3421)°(0.0184))*0.9878-0.3818
DPM_p_2_max<-S0C_max-FallIOM_max-
RPM_p_2_max-HUM_p_2_max-BIO_p_2_max
feq_t_max<-RPM_p_2_max+BI0_p_2_max+
HUM_p_2_max+DPM_p_2_max+FallIOM_max

Finally, we will save the outputs pools to the variables C_INPUT_EQ :

C_INPUT_EQ[i,2]<-S0C
C_INPUT_EQ[i,3]<-Ceq
C_INPUT_EQ[i,4]<-feq_t
C_INPUT_EQ[i,5]<-DPM_p_2
C_INPUT_EQ[i,6]<-RPM_p_2
C_INPUT_EQ[i,7]1<-BIO_p_2
C_INPUT_EQ[i,8]<-HUM_p_2
C_INPUT_EQ[i,9]<-FallIOM
C_INPUT_EQ[i,10]<-Ceq_MIN
C_INPUT_EQ[i,11]<-Ceq_MAX
C_INPUT_EQ[i,12]<-feq_t_min
C_INPUT_EQ[i,13]1<-DPM_p_2_min
C_INPUT_EQ[i,14]1<-RPM_p_2_min
C_INPUT_EQ[i,15]<-BI0_p_2_min
C_INPUT_EQ[i,16]<-HUM_p_2_min
C_INPUT_EQ[i,17]<-FallIOM min
C_INPUT_EQ[i, 18]<-feq_t_max
C_INPUT_EQ[i,19]<-DPM_p_2_max
C_INPUT_EQ[i,20]<-RPM_p_2_max
C_INPUT_EQ[i,21]<-BI0_p_2_max
C_INPUT_EQ[i,22]<-HUM_p_2_max
C_INPUT EQ[i,23]<-FallIOM max
}

}

In order to properly save the output vector, we will change the names of the
fields:



140 10.2. Initialization - Spin up phase

# rename de columns

colnames (C_INPUT_EQ@data) [2] = "SOC_FAQ"

colnames (C_INPUT_EQ@data) [3] = "Cinput_EQ"
colnames (C_INPUT_EQ@data) [4] = "SOC_pedotransfer"
colnames (C_INPUT_EQ@data) [5] = "DPM_pedotransfer"
colnames (C_INPUT_EQ@data) [6] = "RPM_pedotransfer"
colnames (C_INPUT_EQ@data) [7] = "BIO_pedotransfer"
colnames (C_INPUT_EQ@data) [8] = "HUM_pedotransfer"
colnames (C_INPUT_EQ@data) [9] = "IOM_pedotransfer"
colnames (C_INPUT_EQ@data) [10] = "CIneq min"
colnames (C_INPUT_EQ@data) [11] = "CIneq_max"
colnames (C_INPUT_EQ@data) [12] = "SOC_min"
colnames (C_INPUT_EQ@data) [13] = "DPM_min"
colnames (C_INPUT_EQ@data) [14] = "RPM min"
colnames (C_INPUT_EQ@data) [15] = "BIO _min"
colnames (C_INPUT_EQ@data) [16] = "HUM_min"
colnames (C_INPUT_EQ@data) [17] = "IOM _min"
colnames (C_INPUT_EQ@data) [18] = "SOC_max"
colnames (C_INPUT_EQ@data) [19] = "DPM_max"
colnames (C_INPUT_EQ@data) [20] = "RPM_max"
colnames (C_INPUT_EQ@data) [21] = "BIO_max"
colnames (C_INPUT_EQ@data) [22] = "HUM_max"
colnames(C_INPUT EQ@data)[23] = "IOM max"

Finally, we will set the output directory and save the output vector:

# SAVE the Points (shapefile)

setwd (WD_FOLDER)

writeOGR(C_INPUT_EQ, ".", "OUTPUTS/1_SPIN_UP/SPIN_UP_County_AOI",
driver = "ESRI Shapefile")

10.2.2 Script Number 13.B. “ROTH_C_SPIN_UP_UNC_
v66.R” (analytical solution)

Script number 13.B implements the first modeling phase (spin up) using the ana-
lytical solution approach (see section 5.4.1.2), developed by Dechow et al. (2019)
and adapted to spatial simulations.
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# 12/11/2020
# SPATIAL SOIL R for VECTORS
###### SPIN UP #H#H#H#HHHARARARHHH

# MSc Ing Agr Luciano E D% Paolo Dr Ing
# Agr Guillermo E Peralta Dr. Ing Rene

# Dechow

# 13 1_ROTHC_C_SPIN_UP_UNC_v66.R This

# script does some regionalized

# uncertainty runs with RothC it

# quantifies Pool distributions and

# equilibrium C input for a minimum and
# mazimum scenario Input: a point.shp

# file with SOC and un

SOtlR from Sterra, C.A., M. Mueller,

S.E. Trumbore (2012). Models of soil

organic matter decomposition: the

SotlR package, version 1.0

Geoscientific Model Development,

5(4), 1045-1060.

http://www. geosci-model-dev.net/5/1045/2012/gmd-5-1045-2012. html.

HOW K R R R R

In this script we will load the stack generated in script number 10 and the target
points (Section 9.7, QGIS model number 1). We will obtain an output vector
containing our target points. This script estimates the SOC stocks for the differ-
ent pools and the equilibrium carbon inputs (the carbon inputs needed to reach
the 2001 SOC stocks),assuming homogeneous soil, climatic and management
conditions. First, the script estimates the fractions (fi) of DPM, RPM, BIO
and HUM pools at equilibrium following the set of equations and intermediate
coefficients described in the supplementary material of Dechow et el. (2019).
Once the fractions of the different pools are estimated, the amount of Carbon
(tC ha!) in each pool is estimated from the total SOC stock. Finally, Carbon
inputs (Ci) at equilibrium are estimated from the generated results. All results
will be saved to the output vector (shapefile file). Using this approach, the spin
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up phase will allow us to obtain two key outputs that will be saved to a point
vector layer called “C_INPUT_EQ.shp”: equilibrium carbon inputs (Ceq) and
the carbon stocks of the different soil C pools to run the second phase (warm
up phase). First, we need to load the packages into R:

rm( 1s0))

library(SoilR)
library(raster)
library(rgdal)
library(soilassessment)

Then we define the function to estimate the Inert Organic Carbon content (IOM;
t C ha'!) according to the equation (see eq. 5.2) given by Falloon et al. (1998):

# calculates some iom in t / ha
# tnput
# 1. ¢ total carbpn stock in t /ha

fIOM.Falloon.RothC =function(c, -1.31, 1.139)
{

# I0M=10"(parl+par2*log10(c))
I0M=0.049*S0C" (1.139)
I0M
}

Then from lines 61-176 we will define the main function that will estimate the
fraction of each carbon pool at equilibrium and the carbon inputs at equilibrium
(“fget__equilibrium_ factions.RothC__input”).

The inputs of this function are (line 61):
o i = is a scalar representing an averaged rate modifying factor (rmf; aver-

age of temperature, soil moisture, vegetation cover and anaerobic/paddy
rice factors).
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o (.tot = represents the initial C stock (and therefore C stock in equilib-
rium; that will correspond to the FAO GSOCmap)

e clay = clay content in percent

o fractl = vector of Cinput fractions (these fractions 1, 2 and 3 correspond to
the Yyppar, YRPM, YHU M Partition coefficients, that represent the propor-
tion of DPM, RPM and HUM of the incoming residues. The fractions are
derived from the decomposability of incoming C inputs (e.g. DPM/RPM
ratio). The way to estimate these Yppnr, YrRPM, YHUM DPartition coeffi-
cients (named as “fract]” in the script) is going to be defined later at line
229.

#

# get_equilibrium_fractions.RothC_input

# brief: quantifies pool distribution and

#C input for RothC at equilibrium

#Input

# xi= scalar representing an averaged modtfying factor
# C.tot = 4nitial C stock (and C stock in equilibrium)
# clay = clay content

# fractl = vector of Cinput fractions

#that enter the DPM, RPM, HUM

# with a DR of 1.44 fractI becomes

# [1] 0.5901639 0.4098361 0.0000000

# by fractI=c((DR)/(DR+1),1-(DR)/(DR+1),0)

#O0utput

# list with pools at equilibrium and C input at equilibrium
#

fget_equilibrium_fractions.RothC_input=function(xi=1,
C.tot,clay, fractl)
{
rmf=xi
IOM= fIOM.Falloon.RothC(c = C.tot)
C.active=C.tot-I0M

The output of this function (at line 174) will be a list of two elements: the first
element is a vector of 5 elements containing the C stocks of the different SOC
pools and the second element is the carbon input at equilibrium.
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From lines 67-175, the analytical solution to estimate SOC pools and esti-
mate equilibrium Carbon inputs is implemented. First we will need to define
the proportion of decomposed carbon that goes to the BIO pool (46 percent;
“fract.rooted.to.bio”) or to the HUM pool (54 percent; “fract.rooted.to.hum”)
using the default coefficients from the original RothC model. At lines 76-82 we
will define the decomposition rates (k) for each pool (using the default k values
of the original RothC model).

#The analytical solution of RothC
# Parameter

fract.rooted.to.bio = 0.46

fract.rooted.to.hum = 0.54

ks = c( 10, 0.3, 0.66,
0.02, 0)

ks=as.numeric (ks)

k.dpm=ks[1]

k.rpm=ks [2]

k.bio=ks[3]

k.hum=ks [4]

Then we will define the Carbon Use Efficiency (CUE) at line 86. We will require
the CUE later to estimate intermediate coefficients (o). The CUE represents
the amount of carbon that goes to the BIO + HUM pools (from the total
decomposed carbon). The amount of carbon that is outputted in form of CO2
or stored in the BIO and HUM pools is determined by the clay content of the soil
(following the original equation in the RothC model), so the CUE is dependent
on clay content.

# the carbon use efficiency
cue= 1/(1+ 1.67 * (1.85 + 1.6 * exp(-0.0786 * clay)))

From lines 88-113, we will need to define a number of intermediate coefficients
(referred as a, A, and ¢ in the equations detailed in the supplementary material
of Dechow et el. (2019)). These coefficients will then allow us to estimate
the fraction of each carbon pool at equilibrium. « 1 and « 2 coefficients will be
estimated from the carbon use efficiency and from the proportion of carbon that
goes to BIO or HUM (defined in lines 74-75). The intermediate coefficients o 1.1
to a 2.2 will be derived from the decomposition rates of each pool already defined
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in lines 76-82; and from the average rate modifying factor (rmf; average of
temperature, soil moisture, vegetation cover and anaerobic/paddy rice factors).
The c coefficient will be estimated from the previously estimated « coefficients
(lines 111-113). A (Lambda) intermediate coefficients (lines 106-107) are not
required in this stationary version and are currently disabled.

# All the coefficients alpha.l und

# alpha.2
alpha.l = cue * fract.rooted.to.bio
alpha.2 = cue * fract.rooted.to.hum

# All the coefficients a.1.1, a.1.2,
#a.2.1, a2.2

a.1.1 = k.bio * rmf * (alpha.l - 1)
a.1.2 = alpha.1l * k.hum * rmf
a.2.1 = alpha.2 * k.bio * rmf
a.2.2 = k.hum * rmf * (alpha.2 - 1)

# The Eigenvalues lambda 1 and lambda 2

lambda.1 = (a.1.1 + a.2.2)/2 - sqrt(((a.1.1 +
a.2.2)/2) x ((a.1.1 + a.2.2)/2) + a.1.2 *
a.2.1 - a.1.1 *x a.2.2)

lambda.2 = (a.1.1 + a.2.2)/2 + sqrt(((a.1.1 +
a.2.2)/2) * ((a.1.1 + a.2.2)/2) + a.1.2 *
a.2.1 - a.1.1 *x a.2.2)

# The c.0.1; ¢c.0.2; ¢.0.3 values

c.0.1 = (alpha.2 * a.1.2 - alpha.l * a.2.2)/(a.1.1 *
a.2.2 - a.1.2 x a.2.1)

c.0.2 = (alpha.2 * a.1.2 - alpha.1l * a.2.2)/(a.1.1 *
a.2.2 - a.1.2 x a.2.1)

c.0.3 = (a.1.2)/(a.1.1 *x 2.2.2 - a.1.2 %
a.2.1)
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Then, from lines 115-155, we will define the u coefficients (see intermediate
equations in the supplementary material of Dechow et el. (2019)), which are
functions integrating model structure and related to the proportion of C of
each pool entering other pools. These u coefficients will be estimated from the
previously defined o and ¢ coefficients, from the decomposition rates (k) and
from the rate modifying factor (rmf). We will define in total a set of 11 u
coefficients, that we will finally require to estimate the SOC fraction of each

pool.

# BIO pool quantification

u.
u.
u.

bio
bio
bio

.dpm=(c.0.2) #65
.rpm=(c.0.1) #66
.hum=(c.0.3) #67

HUM pool quantification ( is all C.78)

.hum
.hum
.hum

.dpm= 1/a.1.2%((-c.0.2*a.1.1-alpha.1))
.rpm= 1/a.1.2%(-c.0.2*a.1.1-alpha.1)
chum= 1/a.1.2%(-c.0.3*%a.1.1)

DPM C ( 4s all C.79)

.dpm

.dpm=1/k.dpm/rmf

#C.dpm=1i.dpm * w.dpm.dpm + CO * s.dpm

# RPM C ( is all C.80)

u.rpm.rpm=1/k.rpm/rmf

#C.rpm=7.rpm * u.rpm.rpm + CO *s.rpm

# Total C ( is all C.78)

u.dpm=u.dpm.dpm+u.bio.dpm+u.hum.dpm
u.rpm=u.rpm.rpm+u.bio.rpm+u.hum.rpm
u.hum=u.bio.hum+u.hum.hum
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To end the “fget_ equilibrium__ factions.RothC__input” function, we will define
how to estimate the fraction (fi) of each active SOC pool to the total SOC at
equilibrium. These fractions are going to be estimated following the equations
5.5 to 5.8 already explained in section 5.4.1.2, from the u coefficients and the
YDPM, YRPM, YHUM Dartition coefficients (fract I):

f _ DPM uppym (5 5)
DEM = DPM uppar + RPM uppar + HUM wioar '

f _ RPM URPM (5 6)
RPM = DPM uppy + RPM uppy + HUM urom ‘

foro = DPM upioDPM + RPM upioRPM + HUM ugro HUM 57
B1o = DPM uppy + RPM ugpa + HUM ugyn ‘
fHUM _ Ypprym vgumDPM + RPM uguy RPM + HUM uwguyHUM

DPM uppp + RPM ugpy + HUMugy v ( )
5.8

As all pool fractions will be estimated by dividing by the same term
(yopmuppy + RPM ugpy + HUM upya) we will define it in line 157.
Then we will define the equations to estimate the fraction of each pool in lines
159-162. Finally, at line 164 we will create a vector containing the fraction of

each active pool (fppum, drpu, fBIO, fHUM).

denominator = fractI[1] * u.dpm + fractI[2] *
u.rpm + fractI[3] * u.hum

fract.dpm = fractI[1] * u.dpm.dpm/denominator
fract.rpm = fractI[2] * u.rpm.rpm/denominator
fract.bio = (fractI[1] * u.bio.dpm + fractI[2] *
u.bio.rpm + fractI[3] * u.bio.hum)/denominator
fract.hum = (fractI[1] * u.hum.dpm + fractI[2] =
u.hum.rpm + fractI[3] * u.hum.hum)/denominator

fract.all = c(fract.dpm, fract.rpm, fract.bio,
fract.hum)
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The SOC stocks (t C/ha) of each pool will be estimated by multiplying the
fraction of each active pool by the total active SOC stock (t C/ha) (line 169).
We will define a vector containing all four active fractions (line 170), plus the
IOM fraction (line 171) (total 5 fractions); and a vector containing the SOC
stocks of all five pools (line 172).

# I0M

fract.all_stock=(fract.all*C.active)
fract.all=fract.all_stock/C.tot
fract.all=append(fract.all,I0OM/C.tot)
pools=fract.all*C.tot

In the last step of this function, we will define how to estimate C inputs following
equation 5.11 explained in section 5.4.1.2 (line 173); and we will define the
output of this function as a list containing the C inputs at equilibrium plus the
SOC stocks of all five pools of the RothC model (line 174).

Cin=(C.tot-pools[5])/denominator
list(pools,Cin)
}

From lines 180-217, we will set the working directory, and create a vector that
contains the results and extract the data from the already created spin up stack
(total SOC stocks, clay content, DPR/RPM ratio, Land use class)

# Set working directory
WD_FOLDER=("D:/TRAINING_MATERIALS")
# Vector must be an empty points wvector.

setwd (WD_FOLDER)
Vector<-read0OGR (
"INPUTS/TARGET _POINTS/target_points.shp")
#Vector2<-readOGR ("INPUTS/TARGET POINTS/
# Deutschland/target_points.shp")
# Stack_Set_1 contains the spatial variables
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setwd (WD_STACK)
Stack_Set_1<- stack("Stack_Set SPIN _UP_AOI.tif")

# Create A vector to save the results
C_INPUT_EQ<-Vector
# use this only for backup

# C_INPUT_EQ<-readOGR("OUTPUTS/1_SPIN_UP/
#  SPIN_UP_BSAS_27-03-2020_332376.shp")

# extract variables to points

Vector_variables<-extract(Stack_Set_1,Vector,df=TRUE)
# Extract the layers from the Vector

S0C_im<-Vector_variables[[2]] # first part of stack
clay_im<-Vector_variables[[3]] # second part of stack
DR_im<-Vector_variables[[40]]
LU_im<-Vector_variables[[41]]

# Define Years for Cinputs calculations

#years=seq(1/12,2000, by=1/12)

At line 221 , we will set the function called ” Roth_ C_equi_analy ” . This
function will be iterated over the target points, calculating the soil carbon pools
defined in the Roth C model. The inputs of this function are:

o C inputs (carbon inputs),

o Temp (temperature)

o Precip (precipitation)

o Evp (evapotranspiration)

o Cov2 (vegetation cover) soil.thick (soil thickness = 30 cm)
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o SOC (initial total SOC stocks)

o clay (clay content at 0-30cm)

« DR (the DPM/RPM ratio)

o barel (coefficient indicating whether the soil is covered or vegetated)
o LU (land use class)

The outputs of this function are two: 1) The five soil carbon pools (result[[1]]),
2) the carbon inputs of equilibrium (result[[2]]). The previous function
“fget_ equilibrium_ factions.RothC_ input” is inside this function is . The main
purpose of this function is to get the values of the input variables for the
“fget_ equilibrium__ factions.RothC__input” function.

# ROTH C MODEL FUNCTION .

#H##A#####R function set up starts###
Roth_C_equi_analy<-function(Cinputs,Temp,Precip,
Evp,Cov2,s0il.thick,S0C,clay,DR,barel,LU)

So , first, at line 228 we calculate a vector of three elements, called “FractI”.
This variable represents the carbon input fraction of DPM , RPM and HUM
(the yppam, YrPM, YHUM Dartition coefficients). Normally, if we do not have
organic amendments , the humic fraction is set to 0.

fractI=c((DR)/(DR+1),1-(DR)/(DR+1),0)

Then from lines 234 to 268 , the rate modifying factors are calculated : Paddy
Field coefficient (fPR), Temperature coefficient (fT), Soil Moisture coefficient
(fW_2), and Vegetation cover coefficient (fC).

# Paddy fields coefficent fPR = 0.4 4if
# the target point is class = 13 , else
# fPR=1 From Shirato and Yukozawa 2004
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fPR = (LU == 13) * 0.4 + (LU != 13) * 1

# Temperature effects per month
fT = fT.RothC(Temp[, 21)

# Moisture effects per month .

fwilfunc <- function(P, E, 30, 32.0213,
1, bare) {

M=P-E * pE
Acc.TSMD = NULL
for (i in 2:length(M)) {
B = ifelse(bare[i] == FALSE, 1, 1.8)
Max.TSMD = -(20 + 1.3 * pClay - 0.01 %
(pClay~2)) * (S.Thick/23) * (1/B)
Acc.TSMD[1] = ifelse(M[1] > 0, O,
M[11)
if (Acc.TSMD[i - 1] + M[i] < 0) {
Acc.TSMD[i] = Acc.TSMD[i - 1] +
M[i]
} else (Acc.TSMD[i] = 0)
if (Acc.TSMD[i] <= Max.TSMD) {
Acc.TSMD[i] = Max.TSMD
}

[o e

= ifelse(Acc.TSMD > 0.444 * Max.TSMD,
1, (0.2 + 0.8 * ((Max.TSMD - Acc.TSMD)/(Max.TSMD -
0.444 x Max.TSMD))))
b <- clamp(b, 0.2)
return(data.frame (b))

}
fW_2 <- fwilfunc( (Precip[, 21), (Evpl,
21), soil.thick, clay,
ig barel)$b

# Vegetation Cover effects
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£fC <- Cov2[, 2]

After that, the “xi” variable is calculated as the mean of the product of the four
modifying factors.

# Set the factors frame for Model calculations

xi=mean (fT*fW_2xfCxfPR)

Finally, we calculate the “result” variable using the “fget_ equilibrium__ fractions.\
RothC__input” function. We have already calculated or set the input variables
for that function. The output of the function ” Roth_ C_equi_analy ” is a
two element list containing both the soil carbon pools and the carbon input of
equilibrium.

# RUN THE MODEL

result=fget_equilibrium_fractions.RothC_input (xi=xi,
C.tot=80C,clay=clay, fractI)

# RUN THE MODEL FROM SOILR

#Model3_spin=RothCModel (t=years,

#  CO=c(DPMptf, RPMptf, BIOptf, HUMptf, FallIOM),

#  In=Cinputs,DR=DR, clay=clay,zi=z%. frame, pass=TRUE)
#Ct3_spin=getC(Model3_spin)

# Get the final pools of the time series

return(result)

3
#AR###### function set up ends#HH#HHHAHAHARAHHHH

After setting the ” Roth_ C_equi_analy ” function we can now iterate that
function over our target points (line 293) .
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# Iterates over the area of interest
#source("D:/projecte/Rlibs/dataframe_ops.R")

########TOr loop starts#H##HAH#H#ARHHHA#IH#I
for (i in 1:dim(Vector_variables) [1]) {

From lines 297-310 we will extract the climate and vegetation cover variables.
At line 297 we will create a vector called “Vect”. This variable is a vector of 53
elements containing all the variables we need to run the model over a specific
target point. At lines 299-300 we extract from the “Vect” variable the temper-
ature information for the ith target point. At lines 302-303 we extract from
the “Vect” variable the precipitation information for the ith target point. At
lines 305-306 we extract from the “Vect” variable the potential evapotranspira-
tion information for the ith target point. At lines 308-310 we extract from the
“Vect” variable the vegetation cover information for the ith target point.

# Extract the wvariables

Vect <- as.data.frame(Vector_variables[i,

D

Temp <- as.data.frame(t(Vect[4:15]))

Temp <- data.frame( 1:12, Temp [,
11)

Precip <- as.data.frame(t(Vect[16:27]))

Precip <- data.frame( 1:12, Precipl[,
11)

Evp <- as.data.frame(t(Vect[28:39]))

Evp <- data.frame( 1:12, Evpl[,
11)

Cov <- as.data.frame(t(Vect[42:53]))

Covl <- data.frame( Cov[, 11)

Cov2 <- data.frame( 1:12, Covl[,

11D
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To avoid calculus over points with null or odd inputs values, we will introduce
and “if” statement at line 314:

#Avoid calculus over Na values

if (any(is.na(Evp[,2])) | any(is.na(Temp[,2]1)) |
any(is.na(SOC_im[i])) | any(is.na(clay_im[i])) |
any(is.na(Precip[,2])) | any(is.na(Cov2[,2])) |
any(is.na(Cov1i[,1])) | any(is.na(DR_im[i])) |
(S0C_im[i]1<0) | (clay_im[i]<0) ) {C_INPUT_EQ[i,2]<-0
Yelse{

From line 321 to line 327 we will set the environmental variables for the ith
target point.

# Set the wvariables from the images

soil.thick = 30 #So%l thickness (org. layer topsoil)
S0C <- SOC_im[i] #Sotl organic carbon in Mg/ha
clay <- clay_im[i] #Percent clay 7

DR <- DR_im[i] # DPM/RPM (decomposable vs

# resistant plant material.)

barel <- (Covl > 0.8) # If surface is bare or vegetated
LU <- LU_im[i]

At line 330 we will calculate the inert organic carbon with the Falloon method.

#I0OM using Falloon method
FallIOM=0.049%S0C"(1.139)

From line 339 to line 342 we will define the maximum and minimum values for
the confidence interval for the variables SOC and Clay, in order to estimate the
uncertainties.

# If you use a SOC uncertainty layer
# turn on this. First open the layer
# SOC_UNC (it must have the same extent
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# and resolution of the SOC layer)

# SOC_min<-(1-(SOC_UNC/100))*S0C
# SOC_maz<-(1+(SOC_UNC/100))*S0OC

# Define SOC min, maxz Clay min and mazx.
S0C_min <- SOC * 0.8

S0C_max <- S0C * 1.2

clay_min <- clay * 0.9

clay_max <- clay * 1.1

At line 358 we will calculate the “result” object by using the “Roth_ C__equi_ analy”
function. The “result” object is a list of two elements, the first one is a vector
of five elements representing the five soil carbon pools, the second element is
the carbon input of equilibrium. Then, at line 364 and 370 we will apply again
the “Roth_ C_equi_analy” function for the minimum and maximum inputs
values, to get the uncertainties.

3

C input equilibrium. (Ceq) + Ceq MIN
+ Ceq_MAX are quantified here

23

fb<-Roth_C(Cinputs=b,years=years,DPMptf=0,
RPMptf=0, BIOptf=0, HUMptf=0,

FallIOM=FallIOM, Temp=Temp,Precip=Precip, Evp=Evp,
Cov=Cov, Covl=Covl,Cov2=Cov2,s0tl.thick=soil.thick,
S0C=S0C, clay=clay,DR=DR,barel=barel, LU=LU)
Fo_t<=fo[1]+fb[2]+fb[3]+fb[4]+fb[5]
pool.equi.goodi[i,]=fb

m<=(fb_t-FallIOM)/(b)

HOW K R R R R W

23

Ceq<-(SOC-FallIOM)/m
# Cin.equi$spinup [i]=Ceq;

result = Roth_C_equi_analy(Cinputs = b, Temp = Temp,
Precip = Precip, Evp = Evp, Cov2 = Cov2,
soil.thick, SOC, clay, DR, barel, LU)

Ceq = result[[2]]
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pool.equi.mean = result[[1]]

# UNCERTAINTIES C input equilibrium
# (MINIMUM)

result = Roth_C_equi_analy( b, Temp,
Precip, Evp, Cov2,
soil.thick, SOC_min, clay_min, DR, barel,
LU)

Ceq_MIN = result[[2]]
pool.equi.min = result[[1]]

From line 374 to line 430 we will save all the results in the vector called
“C_INPUT_EQ”.

# UNCERTAINTIES C input equilibrium (MAXIMUM)

result=Roth_C_equi_analy( b, Temp, Precip,
Evp, Cov2,s0il.thick,S0C_max,clay_max,DR,barel,LU)

Ceq_MAX = result[[2]]

pool.equi.max = result[[1]]

# SOC POOLS AFTER 500 YEARS RUN WITH C INPUT EQUILIBRIUM
good_landuse_classes=c(2,12,13,4,3,5,6,8)
if (LU %in% good_landuse_classes)q{

C_INPUT_EQ[i,2]<-S0C
C_INPUT_EQ[i,3]<-Ceq
C_INPUT_EQ[i,4]<-sum(pool.equi.mean)
C_INPUT_EQ[i,5]<-pool.equi.mean[1] #DPM
C_INPUT_EQ[i,6]<-pool.equi.mean[2] #RPM
C_INPUT_EQ[i,7]<-pool.equi.mean[3] #BIO
C_INPUT_EQ[i,8]<-pool.equi.mean[4] #HUM
C_INPUT_EQ[i,9]<-pool.equi.mean[5] #IOM
C_INPUT_EQ[i,10]<-Ceq_MIN
C_INPUT_EQ[i,11]<-Ceq MAX
C_INPUT_EQ[i,12]<-sum(pool.equi.min)
C_INPUT_EQ[i,13]<-pool.equi.min[1] #DPM
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C_INPUT_EQ[i,14]<-pool.
C_INPUT_EQ[i,15]<-pool.
C_INPUT_EQ[i,16]1<-pool.
C_INPUT_EQ[i,17]<-pool.

equi
equi
equi
equi

.min[2]
.min[3]
.min[4]
.min[5]

#RPM
#BIO
#HUM
#I0M

C_INPUT_EQ[i, 18] <-sum(pool.equi.max)

C_INPUT_EQ[i,19]<-pool.
C_INPUT_EQ[i,20]<-pool.
C_INPUT_EQ[i,21]<-pool.
C_INPUT_EQ[i,22]<-pool.
C_INPUT_EQ[i,23]<-pool.

}else {

}

C_INPUT_EQ[i,2]<-S0C
C_INPUT_EQ[i,3]<-Ceq
C_INPUT_EQ[i,4]<-0
C_INPUT_EQ[i,5]<-0
C_INPUT_EQ[i,6]<-0
C_INPUT_EQ[i,7]<-0
C_INPUT_EQ[i,8]<-0
C_INPUT_EQ[i,9]<-0
C_INPUT_EQ[i,10]<-0
C_INPUT_EQ[i,11]1<-0
C_INPUT_EQ[i,12]1<-0
C_INPUT_EQ[i,13]<-0
C_INPUT_EQ[i,14]<-0
C_INPUT_EQ[i,15]<-0
C_INPUT_EQ[i,16]<-0
C_INPUT_EQ[i,17]1<-0
C_INPUT_EQ[i,18]<-0
C_INPUT_EQ[i,191<-0
C_INPUT_EQ[i,20]<-0
C_INPUT_EQ[i,21]<-0
C_INPUT_EQ[i,22]<-0
C_INPUT_EQ[i,23]<-0

print(c(i,S0C,Ceq))

equi
equi
equi
equi
equi

.max[1]
.max [2]
.max [3]
.max [4]
.max [5]

#DPM
#RPM
#BIO
#HUM
#I0M
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} # NA problems

}
RE##ARHHARRRAARLOr Joop endsHH#HARHAARU#HHANN

From line 434 to line 455 we will change the names of the columns of the vector
files “C_INPUT _EQ” to the variables we want to obtain.

#rename the columns

colnames (C_INPUT_EQ@data) [2]="S0OC_FAQ"

colnames (C_INPUT_EQ@data) [3]="Cinput_EQ"
colnames (C_INPUT_EQ@data) [4]="SOC_pedotransfer"
colnames (C_INPUT_EQ@data) [5]="DPM_pedotransfer"
colnames (C_INPUT_EQ@data) [6]="RPM_pedotransfer"
colnames (C_INPUT_EQ@data) [7]="BIO_pedotransfer"
colnames (C_INPUT_EQ@data) [8]="HUM_pedotransfer"
colnames (C_INPUT_EQ@data) [9]="I0M_pedotransfer"
colnames (C_INPUT_EQ@data) [10]="CIneq min"
colnames (C_INPUT_EQ@data) [11]="CIneq_max"
colnames (C_INPUT_EQ@data) [12]="SOC_min"
colnames (C_INPUT_EQ@data) [13]="DPM min"
colnames (C_INPUT_EQ@data) [14]="RPM_min"
colnames (C_INPUT_EQ@data) [15]="BI0 _min"
colnames (C_INPUT_EQ@data) [16]="HUM min"
colnames (C_INPUT_EQ@data) [17]="I0M min"
colnames (C_INPUT_EQ@data) [18]="S0C _max"
colnames (C_INPUT_EQ@data) [19]="DPM_max"
colnames (C_INPUT_EQ@data) [20]="RPM_max"
colnames(C_INPUT EQ@data) [21]="BI0 max"
colnames (C_INPUT_EQ@data) [22]="HUM max"
colnames (C_INPUT_EQ@data) [23]="I0M max"

Finally, at line 459 we will set the working directory where we are going to
savethe output file, and at line 460 we save the vector to an ESRI shapetfile file.

# SAVE the Points (shapefile)
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setwd ("C:/TRAINING_MATERIALS/OUTPUTS/1_SPIN_UP")
writeOGR(C_INPUT_EQ, ".", "SPIN_UP_Country_AOI",
driver = "ESRI Shapefile", overwrite = TRUE)

10.3 Warm up phase

10.3.1 Script Number 14. “ROTH_C_WARM_UP_UNC_v4_
parallel.R”No Land use change

Script number 14 implements the second modeling phase (“Warm up” phase).
In this script we will load the stack of different layers generated in script number
11 and the target points. We also will load the output vector of the phase 1
(spin up), the climate layers from script number 2, the NPP layer from script
number 5, and the land use layer stack from script number 9. This script runs
the Roth C model for 18 years (2000-2018) with the possibility to be modified
to 20 years if data is available (2000-2020). The final outputs are SOC stocks of
the five C pools of the RothC model (DPM, RPM, BIO, HUM and IOM), and
the total SOC stock. This information will be saved to a shapefile vector.

RothC warm-up.

Input Output

Point vector with the locations to run the model WARM__UP.shp (contains
(from QGIS procedure 1): the output of the model
(empty vector, should come from the SOCmap FAO, from 2000 to 2018)

one point per pixel)
C_INPUT__EQ.shp (from script number 13)

Stack layer (from script number 12):

NPP_MIAMI MEAN_81-00_ [country_ code].tif
NPP_MIAMI_MEAN_ 81-00_ MIN[country_ code].tif
NPP_MIAMI MEAN_ 81-00 MAX]country code].tif
TerraClimate layers (from script number 2):

Prec Stack 216 01-18 TC.tif
Prec Stack 216 01-18 TC.tif
Prec Stack 216 01-18 TC.tif
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This script runs the spatial RothC model for the warm-up period (from 2001
to 2018). We will provide the script the target points (empty vector layer from
Qgis procedure number 1), the Stack layer (from script number 11), the three
NPP layers (from script number 5) and the three climate layers generated in
script number 2. The output vector layer from script number 13 (Spin up phase)
will also be needed.

# ROTH C phase 3: WARM UP

#

# MSc Ing Agr Luciano E Di Paolo

# Dr Ing Agr Guillermo E Peralta
i

#S0ilR from Sierra, C.A., M. Mueller, S.E. Trumbore (2012).
#Models of soil organic matter decomposition: the SoilR package,
#version 1.0 Geoscientific Model Development, 5(4),

#1045--1060.

#http://www. geosci-model-dev.net/5/1045/2012/gmd-5-1045-2012. html.
RUHBRRUHARBHARRHBRRUHBRBHBRRUHBRRHHHRH

#Empty global environment
rm(list=1s())

#Load packages
library(SoilR)
library(raster)
library(rgdal)
library(soilassessment)
library(foreach)
library(doParallel)

#Define a path to the working directory
wd <-"C:/TRAINING_MATERIALS"

#Set the working directory

setwd (wd)

#0Open empty wvector
Vector<-read0GR(
"INPUTS/TARGET_POINTS/target_points_sub.shp")
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#0Open Warm Up Stack
Stack_Set_warmup<- stack(
"INPUTS/STACK/Stack_Set_WARM_UP_AOI.tif")

# Open Result from the spin up phase

#A vector with 5 columns, one for each pool

Spin_up<-read0GR(
"OUTPUTS/1_SPIN_UP/SPIN_UP_Country_AOI.shp")

# Open Precipitation , temperature, and Evapotranspiration file
# TERRA CLIMATE LAYERS .
#Use the layers downloaded from GEE and a scaling factors of 0.1
setwd (wd)
PREC<-stack(
"INPUTS/TERRA_CLIMATE/Precipitation_2001-2018.tif")
TEMP<-stack(
"INPUTS/TERRA_CLIMATE/AverageTemperature_2001-2018.tif")*0.1
PET<-stack(
"INPUTS/TERRA_CLIMATE/PET_2001-2018.tif")*0.1

#Also check that the number of layers of DR
# and Land use are the same as the years of climate data.

#0Open Mean NPP MIAMI 1981 - 2000
NPP<-raster ("INPUTS/NPP/NPP_MIAMI MEAN 81-00_AOI.tif")

NPP_MEAN_MIN<-raster(
"INPUTS/NPP/NPP_MIAMI_ MEAN_81-00_AOI MIN.tif")

NPP_MEAN_MAX<-raster (
"INPUTS/NPP/NPP_MIAMI MEAN 81-00 AOI MAX.tif")

#0pen the land use layer (year 2000).
LU_AOI<-raster(
"INPUTS/LAND_USE/ESA_Land_Cover_12clases_FAO_AOI.tif")
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NPP<-resample (NPP,LU_AOI, 'bilinear')
NPP_MEAN_MIN<-resample (NPP_MEAN MIN,LU_AOI, 'bilinear')
NPP_MEAN_MAX<-resample (NPP_MEAN_MAX,LU_AOI, 'bilinear')

#Apply NPP coefficients

NPP<-(LU_AOI==2 | LU_AOI==12 | LU_AQ0I==13)*NPP*0.53+
(LU_AOI==4)*NPP*0.88 + (LU_AQ0I==3 | LU_AQI==5 |

LU_AOI==6 | LU_AOI==8)*NPPx*0.72

NPP_MEAN_MIN<-(LU_AQOI==2 | LU_AOI==12 | LU_AOI==13)x*
NPP_MEAN_MIN*0.53+ (LU_AOI==4)+*NPP_MEAN_MIN*0.88 +
(LU_ADI==3 | LU_AOI==5 | LU_AOI==6 | LU_AQI==8)=*
NPP_MEAN_MIN*0.72

NPP_MEAN_MAX<-(LU_AOI==2 | LU_AOI==12 | LU_AOI==13)=*
NPP_MEAN_MAXx*0.53+ (LU_AOI==4)*NPP_MEAN_MAX*0.88 +
(LU_ADI==3 | LU_AOI==5 | LU_AOI==6 | LU_AQI==8)=*
NPP_MEAN_MAX*0.72

As we did in the “spin up” script, we will extract all variables to the target points
and create an empty variable to save the results of the “warm up” process.

# Extract variables to points
Vector_points <- extract(Stack_Set_warmup,

Vector, TRUE)

Vector_points <- extract(TEMP, Vector_points,
TRUE)

Vector_points <- extract(PREC, Vector_points,
TRUE)

Vector_points <- extract(PET, Vector_points,
TRUE)

Vector_points <- extract(NPP, Vector_points,
TRUE)

Vector_points <- extract(NPP_MEAN_MIN, Vector_points,
TRUE)

Vector_points <- extract(NPP_MEAN_MAX, Vector_points,
TRUE)

WARM_UP <- Vector
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Now, we will set some variables in order to run the model for the number of years
according to those set for the climate layers. In this example we are running 18
years, but it can be run for less or more years.

# Warm Up number of years stmulation
yearsSimulation <- dim(TEMP) [3]/12

clim_layers <- yearsSimulation * 12

nppBand <- nlayers(Stack_Set_warmup) + clim_layers *
3+ 2

firstClimLayer <- nlayers(Stack_Set_warmup) +
2

nppBand_min <- nppBand + 1
nppBand_max <- nppBand + 2

nDR_beg <- (16 + yearsSimulation)
nDR_end <- nDR_beg + (yearsSimulation - 1)

# land use change simulation (optional,
# if data is available) nLU beg<-16
# nLU_end<-nLU_beg+(yearsSimulation—-1)

# Extract the layers from the Vector

# SOC_im<-Vector_points[[2]]

3

clay_im<-Vector_points[[3]]

LU_im<-Vector_points[[16]] with land
use change simulation
LU_im<-Vector_points[[16:34]]
NPP_im<-Vector_points/[[nppBand]]

H oW W W

#*:

NPP_4m_MIN<-Vector_points[[nppBand_min]]
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# NPP_im_MAX<-Vector_points[[nppBand_maz]]

We need to define the years of the “warm up” phase. Remember that we will
run one year at a time with different pools of data for each year.

# Define Year
year=seq(1/12,1,by=1/12)

We will need to set the RothC function to be ready to be used in the “Warm
Up” process.

###########E function set up

HARURAHURHAY start sSHARBARURABRRHBRH

Roth_C <- function(Cinputs, years, DPMptf,
RPMptf, BIOptf, HUMptf, FallIOM, Temp,
Precip, Evp, Cov, Covl, Cov2, soil.thick,
sS0C, clay, DR, barel, LU) S0OC,
S0C, clay, DR, barel, LU) clay,
sS0C, clay, DR, barel, LU) DR,
S0C, clay, DR, barel, LU) barel,
s0C, clay, DR, barel, LU) LU)

# Paddy fields coefficent fPR = 0.4
# if the target point is class = 13
# , else fPR=1 From Shirato and

# Yukozawa 2004

fPR = (LU == 13) * 0.4 + (LU != 13) *
1

# Temperature effects per month

fT = fT.RothC(Templ[, 2])

# Moisture effects per month . If
# using evapotranspiration pE=1
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fwlfunc <- function(P, E, 30,
32.0213, 1, bare) {

M=P-E % pE
Acc.TSMD = NULL
for (i in 2:length(M)) {
B = ifelse(bare[i] == FALSE,
1, 1.8)
Max.TSMD = -(20 + 1.3 * pClay -
0.01 * (pClay~2)) * (S.Thick/23) *

(1/B)
Acc.TSMD[1] = ifelse(M[1] > O,
0, M[11)
if (Acc.TSMD[i - 1] + M[i] <
0) {
Acc.TSMD[i] = Acc.TSMD[i -
11 + M[i]

} else (Acc.TSMD[i] = 0)

if (Acc.TSMD[i] <= Max.TSMD) {
Acc.TSMD[i] = Max.TSMD

}

[

= ifelse(Acc.TSMD > 0.444 * Max.TSMD,
1, (0.2 + 0.8 * ((Max.TSMD -
Acc.TSMD)/(Max.TSMD - 0.444 *
Max.TSMD))))
b <- clamp(b, 0.2)
return(data.frame(b))

}
fW_2 <- fwifunc( (Precipl, 21), (Evpl,
21), soil.thick, clay,
1, barel) $b

# Vegetation Cover effects C1: No
# till Agriculture, C2:

# Conventional Agriculture, C3:

# Grasslands and Forests, C4
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# bareland and Urban
fC <- Cov2[, 2]

# Set the factors frame for Model
# calculations

xi.frame = data.frame(years, rep(fT *
fw_2 *x £fC * fPR, length.out = length(years)))

RUN THE MODEL from SotlR Loads

the model %if pass=TRUE also

tnvalid results are computed.
Model3_spin=RothCModel (t=years,CO=c (DPMptf,
RPMptf, BIOptf, HUMptf,
FallIOM),In=Cinputs,DR=DR, clay=clay,zi=c. frame,
pass=TRUE) Calculates stocks for

each pool per month

Ct3_spin=getC(Model3_spin)

H O OB R R R HRHR

# RUN THE MODEL from sotlassesment
Model3_spin = carbonTurnover(tt = years,
CO = c(DPMptf, RPMptf, BIOptf, HUMptf,
FallIOM), In = Cinputs, Dr = DR,
clay = clay, effcts = xi.frame, "euler")

Ct3_spin = Model3_spin[, 2:6]

# Get the final pools of the time
# series

poolSize3_spin = as.numeric(tail(Ct3_spin,

1))

return(poolSize3_spin)
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R##AARHHARH#AR funtion set up
HARBHHRHHHHBRE endsHERHHHHHHY

Then, we will apply the function for each target point 18/20 times according
to the number of years of the “warm up” process. We will also create empty
variables called “Cinputs”,“Cinputs_min”, “Cinputs_ max”,“NPP_M",

# Iterates over the area of interest and over 18 years
Cinputs<-c()

Cinputs_min<-c()

Cinputs_max<-c()

NPP_M_MIN<-c()

NPP_M_MAX<-c()

NPP_M<-c()

At this step, the iteration over the number of years of the warm up process is
started. A parallel script is used that allows simultaneous use of multiple cores:

n_cores <- detectCores() - 1
n_cores

# Create a Cluster

parallelCluster <- makeCluster(n_cores, "SOCK",
FALSE)

setDefaultCluster(parallelCluster)

registerDoParallel(parallelCluster)

#listOfRows <- split(Vector_variables, sample(1:4,
# nrow(Vector_vartables), replace=T))
WARM_UP<-Vector

blocks<-round(length(Vector_points)/n_cores)

listOfRows<- split(Vector_points,

(seq(nrow(Vector_points))-1) %/% blocks)
1ist0fCin<- split(WARM_UP, (seq(nrow(WARM_UP))-1) %/% blocks)
listofSp<- split(Spin_up, (seq(nrow(Spin_up))-1) %/% blocks)
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listOfRows<-1istOfRows[1:n_cores]
1list0fCin<-1ist0fCin[1:n_cores]
listofSp<-listofSp[l:n_cores]

# Before continuing check that the lists have

# the same number of elements than the cores.

x<-1ist O

results<-c()

system. time ({

results <- foreach(j=1:length(listOfRows), FALSE,
rbind, c('raster', 'rgdal’,

"SoilR","soilassessment")) Y%dopar’ {

iteration<-function(Vector_variables2,WARM_UP2,Spin_up2)
{

Cinputs<-c()

Cinputs_min<-c()

Cinputs_max<-c()

NPP_M_MIN<-c()

NPP_M_MAX<-c()

NPP_M<-c ()

for (i in 1:nrow(Vector_variables2@data))

{

# Extract the variables 1
gt<-firstClimLayer
gp<-gt+clim_layers
gevp<-gp+clim_layers

for (w in 1:(dim(TEMP) [3]1/12)) {

print(c("year:",w))
# FExtract the wariables

Vect<-as.data.frame(Vector_variables2@datal[i,])

Temp<-as.data.frame(t(Vect[gt: (gt+11)]))
Temp<-data.frame( 1:12, Temp[,1])
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Precip<-as.data.frame(t(Vect[gp: (gp+11)1))
Precip<-data.frame( 1:12, Precip[,1])

Evp<-as.data.frame(t(Vect [gevp: (gevp+11)1))
Evp<-data.frame( 1:12, Evp[,1]1)

Cov<-as.data.frame(t(Vect[4:15]))

Covi<-data.frame( Covl[,11)

Cov2<-data.frame( 1:12, Covl[,1])

DR_im<-as.data.frame(t(Vect [nDR_beg:nDR_end]))

# DR one per year according to LU

DR_im<-data.frame ( DR_im[,1])

gt<-gt+12

gp<-gp+12

gevp<-gevp+12

SO0C_im<-Vector_variables2@datal[i,2]]

clay_im<-Vector_variables2@datal[[i,3]]

LU_im<-Vector_variables2@datal[[i,16]]

NPP_im<-Vector_variables2@datal[[i,nppBand]]

NPP_im_MIN<-Vector_variables2@datal[i,nppBand_min]]

NPP_im_MAX<-Vector_variables2@datal[i,nppBand_max]]
This line will avoid running the model over points with unreliable values:
#Avoid calculus over Na wvalues

if (any(is.na(Evp[,2])) | any(is.na(Temp[,2])) |
any(is.na(S0C_im)) | any(is.na(clay_im)) |

any(is.na(Spin_up@data[i,3])) | any(is.na(NPP_im)) |
any(is.na(Precip[,2])) | any(is.na(Cov2[,2])) |
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any(is.na(Covi[,1])) | any(is.na(DR_im[,1])) |
(80C_im<0) | (clay_im<0) |
(Spin_up@datali,3]<=0) ) {WARM_UP2[i,2]<-0}else{

# Get the wariables from the wvector

soil.thick=30 #Sotl thickness (org. layer topsoil (cm))
S0C<-S0C_im #Soil organic carbon in t/ha
clay<-clay_im #Percent clay 7

DR<-DR_im[w,1] # DPM/RPM (decomposable wvs

#resistant plant material)
barel<-(Cov1>0.8) # If the surface is bare or vegetated
NPP_81_00<-NPP_im
NPP_81_00_MIN<-NPP_im_ MIN
NPP_81_00_MAX<-NPP_im_MAX

We will calculate the NPP MIAMI value for each point and each year , and ad-
just the carbon inputs with the NPP values. The first Cinput value corresponds
to the Cinput of equilibrium calculated in the Spin Up phase (Spin_ upli,3]).

# PHASE 2 : WARM UP . wyears (w)

# Cinputs

T <- mean(Temp[, 2])

P <- sum(Precip[, 21)

NPP_M[w] <- NPPmodel(P, T, "miami") * (1/100) =*
0.5

NPP_M[w] <- (LU_im == 2 | LU_im == 12 | LU_im ==
13) * NPP_M[w] * 0.53 + (LU_im == 4) *
NPP_M[w] * 0.88 + (LU_im == 3 | LU_im ==
5 | LU_im == 6 | LU_im == 8) * NPP_M[w] *
0.72

if (w == 1) {
Cinputs[w] <- (Spin_up2@datali, 3]/NPP_81_00) *
NPP_M[w]
} else {
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Cinputs[w] <- (Cinputs[[w - 1]]1/NPP_M[w -
11) * NPP_M[w]

Then we will repeat the same code but this time changing the environmental
variables to match the maximum and minimum values.

# Cinputs MIN

Tmin <- mean(Temp[, 2] * 1.02)

Pmin <- sum(Precip[, 2] * 0.95)

NPP_M_MIN[w] <- NPPmodel(Pmin, Tmin, "miami") =*
(1/100) * 0.5

NPP_M _MIN[w] <- (LU_im == 2 | LU im == 12 |
LU im == 13) * NPP_M MIN[w] * 0.53 +
(LU_im == 4) % NPP_M _MIN[w] * 0.88 +
(LU _im == 3 | LU_im == 5 | LU_im == 6 |

LU_im == 8) * NPP_M_MIN[w] * 0.72

if (w == 1) {
Cinputs_min[w] <- (Spin_up2@datal[i, 10]/NPP_81_00) *
NPP_M_MIN [w]
} else {
Cinputs_min[w] <- (Cinputs_min[[w - 1]]/NPP_M_MIN[w -
1]) * NPP_M_MIN [w]

# Cinputs MAX

Tmax <- mean(Temp[, 2] * 0.98)
Pmax <- sum(Precip[, 2] * 1.05)
NPP_M_MAX[w] <- NPPmodel(Pmax, Tmax, "miami") =*
(1/100) * 0.5
NPP_M_MAX[w] <- (LU_im == 2 | LU_im == 12 |
LU im == 13) * NPP_M_MAX[w] * 0.53 +
(LU_im == 4) * NPP_M_MAX[w] * 0.88 +
(LU_im == 3 | LU_im == 5 | LU_im == 6 |
LU_im == 8) * NPP_M MAX[w] * 0.72
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if (w==1) {
Cinputs_max[w] <- (Spin_up2@datali, 11]/NPP_81_00) *
NPP_M_MAX [w]
} else {
Cinputs_max[w] <- (Cinputs_max[[w - 1]]/NPP_M_MAX[w -
1]) * NPP_M_MAX[w]

We will then run the RothC function for each point and each year. The first
year we will use the equilibrium Cinputs, and the carbon pools obtained from
the Spin Up phase. Then we will use the yearly adjusted Cinputs (using NPP)
and the pools calculated from the previous iteration.

# Run the model for 2001-2018

if (w==1) {
f_wp<-Roth_C( Cinputs[1], years,
Spin_up2@datali,5],
Spin_up2@datali,6],
Spin_up2@datali,7],
Spin_up2@datali,8],
Spin_up2@datali,9],
Temp, Precip, Evp,
Cov, Covil, Cov2,
soil.thick, SOC,
clay, DR, barel,
LU_im)
} else {
f_wp<-Roth_C( Cinputs[w], years,
f_wpl1], f_wpl2],
f_wpl3], f_wpl4],
f_wpl5], Temp,
Precip, Evp, Cov,
Covil, Cov2,
soil.thick, SOC,
clay, DR, barel,
LU_im)
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f_wp_t<-f_wp[1]+f_wp[2]+f_wp[3]+f_wp[4]+f_wp[5]

# Run the model for minimum values

if (w==1) {
f_wp_min<-Roth_C( Cinputs_min[1],
years, Spin_up2@datal[i,13],

Spin_up2@datali,14],
Spin_up2@datali,15],
Spin_up2@datali,16],

Spin_up2@datali,17], Temp*1.02,
Precip*0.95, Evp, Cov, Covl,
Cov2, soil.thick, S0C*0.8,
clay*0.9, DR, barel, LU_im)
} else {
f_wp_min<-Roth_C( Cinputs_min[w],
years, f_wp_min[1],
f_wp_min[2], f_wp_min[3],
f_wp_min[4], f_wp_min[5],
Temp*1.02, Precip*0.95, Evp,
Cov, Covli, Cov2,
soil.thick, S0C*0.8,
clay*0.9, DR, barel, LU_im)
¥

f_wp_t_min<-f_wp_min[1]+f_wp_min[2]+f_wp_min[3]+
f_wp_min[4]+f_wp_min[5]

# Run the model for mazimum values

if (w==1) {
f_wp_max<-Roth_C( Cinputs_max[1],
years, Spin_up2@datali,19],

Spin_up2@datali,20],
Spin_up2@datali,21],
Spin_up2@datali,22],
Spin_up2@datali,23], Tempx*0.98,
Precip*1.05, Evp, Cov, Covl,
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Cov2, soil.thick, SO0C*1.2,
clay*1.1, DR, barel, LU_im)
} else {
f_wp_max<-Roth_C( Cinputs_max [w],
years, f_wp_max[1],
f_wp_max[2], f_wp_max[3],
f_wp_max[4], f_wp_max[5],
Temp*0.98, Precip*1.05, Evp,
Cov, Covl, Cov2, soil.thick,
SO0C*x1.2, clayx*1.1, DR,
barel, LU_im)
}

f_wp_t_max<-f_wp_max[1]+f_wp_max[2]+f_wp_max[3]+
f_wp_max [4]+f_wp_max[5]

#print (w)
#print (c(4,S0C, Spin_up[i,3],NPP_81_00,

# Cinputs[w],f wp_t))
##print (c (NPP_M[w] ,Cinputs[w]))

We will save the results from the iteration of the last year to the empty vector.
We will also calculate an average of all the Cinputs used in the warm up phase
and save it. We will need this “CinputFORWARD?” variable in the next phase
(Forward) and script (script number 15).
if (is.na(mean(Cinputs))){CinputFORWARD<-NA} else {
CinputFORWARD<-mean (Cinputs)
CinputFORWARD _min<-mean(Cinputs_min)

CinputFORWARD max<-mean(Cinputs_max)

WARM_UP2[1i,2]<-s0C
WARM_UP2[i,3]<-Cinputs[18]
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x<- iteration(

WARM_UP2[i,4]<-f_wp_t

WARM_UP2[i,5]<-f_wpl[1]
WARM_UP2[i,6]<-f_wpl[2]
WARM_UP2[i,7]<-f_wp[3]
WARM_UP2[i,8]<-f_wp[4]
WARM_UP2[i,9]<-f_wp[5]

WARM_UP2[i,10]<-CinputFORWARD

WARM_UP2[i,11]<-f_wp_t_min
WARM_UP2[i,12]<-f_wp_min[1]
WARM_UP2[i,13]<-f_wp_min[2]
WARM_UP2[i,14]<-f_wp_min[3]
WARM_UP2[i,15]<-f_wp_min[4]
WARM_UP2[i,16]<~f_wp_min[5]
WARM_UP2[i,17]<-f_wp_t_max
WARM_UP2([i,18]<-f_wp_max[1]
WARM_UP2[i,19]<-f_wp_max[2]
WARM_UP2[i,20]<-f_wp_max [3]
WARM_UP2[i,21]<~f_wp_max [4]
WARM_UP2[i,22]<-f_wp_max [5]

WARM_UP2[1,23]<-CinputFORWARD min
WARM_UP2[1i,24]<-CinputFORWARD_max

Cinputs<-c()
Cinputs_min<-c()
Cinputs_max<-c()

return(WARM_UP2) }

list0fCin[[j1],

1list0fRows[[j1],

listofSpl[jl11)
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b
# Stop the clusters
stopCluster (parallelCluster)

WARM_UP<-results

RE#ARRHHARB#AAR#LOr 1oop ends#HHHAR#HARU#HANH

We will then run the last code block to change the names to the fields of the
vector’s table.

colnames (WARM_UP@data) [2]="S0OC_FAQ"
colnames (WARM_UP@data) [3]="Cin_tO"
colnames (WARM_UP@data) [4]="S0OC_tO"
colnames (WARM_UP@data) [5]="DPM_w_up"
colnames (WARM_UP@data) [6]="RPM_w_up"
colnames (WARM_UP@data) [7]="BIO_w_up"
colnames (WARM_UP@data) [8]="HUM_w_up"
colnames (WARM_UPQ@data) [9]="I0M_w_up"
colnames (WARM_UP@data) [10]="Cin_mean"
colnames (WARM_UP@data) [11]="S0C_tOmin"
colnames (WARM_UP@data) [12]="DPM_w_min"
colnames (WARM_UP@data) [13]="RPM_w_min"
colnames (WARM_UP@data) [14]="BI0_w_min"
colnames (WARM_UP@data) [15]="HUM w_min"
colnames (WARM_UP@data) [16]="I0M_w_min"
colnames (WARM_UP@data) [17]="S0C_tOmax"
colnames (WARM_UP@data) [18]="DPM_w_max"
colnames (WARM_UP@data) [19]="RPM_w_max"
colnames (WARM_UP@data) [20]="BI0 w_max"
colnames (WARM_UP@data) [21]="HUM w_max"
colnames (WARM_UP@data) [22]="I0M_w_max"
colnames (WARM_UP@data) [23]="Cin_min"
colnames (WARM_UP@data) [24]="Cin_max"

Finally, we will have to save the output vector and the name of that vector.
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# SAVE the Points (shapefile)

setwd("C:/TRAINING_MATERIALS/OUTPUTS/2_WARM_UP")

writeOGR(WARM_UP,".", "WARM_UP_Country_AOI",
driver="ESRI Shapefile", overwrite=TRUE)

10.4 Forward phase

10.4.1 Script Number 15"ROTH_C_forward_UNC_v4__ par-
allel.R”

Script number 15 implements the third modeling phase (“forward” phase). We
will need to load the stack of layers generated in script number 12 and the target
points. We will also need to load the output vector of the phase 2 (“warm up”)
as an input. This script will run the Roth C model for 20 years, projecting SOC
stocks for the 2020-2040 period under different management scenarios (“BAU”
scenario and the three SSM scenarios: low, medium and high input carbon).
C inputs will vary according to the SSM scenarios. Standard default values of
5-10-20 percent increase in C inputs are defined for the three SSM scenarios
(low, medium, high, respectively). Users can modify these inputs based on local
expertise and available information, and generate alternative maps using this
data. The final outputs will be the final SOC stocks after 20 years for the
different scenarios. This information will be saved to a shapefile.

RothC froward modeling.

Input Output

Point vector with the locations FORWARD_ BAU_3E 20YEARS_[code country].shp
to run the model (empty vector, (contains the output of model for BAU,

should come from the SOCmap FAO, and three future scenarios based

one point per pixel). (from QGIS procedure 1) on Carbon input improvement)
WARM_ UP.shp (script number 14)

Stack layer (from script number 12):
Stack_Set_ FORWARD__[Country__code].tif

The ‘Forward’ modeling phase requires (as in the previous phases) the target
points (generated from the Qgis procedure number 1), the stack of layers (from
script number 12), and the output vector from the previous phase (warm up).
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We will need to load the R packages, the target points, the stack for this phase
(Stack__Set_ forward__[country__code].tif), and vector from the ‘Warm up’ phase
(WARM__UP.shp).

rm(list = 1s())

library(SoilR)

library(raster)

library(rgdal)

library(soilassessment)

WD_OUT <- ("C:/TRAINING_MATERIALS/OUTPUTS/3_FOWARD")

working_dir <- setwd("C:/TRAINING_MATERIALS")

# OPEN THE VECTOR OF POINTS

Vector <- readOGR("INPUTS/TARGET_POINTS/target_points_sub.shp")

# OPEN THE RESULT VECTOR FROM THE WARM
# UP PROCESS

WARM_UP <- readOGR("OUTPUTS/2_WARM_UP/WARM_UP_Country_AQOI.shp")

# OPEN THE STACK WITH THE VARIABLES FOR
# THE FORWARD PROCESS

Stack_Set_1 <- stack("INPUTS/STACK/Stack_Set FORWARD.tif")

We can set the SSM carbon input increment of each land use class.

# Set the increase in Carbon input for
# each land use and each scenario

# Crops and Crop trees
Low_Crops <- 1.05
Med_Crops <- 1.1

High Crops <- 1.2
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# Shrublands, Grasslands , Herbaceous
# vegetation flooded & Sparse

# Vegetation

Low_Grass <- 1.05

Med_Grass <- 1.1

High_Grass <- 1.2

# Forest
Low_Forest <- 1.05
Med_Forest <- 1.1
High Forest <- 1.2

# Paddy Fields
Low_PaddyFields <- 1.05

Med_PaddyFields <- 1.1
High PaddyFields <- 1.2

Next, we will extract the variables contained in the stack to the target points.

# extract wvariables to points
Variables<-extract (Stack_Set_1,Vector,sp=TRUE)

Then we will create a variable to save the results from the simulations.

# Creates an empty wvector
FORWARD<-Vector

Next, we will define the number of years for the modeling runs.

# Define the years to run the model

years=seq(1/12,20,by=1/12)

Then, we will set the RothC function as we did for the previous modeling phases.

#E###R###R##A function set up
HARBHHHHHHAHAAA STaATTSHARHRRRHHHH#HHH
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Roth_C <- function(Cinputs, years, DPMptf,
RPMptf, BIOptf, HUMptf, FallIOM, Temp,
Precip, Evp, Cov, Covl, Cov2, soil.thick,
S0C, clay, DR, barel, LU) {

# Paddy Fields coefficent fPR = 0.4
# if the target point is class = 13
# , else fPR=1 From Shirato and

# Yukozawa 2004

fPR = (LU == 13) * 0.4 + (LU != 13) *
1

# Temperature effects per month
fT = fT.RothC(Temp[, 21)

# Moisture effects per month .

fwilfunc <- function(P, E, 30,
32.0213, 1, bare) {

M=P-E * pE
Acc.TSMD = NULL
for (i in 2:length(M)) {
B = ifelse(bare[i] == FALSE,
1, 1.8)
Max.TSMD = -(20 + 1.3 * pClay -
0.01 * (pClay~2)) * (S.Thick/23) *

(1/B)
Acc.TSMD[1] = ifelse(M[1] > O,
0, M[11)
if (Acc.TSMD[i - 1] + M[i] <
0) {
Acc.TSMD[i] = Acc.TSMD[i -
11 + M[i]

} else (Acc.TSMD[i] = 0)

if (Acc.TSMD[i] <= Max.TSMD) {
Acc.TSMD[i] = Max.TSMD

}
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}
b = ifelse(Acc.TSMD > 0.444 * Max.TSMD,
1, (0.2 + 0.8 * ((Max.TSMD -
Acc.TSMD)/(Max.TSMD - 0.444 *
Max.TSMD))))
b <- clamp(b, lower = 0.2)
return(data.frame(b))

}

fw_2 <- fwifunc(P = (Precipl[, 21), E = (Evpl,
2]), S.Thick = soil.thick, pClay = clay,
pE = 1, bare = barel)$b

# Vegetation Cover effects
fC <- Cov2[, 2]

# Set the factors frame for Model
# calculations

xi.frame = data.frame(years, rep(fT *
fw_2 x £C *x fPR, length.out = length(years)))

RUN THE MODEL from SotlR Loads

the model

Model3_spin=RothCModel (t=years,CO=c(DPMptf[[1]],
RPMptf[[1]], BIOptf[[1]],

HUMptf[[1]],
FallIOM[[1]]),In=Cinputs,DR=DR,clay=clay,zi=z%.frame,
pass=TRUE)

Ct3_spin=getC(Model3_spin)

H R OR R R R R R

# RUN THE MODEL from soilassesment

Model3_spin = carbonTurnover(tt = years,
CO = c(DPMptf[[1]1]1, RPMptf[[1]],
BIOptf[[1]], HUMptf[[1]], FallIOM([[1]1]),
In = Cinputs, Dr = DR, clay = clay,
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xi.frame, "euler")
Ct3_spin = Model3_spin[, 2:6]

# Get the final pools of the time
# series

poolSize3_spin = as.numeric(tail(Ct3_spin,

1)

return(poolSize3_spin)

}
HE#ARAHHHRR#AR## function set up
RURBARHHARBHAARY endsHARBHARBHHHRH

Then we can iterate over the vector variable, running the model for each target
point using parallel scripts.

library(foreach)
library(doParallel)

n_cores <- detectCores() - 1
n_cores

# we create a cluster
parallelCluster <- makeCluster(n_cores, "SOCK",

FALSE)

setDefaultCluster(parallelCluster)
registerDoParallel(parallelCluster)

blocks<-round(length(Variables)/n_cores)

listOfRows<- split(Variables, (seq(unrow(Variables))-1) %/% blocks)
list0fCin<- split(FORWARD, (seq(nrow(FORWARD))-1) %/% blocks)
listOfWup<- split(WARM_UP, (seq(nrow(WARM_UP))-1) %/% blocks)

list0fRows<-1listOfRows[1:n_cores]
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list0fCin<-1ist0fCin[1:n_cores]
list0fWup<-1listO0fWup[1l:n_cores]

#Check that the 1lists have the same number of blocks of
#the cores that you are going to use.
# If not reduce the number of cores.

x<-list()
results<-c()

# Iterates over the area of interest

HERBHHHHHHARARRRH# L Or 1OOD sStartsHHARHARHHHHHHHHH

results <- foreach(j=1:length(listOfRows),.inorder = FALSE,
.combine = rbind, .packages= c('raster’,
'rgdal',"SoilR","soilassessment")) Y%dopar’ {

iteration<-function(Vector_variables2,FORWARD2,WARM_UP2)
{

for (i in 1:dim(Vector_variables2@data)){
# Extract the wvariables

Vect<-as.data.frame(Vector_variables2@datali,])

Temp<-as.data.frame(t(Vect[4:15]))
Temp<-data.frame(Month=1:12, Temp=Temp[,1])

Precip<-as.data.frame(t(Vect[16:27]))
Precip<-data.frame(Month=1:12, Precip=Precip[,1])

Evp<-as.data.frame(t(Vect[28:39]))
Evp<-data.frame(Month=1:12, Evp=Evp[,1])

Cov<-as.data.frame(t(Vect[42:53]))
Covl<-data.frame(Cov=Cov[,1])
Cov2<-data.frame(Month=1:12, Cov=Cov[,1])
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SO0C_im<-WARM_UP2@datal[[i,4]]

clay_im<-Vector_variables2@datal[i,3]]

LU_im<-Vector_variables2@datal[i,41]]

Cinputs_im<-WARM_UP2@datal[i,10]]

DR_im<-Vector_variables2@datal[[i,40]]

#Avoid calculus over Na wvalues

if (any(is.na(Evp[,2])) | any(is.na(Temp[,2])) |
any(is.na(S0C_im)) | any(is.na(clay_im)) |
any(is.na(Precip[,2])) | any(is.na(Cov2[,2])) |
any(is.na(Covi[,1])) | any(is.na(Cinputs_im)) |
any(is.na(DR_im)) | (Cinputs_im<0) | (SOC_im<0) |
(clay_im<0) ) {FORWARD2[i,2]<-O}else{

# Set the wariables from the images

soil.thick=30 #Soil thickness (organic layer topsoil), in cm

S0C<-S0C_im #Soil organic carbon in Mg/ha
clay<-clay_im #Percent clay 7

Cinputs<-Cinputs_im #Annual C inputs to soil in Mg/ha/yr

DR<-DR_im  # DPM/RPM (decomposable vs resistant plant material)
barel<-(Cov1>0.8) # If the surface is bare or vegetated
LU<-LU_im

Now we can run the model for the business as usual (BAU) scenario. The
“f bau_t” variable will save the result of the model in each iteration.

# Final calculation of SOC 20 years in the future
# (Business as usual)

f_bau<-Roth_C(Cinputs=Cinputs,years=years,
DPMptf=WARM_UP2@datal[i,5]],
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WARM_UP2@datal[i,6]],

WARM_UP2@datal[i,71],

WARM_UP2@datal[i,8]1],
WARM_UP2@datal[i,9]],

Temp, Precip, Evp,
Cov, Covl, Cov2,
soil.thick, SOC,
clay, DR, barel, LU)

f_bau_t<-f_baul[1]+f_bau[2]+f_baul[3]+f_baul[4]+f_bau[5]

#Unc BAU minimum

Cinputs_min<-WARM_UP2@datal[i, 23]
Cinputs_max<-WARM_UP2@datal[i,24]
SOC_t0_min<-WARM_UP2@datali,11]
SOC_t0_max<-WARM_UP2@datal[i,17]

f _bau_min<-Roth_C( Cinputs_min, years,
WARM_UP2@datal[[i,12]],
WARM_UP2@datal[[i,13]],
WARM_UP2@datal[i,14]],
WARM_UP2@datal[i,15]],
WARM_UP2@datal[i,16]1],

Temp*1.02, Precip*0.95,
Evp, Cov, Covl, Cov2,
soil.thick, S0C*0.8,
clay*0.9, DR, barel, LU)

f_bau_t_min<-f_bau_min[1]+f_bau_min[2]+f_bau_min[3]+
f_bau_min[4]+f_bau_min[5]

#Unc BAU maximum

f_bau_max<-Roth_C( Cinputs_max, years,
WARM_UP2@datal[[i,18]],
WARM_UP2@datal[[i,19]],
WARM_UP2@datal[[i,20]],
WARM_UP2@datal[i,21]],
WARM_UP2@datal[[i,22]],
Temp*0.98, Precip*1.05,
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Evp, Cov, Covl, Cov2,
soil.thick, S0C*1.2,
clay*1.1, DR, barel, LU)

f bau_t_max<-f_bau_max[1]+f_bau_max[2]+f_bau_max[3]+
f_bau_max[4]+f_bau_max[5]

# Crops and Tree crops

if (LU==2 | LU==12){

f_low<-Roth_C( (Cinputs*Low_Crops), years,
WARM_UP2@datal[i,5]],
WARM_UP2@datal[i,6]],
WARM_UP2@datal[i,7]1],
WARM_UP2@datal[i,8]1],

WARM_UP2@datal[i,9]],

Temp, Precip, Evp, Cov,
Covl, Cov2, soil.thick,
soc, clay, DR, barel, LU)

f low_t<-f_low[1]+f_low[2]+f low[3]+f_low[4]+f_lowl[5]

f_med<-Roth_C( (Cinputs*Med_Crops), years,
WARM_UP2@datal[i,5]],
WARM_UP2@datal[i,6]],
WARM_UP2@datal[i,7]1],
WARM_UP2@datal[i,8]1],
WARM_UP2@datal[[i,9]],

Temp, Precip, Evp, Cov,
Covl, Cov2, soil.thick,
soc, clay, DR, barel, LU)

f_med_t<-f_med[1]+f _med[2]+f med[3]+f_med[4]+f_med[5]

f_high<-Roth_C( (Cinputs*High_Crops), years,

WARM_UP2@datal[i,5]1],
WARM_UP2@datal[i,6]],
WARM_UP2@datal[i,7]1],
WARM_UP2@datal[i,8]],
WARM_UP2@datal[i,9]],

Temp, Precip, Evp, Cov,

Covl, Cov2, soil.thick,
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socC, clay, DR, barel, LU)
f_high t<-f_high[1]+f_high[2]+f_high[3]+f_high[4]+f_high[5]

# SSM croplands unc min

f med_min<-Roth_C( (Cinputs_min*(Med_Crops-0.15)),
years, WARM_UP2@datal[[i,12]],
WARM_UP2@datal[[i,13]],
WARM_UP2@datal[i,14]],
WARM_UP2@datal[i,15]],
WARM_UP2@datal[i,16]1],

Temp*1.02, Precip*0.95, Evp,
Cov, Covl, Cov2,
soil.thick, S0C*0.8,
clay*0.9, DR, barel, LU)

f _med_t_min<-f_med min[1]+f_med min[2]+f_med_min[3]+
f _med_min[4]+f_med_min[5]

# SSM croplands unc mazx

f_med_max<-Roth_C( (Cinputs_max* (Med_Crops+0.15)),
years, WARM_UP2@datal[i,18]1],
WARM_UP2@datal[i,19]1],
WARM_UP2@datal[[i,20]],
WARM_UP2@datal[i,21]],
WARM_UP2@datal[i,22]],
Temp*0.98, Precip*1.05, Evp,
Cov, Covl, Cov2,
soil.thick,
S0C*1.2, clayx*1.1, DR,
barel, LU)
f_med_t_max<-f_med_max[1]+f_med max[2]+f_med_max[3]+
f_med_max[4]+f_med_max[5]

}

#Shrublands, grasslands, and sparse wvegetation
else if (LU==3 | LU==5 | LU==6 | LU==8) {
f_low<-Roth_C( (Cinputs*Low_Grass), years,
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WARM_UP2@datal[i,5]],
WARM_UP2@datal[i,6]1],
WARM_UP2@datal[i,71],
WARM_UP2@datal[i,8]],

WARM_UP2@datal[i,9]1], Temp,

Precip, Evp, Cov, Covl,
Cov2, soil.thick, SOC,
clay, DR, barel, LU)

f low_t<-f_low[1]+f_low[2]+f_low[3]+f_low[4]+f_low[5]

f_med<-Roth_C( (Cinputs*Med_Grass), years,
WARM_UP2@datal[i,5]],
WARM_UP2@datal[i,6]1],
WARM_UP2@datal[i,7]1],
WARM_UP2@datal[i,8]],

WARM_UP2@datal[i,9]1], Temp,

Precip, Evp, Cov, Covl,
Cov2, soil.thick, SOC,
clay, DR, barel, LU)

f med_t<-f_med[1]+f_med[2]+f_med[3]+f_med[4]+f_med[5]

f_high<-Roth_C( (Cinputs*High_Grass), years,
WARM_UP2@datal[i,5]],
WARM_UP2@datal[i,6]],
WARM_UP20@datal[i,7]],
WARM_UP2@datal[i,8]],
WARM_UP2@datal[i,9]1],

Temp, Precip, Evp, Cov,
Covl, Cov2, soil.thick,
s0cC, clay, DR, barel, LU)

f_high t<-f_high[1]+f_high[2]+f_high[3]+f_high[4]+f_high[5]
#SSM Shrublands unc min

f_med_min<-Roth_C( (Cinputs_minx*(Med_Grass-0.15)),
years, WARM_UP2@datal[i,12]],
WARM_UP2@datal[i,13]],
WARM_UP2@datal[i,14]1],



189 10.4. Forward phase

WARM_UP2@datal[[i,15]],
WARM_UP2@datal[[i,16]],
Temp*1.02, Precip*0.95, Evp,
Cov, Covil, Cov2,
soil.thick,

S0C*0.8, clayx*0.9, DR,

barel, LU)

f med_t_min<-f_med min[1]+f_med_min[2]+f med_min[3]+
f_med_min[4]+f_med_min[5]

#SSM Shrublands unc mazx

f _med_max<-Roth_C( (Cinputs_max*(Med_Grass+0.15)),
years, WARM_UP2@datal[i,18]],
WARM_UP2@datal[i,19]],
WARM_UP2@datal[[i,20]],
WARM_UP2@datal[i,21]1],
WARM_UP2@datal[[i,22]],

Temp*0.98, Precip*1.05,
Evp, Cov, Covil, Cov2,
soil.thick, S0C*x1.2,
clay*1.1, DR, barel, LU)

f _med_t_max<-f_med_max[1]+f_med_max[2]+f_med_max[3]+
f_med_max[4]+f_med_max[5]

}

# Paddy Fields

else if (LU==13) {

f_low<-Roth_C( (Cinputs*Low_PaddyFields), years,
WARM_UP2@datal[i,5]],
WARM_UP2@datal[[i,6]],
WARM_UP2@datal[i,71],
WARM_UP2@datal[i,8]],

WARM_UP2@datal[[i,9]], Temp,

Precip, Evp, Cov, Covl,
Cov2, soil.thick, S0cC,
clay, DR, barel, LU)

f low_t<-f_low[1]+f_low[2]+f_low[3]+f_low[4]+f_low[5]
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f_med<-Roth_C( (Cinputs*Med_PaddyFields), years,
WARM_UP2@datal[i,5]1],
WARM_UP2@datal[i,6]],
WARM_UP2@datal[i,7]1],
WARM_UP2@datal[i,81],

WARM_UP2@datal[i,9]], Temp,

Precip, Evp, Cov, Covl,
Cov2, soil.thick, S0cC,
clay, DR, barel, LU)

f_med_t<-f_med[1]+f_med[2]+f_med[3]+f_med[4]+f_med[5]

f_high<-Roth_C( (Cinputs*High_PaddyFields), years,
WARM_UP2@datal[i,5]],
WARM_UP2@datal[[i,6]],
WARM_UP2@datal[i,7]1],
WARM_UP2@datal[i,8]],

WARM_UP2@datal[i,9]], Temp,

Precip, Evp, Cov, Covl,
Cov2, soil.thick, SOC,
clay, DR, barel, LU)

f_high_t<-f_high[1]+f_high[2]+f_high[3]+f_high[4]+f_high[5]
#SSM Paddy Fields unc min

f_med_min<-Roth_C( (Cinputs_min*(Med_PaddyFields-0.15)),
years, WARM_UP2@datal[i,12]],
WARM_UP2@datal[i,13]],
WARM_UP2@datal[i,14]1],
WARM_UP2@datal[[i,15]],
WARM_UP2@datal[i,16]],
Temp*1.02, Precip*0.95, Evp,
Cov, Covl, Cov2,
soil.thick,
S0C*0.8, clay*0.9, DR,
barel, LU)
f_med_t_min<-f_med_min[1]+f_med min[2]+f_med_min[3]+
f_med_min[4]+f_med_min[5]
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#SSM Paddy Fields unc mazx

f_med_max<-Roth_C( (Cinputs_max*(Med_PaddyFields+0.15)),
years, WARM_UP2@datal[i,18]1,
WARM_UP2@datal[i,19]1],
WARM_UP2@datal[i,20]],
WARM_UP2@datal[i,21]1],

WARM_UP2@datal[[i,22]], Temp*0.98,

Precip*1.05, Evp, Cov, Covl,
Cov2, soil.thick, S0Cx1.2,
clay*1.1,DR=DR, barel,.U=LU)

f _med_t_max<-f_med _max[1]+f_med_max[2]+f_med_max[3]+
f_med_max[4]+f_med_max[5]

3

else{
f_bau_t<-0
f_low_t<-0

f _med_t<-0
f_high t<-0

f _bau_t_min<-0
f_bau_t_max<-0
f_med_t_min<-0
f med_t_max<-0
S0C_t0_min<-0
S0C_t0_max<-0

}

FORWARD2[1,2]<-S0C
FORWARD2[i,3]<-f_bau_t
FORWARD2[i,4]<-f_bau[1]
FORWARD2[i,5]<-f_baul2]
FORWARD2[i,6]<-f_baul3]
FORWARD2[1i,7]1<-f_bau[4]
FORWARD2[i,8]<-f_bau[5]
FORWARD2[i,9]<-LU
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FORWARD2[i,10]<-f_low_t
FORWARD2[i,11]<-f_med_t
FORWARD2[i,12]<-f_high_t
FORWARD2[i,13]<-f_bau_t_min
FORWARD2[i,14]<-f_bau_t_max
FORWARD2[i,15]<-f_med_t_min
FORWARD2[1,16]<~f_med_t_max
FORWARD2[i,17]<-S0C_t0_min
FORWARD2[i,18]<-S0C_t0_max

#print (c(4,S0C, f_bau_t,f_low_t,f med_t,
# f_high_t,f bau_t_min,f bau_t_maz))

}
}
return (FORWARD2) }
x<- iteration( listO0fRows[[j]1],
list0£fCin[[j1], 1ist0fWup[[j]1])
X
}

stopCluster(parallelCluster)

FORWARD<-results
#i########AATOr loop ends#H####H###AA#ARH

Next , we will change the names of the fields in the output vector layer.

colnames (FORWARD@data) [2]="S0C_t0"

colnames (FORWARD@data) [3]="S0OC_BAU_20"
colnames (FORWARD@data) [4]="DPM_BAU 20"
colnames (FORWARD@data) [5]="RPM_BAU_ 20"
colnames (FORWARD@data) [6]="BI0O_BAU_20"



193 10.4. Forward phase

colnames (FORWARD@data) [7]="HUM_BAU_20"
colnames (FORWARD@data) [8]="I0M_BAU_20"
colnames (FORWARD@data) [9]="LandUse"
colnames (FORWARD@data) [10]="Low_Scenario"
colnames (FORWARD@data) [11]="Med_Scenario"
colnames (FORWARD@data) [12]="High Scenario"
colnames (FORWARD@data) [13]="S0OC_BAU_20_min"
colnames (FORWARD@data) [14]="S0C_BAU 20 max"
colnames (FORWARD@data) [15]="Med_Scen _min"
colnames (FORWARD@data) [16]="Med_Scen_max"
colnames (FORWARD@data) [17]="S0C_t0_min"
colnames (FORWARD@data) [18]="S0C_t0 max"

The ‘euler’ method can give some out of range results in some points, under
specific combinations of climatic, soil and NPP variables. To avoid including
those points in the maps we will remove any “out of range” value.

# Eliminate values out of range

FORWARD@data$S0C_BAU_20 [FORWARD@data$SOC_BAU_20 <
0] <- NA

FORWARD@data$Low_Scenario [FORWARD@data$Low_Scenario <
0] <- NA

FORWARD@data$Med_Scenario [FORWARD@data$Med_Scenario <
0] <- NA

FORWARD@data$High_Scenario[FORWARD@data$High_Scenario <
0] <- NA

FORWARD@data$Med_Scen_min [FORWARD@data$Med _Scen_min <
0] <- NA

FORWARD@data$Med_Scen_max [FORWARD@data$Med_Scen_max <
0] <- NA

FORWARD@data$SOC_BAU_20 [FORWARD@data$SOC_BAU_20 >
300] <- NA
FORWARD@data$Low_Scenario[FORWARD@data$Low_Scenario >
300] <- NA
FORWARD@data$Med_Scenario [FORWARD@data$Med_Scenario >
300] <- NA
FORWARD@data$High_Scenario[FORWARD@data$High Scenario >
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300] <- NA

FORWARD@data$Med_Scen_min [FORWARD@data$Med _Scen_min >
300] <- NA

FORWARD@data$Med_Scen_max [FORWARD@data$Med_Scen_max >
300] <- NA

Then, we will run the rest of the script, set the working directory, calculate the
uncertainties and set the name of the output vector layer.

# Set the working directory

setwd (WD_QUT)

# UNCERTAINTIES

UNC_S0C<- ((FORWARD@data$SOC_BAU_20_max-—
FORWARD@data$SOC_BAU_20_min)/

(2+«FORWARD@data$S0OC_BAU_20))*100

UNC_t0<- ((FORWARD@data$S0C_t0_max-FORWARD@data$SOC_t0O _min)/
(2*xFORWARD@data$sS0C_t0))*100

UNC_SSM<- ( (FORWARD@data$Med_Scen max-FORWARD@data$Med Scen min)/
(2xFORWARD@data$Med_Scenario))*100

FORWARD[[19]]<-UNC_SOC
FORWARD [ [20]]<-UNC_t0
FORWARD [[21]]<-UNC_SSM

colnames (FORWARD@data) [19]="UNC_BAU"
colnames (FORWARD@data) [20]="UNC_tO"
colnames (FORWARD@data) [21]="UNC_SSM"
# SAVE the Points (shapefile)

writeOGR(FORWARD, ".", "FORWARD_County_AOI_parallel_test",
"ESRI Shapefile", TRUE)



Chapter 11

Stage 3: map generation

Once the model is run through the three proposed phases, we have all the in-
formation required for generating the maps. We need to transform the output
vector to raster layers. We will obtain the SOC stocks after 20 years of SSM
practices for the three scenarios (low, medium and high carbon inputs incre-
ments), and SOC stocks under the business as usual scenario (no carbon input
increment). We will estimate four absolute carbon sequestration rates (consider-
ing the 2018 or 2020 SOC as a baseline), and three relative carbon sequestration
rates (considering the SOC stocks under the business as usual as the baseline).

11.1 Script number 16: “Points_to__Raster.R”

We will use script number 16 to transform the output vector from script number
15 to raster layers. The inputs for this script are the output vector from script
15, the FAO SOC layer and the country boundary polygon. The outputs of the
script number 16 are the SOC stocks for the future scenarios (20 years): BAU,
low, medium and high carbon inputs, three relative sequestration rates (SOC
stock SSM scenario - BAU scenario)/20 , and four absolute sequestration rates:
(SOC stock SSM or BAU scenario - SOC stocks 2018,/20)/20.
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Target points to raster products. Inputs and outputs.

Input Output

COUNTRY-POLYGON.shp (ROI) 3 raster scenarios (low, medium, and high)
FORWARD BAU 3E 20YEARS 1 raster BAU (business as usual)

[code country].shp (from script number 15) 4 absolute rates (scenario - 2018 SOC)/20
SOC_MAP_ [country code].tif 3 absolute differences (Scenario - 2018SOC)
(from script number 10) 3 relative rates (scenario - BAU)

3 relative differences (scenario -BAU)
Uncertainty maps (BAU, SSM, SOC2018,
UNC for absolute and relative rates)

We will open the script “Points_to_Raster.R” and load the required packages;
then set the directories of the required files: Forward outputs, SOC, AOI, and
the outputs maps folder.

rm(list=1s())

library(raster)

library(rgdal)

WD_F<-("C:/TRAINING MATERIALS/OUTPUTS/3_FOWARD")
WD_S0C<-("C:/TRAINING_MATERIALS/INPUTS/SOC_MAP")
WD_AOQI<-("C:/TRAINING_MATERIALS/INPUTS/AOI_POLYGON")
WD_MAPS<-("C:/TRAINING MATERIALS/OUTPUTS/4 MAPS")

Now we will define the name of the output area of interest / country or region.
In this example, “Pergamino”.

#Define the name of the Country ("ISO3CountryCode')
name<-"Pergamino"

Then open the layers:

#0Open FORWARD wvector

setwd (WD_F)
FORWARD<-readOGR("FOWARD_AOI_parallel.shp")
#0pen SOC MAP (master layer)

setwd (WD_S0C)

SOC_MAP<-raster ("SOC_MAP_AOI.tif")
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#Creates emtpy raster

empty_raster<-SO0C_MAP*0

# Open the country wvector boundaries

setwd (WD_AQI)
Country<-readOGR("Departamento_Pergamino.shp")
# Cut the raster with the country wvector
Country_raster<-crop(empty_raster,Country)

# Replace Na values for zero walues
FORWARD@data[is.na(FORWARD@data)] <- O

Next, we will transform the vector points from the FORWARD phase of the
model to raster files using the “rasterize” function.

# Points to Raster BAU
setwd (WD_MAPS)
Country_BAU_2040_Map<-rasterize (FORWARD, Country_raster,
FORWARD$SOC_BAU_20, updateValue='all')
writeRaster (Country_BAU_2040_Map,
filename=pasteO(name,"_GSO0Cseq_finalSOC_BAU_Map030"),
format="GTiff", overwrite = TRUE)
# Points to Raster Low Scenario
Country_Lwr_2040_Map<-rasterize (FORWARD, Country_raster,
FORWARD$Lw_Sc, updateValue='all')
writeRaster (Country_Lwr_2040_Map,
filename=pasteO(name,"_GSOCseq_finalSOC_SSM1_Map030"),
format="GTiff", overwrite = TRUE)
# Points to Raster Med Scenario
Country_Med_2040_Map<-rasterize (FORWARD, Country_raster,
FORWARD$Md_Sc, updateValue='all')
writeRaster (Country_Med_2040_Map,
filename=pasteO(name,"_GSO0Cseq_finalSOC_SSM2_Map030"),
format="GTiff", overwrite = TRUE)
# Points to Raster High Scenario
Country_Hgh_2040_Map<-rasterize (FORWARD, Country_raster,
FORWARD$Hgh_S, updateValue='all')
writeRaster (Country_Hgh_2040_Map,
filename=pasteO(name,"_GSOCseq_finalS0C_SSM3_Map030"),
format="GTiff", overwrite = TRUE)
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# Points to Raster initial SOC (t0) 2018/2020
Country_S0C_2018_Map<-rasterize (FORWARD, Country_raster,
FORWARD$S0OC_t0, updateValue='all')
writeRaster (Country_S0C_2018_Map,
filename=pasteO(name,"_GSO0Cseq_TO0_Map030"),
format="GTiff", overwrite = TRUE)

Now, we will calculate the absolute differences and the absolute rates (SSM -
SOC 2018).

# Difference BAU 2040 - SOC 2018

Diff_ BAU_SOC_2018<-Country_BAU_2040_Map-Country_S0C_2018_Map
writeRaster (Diff_BAU_SOC_2018,filename=pasteO(nanme,
"_GSOCseq_AbsDiff_ BAU_Map030"),format="GTiff", overwrite = TRUE)
writeRaster (Diff_BAU_SO0C_2018/20,filename=pastel(nanme,
"_GSOCseq_ASR_BAU_Map030") ,format="GTiff", overwrite = TRUE)

# Difference Low Scenario - SOC 2018

Diff_ Lw_S0C_2018<-Country_Lwr_2040_Map-Country_S0C_2018_Map
writeRaster (Diff_Lw_S0C_2018,filename=pastel(name,
"_GS0Cseq_AbsDiff_SSM1_Map030"),format="GTiff", overwrite = TRUE)
writeRaster (Diff_Lw_S0C_2018/20,filename=paste0(name,
"_GSOCseq_ASR_SSM1_Map030"),format="GTiff", overwrite = TRUE)

# Difference Med Scemnario - SOC 2018
Diff_Md_SOC_2018<-Country_Med_2040_Map-Country_SOC_2018_Map
writeRaster (Diff_Md_S0C_2018,filename=pastel(name,
"_GSOCseq_AbsDiff_SSM2_Map030"),format="GTiff", overwrite = TRUE)
writeRaster (Diff_Md_S0C_2018/20,filename=pasteO(name,
"_GSOCseq_ASR_SSM2_Map030") ,format="GTiff", overwrite = TRUE)

# Difference High Scenario - SOC 2018
Diff_Hg_SOC_2018<-Country_Hgh 2040_Map-Country_SOC_2018_Map
writeRaster (Diff_Hg_S0C_2018,filename=pastel(name,
"_GSOCseq_AbsDiff_ SSM3_Map030"),format="GTiff", overwrite = TRUE)
writeRaster (Diff_Hg_SO0C_2018/20,filename=pasteO(name,
"_GSOCseq_ASR_SSM3_Map030") ,format="GTiff", overwrite = TRUE)

Next, we will calculate the relative differences and rates (SSM - SOC BAU).
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# Difference Low Scenario - BAU 2040
Diff_Lw_BAU_2040<-Country_Lwr_2040_Map-Country_BAU_2040_Map
writeRaster (Diff_Lw_BAU_2040,filename=pasteO(name,
"_GSOCseq_RelDiff SSM1_Map030"),
format="GTiff", overwrite = TRUE)
writeRaster (Diff_Lw_BAU_2040/20,filename=paste0(name,
"_GSOCseq_RSR_SSM1_Map030"),
format="GTiff", overwrite = TRUE)
# Difference Med Scenario — BAU 2040
Diff_Md_BAU_2040<-Country_Med_2040_Map-Country_BAU_2040_Map
writeRaster (Diff_Md_BAU_2040,filename=paste0(name,
"_GSOCseq_RelDiff_SSM2_Map030"),
format="GTiff", overwrite = TRUE)
writeRaster (Diff_Md_BAU_2040/20,filename=paste0(name,
"_GSOCseq_RSR_SSM2_Map030"),
format="GTiff", overwrite = TRUE)
# Difference High Scenario - BAU 2040
Diff_Hg BAU_2040<-Country_Hgh_ 2040_Map-Country_BAU_2040_Map
writeRaster (Diff_Hg BAU_2040,filename=pasteO(name,
"_GSOCseq_RelDiff_SSM3_Map030"),
format="GTiff", overwrite = TRUE)
writeRaster (Diff_Hg_BAU_2040/20,filename=pasteO(name,
"_GSOCseq_RSR_SSM3_Map030"),
format="GTiff", overwrite = TRUE)

Now, we will rasterize the values of the uncertainties of SOC BAU, SOC 2018
and one SSM (one for the three scenarios).

# Uncertainties SOC 2018
UNC_2018<-rasterize (FORWARD, Country_raster,
FORWARD$UNC_O, updateValue='all')
writeRaster (UNC_2018,filename=pasteO(name,
"_GS0Cseq_TO_UncertaintyMap030"),
format="GTiff", overwrite = TRUE)
# Uncertainties SOC BAU 2038
UNC_BAU<-rasterize (FORWARD, Country_raster,
FORWARD$UNC_B, updateValue='all')
writeRaster (UNC_BAU,filename=pasteO(name,
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"_GS0Cseq_BAU_UncertaintyMap030"),
"GTiff", TRUE)
# Uncertainties SOC SSM
UNC_SSM<-rasterize (FORWARD, Country_raster,
FORWARD$UNC_S, 'all')
writeRaster (UNC_SSM, pasteO(name,
"_GS0Cseq_SSM_UncertaintyMap030"),
"GTiff", TRUE)

Now we will calculate the uncertainties for the absolute rates.

# Uncertainties for the Absolute difference SSM_ - SO0C2018
UNC_abs_rate_BAU<-sqrt ((FORWARD$UNC_B+FORWARD$SOC_BAU_20) "2+
(FORWARD$UNC_O*FORWARD$SOC_t0) “2)/
abs (FORWARD$SOC_t0+FORWARD$SOC_BAU_20)
UNC_abs_rate_BAU_Map<-rasterize (FORWARD,Country_raster,
UNC_abs_rate_BAU, 'all')
writeRaster (UNC_abs_rate_BAU_Map, pasteO(nanme,
"_GS0Cseq_ASR_BAU_UncertaintyMap030"),
"GTiff", TRUE)
UNC_abs_rate_Lw<-sqrt ((FORWARD$UNC_S*FORWARD$Lw_Sc) "2 +
(FORWARD$UNC_O*FORWARD$SOC_t0) "2)/
abs (FORWARD$SOC_tO+FORWARD$Lw_Sc)
UNC_abs_rate_Lw_Map<-rasterize (FORWARD,Country_raster,
UNC_abs_rate_Lw, 'all')
writeRaster (UNC_abs_rate_Lw_Map, pasteO(name,
"_GSOCseq_ASR_SSM1_UncertaintyMap030"),
"GTiff", TRUE)

UNC_abs_rate_Md<-sqrt ( (FORWARD$UNC_S*FORWARD$Md_Sc) "2+
(FORWARD$UNC_O*FORWARD$SOC_t0) “2)/
abs (FORWARD$SOC_tO0+FORWARD$MdA_Sc)
UNC_abs_rate_Md_Map<-rasterize (FORWARD,Country_raster,

UNC_abs_rate_Md, 'all')
writeRaster (UNC_abs_rate_Md_Map, pasteO(name,
"_GSOCseq_ASR_SSM2_UncertaintyMap030"),
"GTiff", TRUE)

UNC_abs_rate_Hg<-sqrt ((FORWARD$UNC_S+FORWARD$Hgh_S) "2 +
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(FORWARD$UNC_O*FORWARD$SOC_t0) "2)/
abs (FORWARD$SOC_tO+FORWARD$Hgh _S)
UNC_abs_rate_Hg_Map<-rasterize (FORWARD,Country_raster,
UNC_abs_rate_Hg, 'all')
writeRaster (UNC_abs_rate_Hg_Map, pasteO(name,
"_GSOCseq_ASR_SSM3_UncertaintyMap030"),
"GTiff", TRUE)

Now we will calculate the uncertainties for the relative rates.

# Uncertainties for the Relative difference SSM_ - SOCBAU
UNC_Rel_rate_Lw<-sqrt ((FORWARD$UNC_S*FORWARD$Lw_Sc) "2+
(FORWARD$UNC_B*FORWARD$SOC_BAU_20) ~“2)/
abs (FORWARD$SOC_BAU_20+FORWARD$Lw_Sc)
UNC_Rel_rate_Lw_Map<-rasterize (FORWARD,Country_raster,
UNC_Rel_rate_Lw, 'all')
writeRaster (UNC_Rel_rate_Lw_Map, pasteO (name,
"_GSOCseq_RSR_SSM1_UncertaintyMap030"),
"GTiff", TRUE)
UNC_Rel_rate_Md<-sqrt ((FORWARD$UNC_S*FORWARD$Md_Sc) "2+
(FORWARD$UNC_B*FORWARD$SOC_BAU_20) ~2)/
abs (FORWARD$SOC_BAU_20+FORWARD$MA_Sc)
UNC_Rel_rate_Md_Map<-rasterize (FORWARD,Country_raster,

UNC_Rel_rate_Md, 'all')
writeRaster (UNC_Rel_rate_Md_Map, pastel(nanme,
"_GS0Cseq_RSR_SSM2_UncertaintyMap030"),
"GTiff", TRUE)

UNC_Rel_rate_Hg<-sqrt ((FORWARD$UNC_S*FORWARD$Hgh S) "2+

(FORWARD$UNC_B*FORWARD$SOC_BAU_20) “2)/

abs (FORWARD$SOC_BAU_20+FORWARD$Hgh_S)
UNC_Rel_rate_Hg_Map<-rasterize (FORWARD,Country_raster,

UNC_Rel_rate_Hg, 'all')
writeRaster (UNC_Rel_rate_Hg_Map, pasteO(name,
"_GS0Cseq_RSR_SSM3_UncertaintyMap030"),
"GTiff", TRUE)



Chapter 12

Uncertainty and validation

Ideally, model prediction uncertainty provided in the GSOCseq map should
include all sources of uncertainty that affect predictions, including model struc-
tural uncertainty, model parameters’ and input data uncertainties. As a min-
imum, uncertainty should include input data uncertainties (e.g. Morais et al.,
2019). There are different methods to estimate uncertainties in the results.
Monte Carlo methods, that draw random values from the probability distribu-
tion functions for inputs and parameters, are an efficient way to estimate the
whole uncertainty of the modeled estimation (Ogle et al., 2010; FAO, 2019b;
Morais et al., 2019). In Monte Carlo simulation methods, parameter values
of the model and input data (e.g. mean temperature, clay content, carbon in-
puts) shall be randomly chosen from hypothetical normal distributions with
mean equal to the parameter value and the measured standard error around
that mean. Once all the different parameter values for the model are generated
from the hypothetical distributions, a model run shall be made. This process
is to be repeated 100 or more times to produce a mean model prediction with
a 95 percent confidence interval. The Monte Carlo simulation would generate
an expected value of SOC stocks for the different scenarios and a 95 percent
confidence interval. Uncertainty (U) shall be expressed as a percentage: half
of the 95 percent confidence interval divided by the mean (Ogle et al., 2010).
Thus, uncertainty can be estimated for each simulated scenario as:

100 x (ULCI — LLC)

U% = 2% SOC,,

(12.1)
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where U L corresponds to the upper limit of the 95 percent confidence interval of
the estimated SOC at the end of the simulation (in tC/ha), LL corresponds to
the lower limit of the 95 percent confidence interval of the estimated SOC at the
end of the simulation (in tC/ha); and SOC,, the average of the estimated SOC
at the end of the simulation (tC/ha), after 20 years of the forward modelling, for
each scenario. To estimate uncertainties of the sequestration rates (uncertain
quantities are combined by subtraction, e.g. A SOC = Stocks SSM — SOC stocks
BAU), the uncertainty can be expressed in percentage terms was estimated by
the following equation (IPCC, 2019):

Ut =/ (U1X1)? + ...+ (UnXn)?)/|X1 + ... + Xn| (12.2)

where Ut is the percentage uncertainty in the subtraction of the quantities (half
the 95 percent confidence interval divided by the total, i.e. mean, and expressed
as a percentage), 1 — n represent the quantities to be combined (e.g. Stocks
SSM and SOC stocks BAU at the end of the forward simulation), and U1
to n is the percentage uncertainties associated with each of the quantities (as
estimated from equation 12.1). However, Monte Carlo and related simulations
(e.g. Markov Chain-Monte Carlo method, as in Hararuk et al., 2014; GLUE
method, as in Salazar et al., 2011) usually require considerable computational
capacity and may be time demanding, especially for long spin—up runs (>500
years), as multiple (>100) runs should be made for each modeling unit. An
alternative is to calculate uncertainties of the input data considering minimum
and maximum values (corresponding to the limits of a 95 percent confidence
interval) of a set of predefined input parameters, considered to have the greatest
influence in RothC modeling results (initial SOC, Carbon inputs, and soil and
climatic variables). Thus, uncertainties can be estimated for each modeling
unit and for each scenario by estimating first the minimum and maximum SOC
simulated values (similarly to VCS, 2012) using a predefined arrangement of
inputs:

SOCmax = Model(SOCF A0 mazs Climazs TeMpPmin, PPmaz, Claymaz) (12.3)

SOCmm = MOdel(SOCFAO mins szzrm Tempmaza Ppmznv Claymzn) (124)

where SOCprA0 min and SOCF A0 maz are respectively the minimum and max-
imum value for the simulated SOC stocks; SOCF A0 min and SOCFAO masz are
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the minimum and maximum value for the initial SOC GSCOCmap stocks es-
timated at the 95 percent confidence interval are the Ci,,, and Ci,,g, are
respectively the minimum and the maximum value for the annual carbon in-
puts estimated at the 95 percent confidence interval; Temp.,in, and Temppqz
are respectively the minimum and maximum value for the average monthly air
temperature estimated at the 95 percent confidence interval; Pp,in and Pppaz
are respectively the minimum and maximum value for the average monthly pre-
cipitation estimated at the 95 percent confidence interval; and Clay min and
Clay max are respectively the minimum and maximum value for the soil clay
content (0-30 c¢cm) estimated at the 95 percent confidence interval. The ar-
rangement of variables to generate minimum and maximum SOC stocks are to
be generated considering the effects of each variable on NPP, decomposition
rates, and overall carbon dynamics (Chapters 4 and 5). If information is avail-
able, the minimum and maximum value of each parameter (C input, Temp, Pp
and Clay) that define de 95 percent confidence interval can be estimated from its
variation and mean value, assuming that values of the parameter are normally
distributed about the mean:

Pyin = Xp — 1.96 x SEp (12.5)

Prae = Xp—1.96 X SEp (12.6)

where P,,;, and Py, are respectively the minimum and maximum value for pa-
rameter P (C input, Temp, Pp or Clay) estimated at the 95 percent confidence
interval; Xp is the average value of that parameter; and SEp is the standard er-
ror of the mean of that parameter. Uncertainties already generated in the latest
GSOCmap can be used to obtain the min and max SOC FAO values. Uncer-
tainties in C inputs and thus Ci max and min can be estimated from available
data (e.g. meta—analysis). Temp max and Temp and PP max and PPmin can
be estimated from the average monthly values and confidence intervals of the
climatic series to be modeled. Uncertainties in clay contents can be directly
obtained from SoilGrids (https://soilgrids.org/) if the ISRIC database is to be
used for the clay content layers. If no estimate of clay variation is available for
the used database, Clay max and clay min can be determined from clay content
variation within the 1km x 1km grid cells (i.e. considering the values from 250
m x 250 m resolution grids). If no estimate of the SE or CI is available for
these parameters, a maximum and minimum value can be estimated for these


https://soilgrids.org/

205

parameters, using general uncertainty coefficients, as those reported from global
modelling exercises by Gottschalk et al. (2007) and Hastings et al. (2010). Av-
erage uncertainties for these parameters are summarized in Table 12.1. Input
data layers (SOC FAO, temperature, precipitation, clay content, and C inputs)
need to be re—prepared for the different modelling phases considering the max-
imum and minimum values for each data input outlined in equations 12.3 and
12.4. General uncertainties in SOC sequestration can be then estimated for all
scenarios. The model is to be run 2 two more times for each modelling unit and
scenario in the different modelling phases: once using the selection of values
to obtain a maximum expected SOC (eq 12.2), and once using the selection of
input values to obtain a minimum expected SOC change (eq 12.3). SOC stocks
are then modelled for each modelling unit. Uncertainties can be then expressed
in percent as in equation 12.1 for each scenario (considering the average SOC
values as the ones obtained in the first modelling run for each scenario):

100 x (SOCpaz — SOCyin)
2 x SOC

U% = (12.7)

where SOC),4, corresponds to the upper limit of simulated the SOC stocks
(in tC/ha) at the end of the forward modelling phase using the combination of
inputs in equation 12.3, SOC,,;, corresponds to the lower limit of the simu-
lated SOC stocks ( in tC/ha) at the end of the forward modelling phase using
the combination of inputs in equation 12.4; and SOC the average simulated
SOC stocks (tC/ha), for each scenario, after 20 years of the forward modeling
phase. Uncertainties for the absolute and relative sequestration rates can be
then estimated using equation 12.2, for each scenario.

Uncertainties of main parameters affecting SOC dynamics following Gottschalk
et al.(2007) and Hastings et al. (2010).

Parameter Uncertainty in the input Minimum value Maximum value

Temperature +2% Monthly Temp * 0.98 Monthly Temp * 1.02
Precipitation +5% Monthly PP * 0.95 Monthly PP * 1.05

Clay content +10% Clay * 0.90 Clay * 1.10

FAO SOC +20 % SOC FAO *0.8 SOC FAO * 1.2

C input increase in SSM scenario =+ 15 % C eq * (SSM1 % increase - 15%) C eq * (SSM % increase + 15%)

The model should be validated for the conditions in which it will be applied
when possible. The use of models for prediction involves a series of problems
for validation, as data required to quantify the accuracy of the estimates do not
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yet exist. Nonetheless, predictive models can be validated if they explain past
events (ex—post validation). If local results from different SSM practices on SOC
stocks are available (a meta—analysis of local SSM practices can be conducted),
and the collected activity data allow to perform simulations with these records,
model-produced estimates shall be compared with the observed results. The
RMSE shall be used to compare the divergence between model estimates and
field observations. The RMSE can be expressed as:

RMSE = \[(Z?:lfi — R (12.8)

where Pi is the predicted (modelled) value, Oi is the observed value, n is the
number of measured Relative RMSFE can be expressed as a percent of the
observed mean. These results should be specified in the report accompanying
the mapping product.



Chapter 13

Data sharing

13.1 General principles

Sharing of the national GSOCseq products will follow the same approach as
other GSP global mapping products such as the Global Soil Organic Carbon
Map (GSOCmap — 2017) and Global Map of Salt-Affected Soils (GSASmap
— 2020). The GSP Secretariat will provide an online data submission facility.
Data sharing is governed by the GSP Data Policy (http://www.fao.org/3/a-
bs975e.pdf). When delivering national data to the GSP, countries need to ensure
that:

1. The data shared contain the relevant soil information representative for
the country.

2. The shared datasets contain the best available information for a given
area and topic, however, subject to potential restrictions based on the
institutions’ or countries’ data policy.

3. The data shared are reliable and quality controlled which means that the
data have passed a technical routine to ensure data integrity, correctness,
and completeness; errors and omissions are identified and, if possible, ad-
dressed.

Data providers will retain the ownership of national datasets. The final global
dataset will be distributed under Creative Commons license.
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13.2 Data formats and integrity

All GIS files should be delivered in correct format according to the Technical
Specifications and Country Guidelines for the GSOCseq map. GIS files shall
be delivered in GeoTIFF format with embedded additional georeferencing in-
formation, including spatial extent, coordinate reference system, resolution, no
data values. Pixel values should contain numeric values of the target parame-
ter, estimated for the topsoil layer (0-30 cm depth). World Geodetic System
1984 (WGS84) geographic (latitude/longitude) projection should be preferred
for all submitted maps. The map shall be produced at regular fixed horizontal
dimensions of 30 by 30 arc—seconds grid (approximately only 1 x 1 km) at the
equator. Countries will be expected to deliver their datasets using the standard
30 arc—second grids prepared and shared by the GSP. Each data layer should
be provided as a single continuous surface. Data providers should not attempt
to mask out the excluded areas from the grid (e.g. saline soils, organic soils,
wetlands). The GSP Secretariat will mask excluded areas using standard spa-
tialized layers. Values in the excluded grid cells will be identified as no data
(NA) in the final global product.

13.3 Data correctness

Each country will be responsible for carrying out basic Quality Assur-
ance/Quality Control (QA/QC) of all data before providing it to the GSP
Secretariat. Quality Assurance can be described as the process of preventing
errors from entering the datasets, while Quality Control can be described as
the process of identifying and correcting existing errors in the datasets. All
datasets should be checked for:

e Erroneous or unrealistic predictions

o Spatial errors (extent, projection)

o Units (annual tC/ha)

e Completeness and integrity of data

o Consistency with data shown in any accompanying documents (such as
reports or drawings)

 Validation (if possible) and consistency of reported validation results with
the provided data.
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Final QA/QC for the global datasets will be facilitated by the GSP Secretariat
through its technical networks (INSII, PAWG, and Intergovernmental Technical
Panel on Soils (ITPS) will give final clearance to the global dataset prior to
public release).

13.4 Data completeness

A complete set of mandatory data layers should be provided. This complete set
of SOC sequestration maps includes country—level predicted topsoil (0-30 cm)
SOC stocks and mean annual sequestration rates after the implementation of
SSM practices, for a 20—year period, estimated with the spatialized version of
the RothC carbon model. Each pixel shall contain:

1. Annual absolute average (vs. initial SOC stock) sequestration rates for 20
years (tC/ha), for BAU, SSM1, SSM2 and SSM3 scenarios

2. Annual mean relative (vs. business as usual) sequestration rates for 20

years (tC/ha), for SSM1, SSM2 and SSM3 scenarios

Initial SOC stocks (tC/ha)

4. SOC sequestration uncertainty maps (absolute and relative sequestration
rates) for 3 SSM Scenarios (in percent)

®

The set of data layers should be supplemented by a country report (electronic
document) according to the submission form provided by GSP-FAQ.

Country members are also encouraged to deliver the following products and
supplementary data (optional):

o final SOC stocks at 2040 (tC/ha), for BAU, SSM1, SSM2 and SSM3 sce-
narios;

e SOC sequestration maps using alternative modeling procedures: Includes
country—level topsoil (0-30 cm) predicted SOC stocks and mean annual
sequestration rates after implementation of SSM practices, for a 20—year
period (2020-2040), estimated using;

o alternative SSM scenarios (e.g. alternative C percent increase based on
local data analysis);

e alternative local preferred, process—oriented and peer-reviewed models
(e.g. CENTURY/DAYCENT, DNDC, YASSO, ICBM, or their derived
models);
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e meta—analysis on the local impact of SSM management practices on SOC
sequestration;

« validation dataset (results from predicted vs. observed SOC stocks/SOC
sequestration rates from meta—analysis and RMSE; validation dataset in
table format; shapefile/points if georeferenced data is available).

13.5 Other modes of data sharing

Apart from sharing national data with the GSP for the development of the
Global Soil Organic Carbon Sequestration Potential Map, countries are encour-
aged to share and use their maps in a number of ways, including:

« scientific publications;

e inclusion in national soil information systems;

« using the maps for the development of national policy regarding; sustain-
able and country—smart agriculture;

e using the maps for identifying key areas for governmental, non-—
governmental, commercial, national or international projects, related to
promoting sustainable soil management and carbon sequestration;

e using the maps for awareness raising on the topics of climate change and
soil health;

e using the maps for educational purposes at schools and universities for
subjects related to geography, climate, soils, agriculture, etc.

GSP encourages data providers to apply open licensing and free data sharing
of their products to ensure broad distribution of knowledge and high impact
towards sustainable management of our soils.



Chapter 14

Limitations, knowledge gaps
and way forward

It is of most importance to identify which regions, environments and produc-
tion systems present greater potential to increase SOC stocks and mitigate GHG
emissions and establish priorities for research and implementation of public poli-
cies. In this document, we provided an approach and the procedures to pro-
duce digital SOC sequestration maps using soil legacy data, process oriented
SOC models and modern techniques of digital soil mapping, that would allow
covering as many conditions and productive systems worldwide as possible, in
a relatively simple, transparent and standardized way, without complex con-
figuration and computational capacities. Nonetheless, the estimation of SOC
sequestration potential in a harmonized way among countries, regions, and pro-
ductive systems is not an easy task and there are different contentious issues
and limitations that must be outlined.

Firstly, agricultural lands (croplands and grazing lands) are selected as target
areas to estimate SOC sequestration potential in this first instance, since they
are managed at least on a yearly basis, and management practices could be
used to increase soil organic carbon content. These lands have been identified
as the options with greater potential to accumulate SOC and mitigate GHG
emissions through improved management practices (Smith et al., 2008; Lal et
al., 2018). Furthermore, most of the information regarding the SOC dynamics
has been developed in these productive systems, and most SOC carbon models
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have been successfully tested under these conditions. Countries can nevertheless
assess SOC sequestration potential of different land uses and deliver additional
maps including other land use (other than agricultural lands). Future versions of
the GSOCseq map may include other land uses, depending on national demands.

Secondly, most SOC models are parameterized under land use, land manage-
ment, soil or climatic regions. Ideally, SOC models should account for all major
SOC—controlling factors, such as soil mineralogy, climate conditions, litter qual-
ity, biota activity, land use and management. These factors have extremely
complex interactions, and separate analysis of controls could limit predictions
of their effects on SOC (Falloon and Smith, 2009). Even the full multidimen-
sional development of a single element of a model can rarely, if ever, be pre-
dicted precisely, and the actual consequence is that it is impossible to create
“universal” models (Sinclair and Seligman, 1996). The review by Campbell and
Paustian (2015) emphasizes the fact that among the different known process—
oriented models used to estimate SOC changes, no one clearly outperforms the
others. However, in order to obtain consistent and harmonized results, and al-
low comparisons between countries and regions, due to potential differences in
computational, technical capacities and data availability, the use of RothC as
a standard ‘process—oriented” SOC model, following the proposed methodology,
is requested as a first step. Nevertheless, users are encouraged to provide sup-
plementary alternative maps developed using alternative preferred SOC mod-
els and/or methods or approaches to estimate C inputs and compare results
with the proposed methodology. The use of a multi-model ensemble approach
(e.g. Riggers et al, 2019; Lehtonen et al., 2020) with selected models is intended
for future versions of the GSOCseq map. Moreover, the SoilR package (Sierra et
al., 2012) used in the current approach already includes other SOC models like
CENTURY and ICBM, that can be used to estimate results using a multi-model
ensemble approach.

It must be also outlined that at some level of analysis all known process—oriented
SOC models including RothC (see Chapter 2; see FAO, 2019), include empirical
functions, so they are expected to perform best when operating in situations
similar to those for which they were originally parameterized, which tend to
be croplands and grasslands from the temperate zone (Jenkinson et al., 1990;
Petri et al., 2010). There is relatively less available data of the performance of
SOC models under tropical and arid conditions. Current SOC models, including
RothC, may be limited in their applicability to these systems, due to differences
in soil fauna and their effects on SOC dynamics, the much faster turnover of slow
and passive SOM, different temperature and moisture relationships with micro-



213

bial activity, and differences in mineralogy (Shang and Tiessen, 1998; Tiessen
et al., 1998) and solution chemistry (Parton et al., 1989) in tropical soils, or
water dynamics under arid environments (Farina et al., 2013). The inability to
account for cation availability or aluminium (Al) toxicity may also limit SOC
model predictions (Parton et al., 1989; Shang and Tiessen, 1998). Most well-
known models may be limited by failing to account for pH effects on soil carbon
turnover (Jenkinson, 1988; 1996; Falloon and Smith, 2009). Soil organic carbon
models generally predict faster carbon turnover than the ones observed in very
acid soils (Motavalli et al., 1995), and few models can predict SOC changes in
allophanic soils or soils developed on recent volcanic ash (Jenkinson et al., 1991;
Motavalli et al., 1995; Falloon et al., 1998; Falloon and Smith, 2000; Falloon
and Smith., 2009).

Additionally, RothC does not accurately simulate SOC dynamics in waterlogged
soils such as paddy rice. Countries are encouraged to use local adaptations or
modified versions of the RothC model which have shown to improve estimations
under the above mentioned conditions (e.g. Parshotam and Hewitt, 1995; Saggar
et al., 1996 for volcanic soils; Shirato et al., 2004; Shirato and Yokozawa, 2005 for
paddy rice; and ROTHC10 developed by Farina et al., 2013 in arid conditions).
Local adaptations should be implemented following the general procedures and
input data described in Chapter 5 and 6 to obtain consistent results, and/or
to use their preferred model (e.g. Gilhespy et al., 2014) under these conditions,
and deliver additional maps to contrast results. Further developments of the
GSOCseq will include specific and standardized methods for SOC estimations
in paddy rice and other specific conditions.

The proposed approach estimates SOC changes in the first 0-30 cm. Although
SOC at deeper soil layers is responsive to land management changes (e.g. Follett
et al., 2013; Poeplau and Don, 2013; Schmer et al., 2014), the 0-30 cm is selected
because: it is most responsive to land management changes; allows the use of
GSOCmap as a baseline for SOC stocks; allows for better harmonization with
national greenhouse gas inventories, and allows validation of selected models
with available ground data (mostly generated at 0-30cm depth). New models
and adaptations of known models have been developed to account for SOC dy-
namics in deep layers with different approaches (see Campbell and Paustian,
2015). For example, the DAYCENT model was modified to simulate deeper soil
C dynamics by slowing SOC pool turnover and increasing allocation to passive
soil C, without separating soil layers (Wieder et al., 2014). Jenkinson and Cole-
man (2008) modified RothC to RothPC-1 to predict the turnover of organic
C in subsoils up to 1 m of depth using multiple layers and introduced two ad-
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ditional parameters, one that transports organic C down the soil profile by an
advective process, and one that reduces decomposition processes of SOC with
depth. However, there is still a strong necessity for additional data to confirm
or refute hypotheses suggested by the different modelling approaches of SOC in
deep layers (Campbell and Paustian, 2015). As new information is generated,
future versions of the GSOC and GSOCseq maps will be able to incorporate
SOC stocks and SOC changes at deeper layers. There is also still need for a
better understanding of spatial heterogeneity in SOC in the landscape and for a
better prediction of potential changes in SOC dynamics on the landscape scale
(Stockmann et al., 2013). Differences in drainage that may be linked to land-
scape position are often not accounted for in SOC models (Falloon and Smith,
2009). In this sense, three gaps in knowledge have been identified (Stockmann
et al., 2013): (1) the development of optimal, but still simple, 3—-dimensional
representations of landscapes (vertically and horizontally), (2) the implementa-
tion of functional interactions and SOC transfers (i.e. the redistribution of SOC
to different parts in the landscape due to erosion, transport and deposition)
and (3) the availability of adequate datasets for model validations (especially
the representation of fluxes between different landscape elements).

It should be also outlined that the temperature is expected to increase in the
next 20-50 years, especially after 2050 (IPCC, 2018) and this may impact SOC
dynamics. The proposed approach considers a 2000-2020 climate average for
SOC projections after 2020. Using a 20—year average removes the year—to—year
variation. However, there is no consensus over which climate projections are
the most appropriate for 2020-2040, and prior agreement between countries is
required. The proposed methodology allows climate change scenarios for longer—
term projections to be incorporated in future versions.

It should be also noted that a very wide range of management practices are
currently being implemented and can potentially be introduced into the world’s
agricultural systems, depending on climatic, soil, socio—cultural and economic
conditions. In turn, different SSM C-oriented practices are often combined,
making it difficult to dissociate their effects on SOC dynamics. Thus, as a first
step, and to harmonize the results on a global map, and because soil carbon
turnover models are the most sensitive to carbon inputs (FAO, 2019), this man-
ual proposed to group SSM practices into three scenarios as a standard method,
based on their expected relative effects on C inputs compared to business as
usual management: Low, Medium and High increase in C inputs (referred as
SSM1, SSM2, and SSM3 scenarios). A 5 percent—10 percent—20 percent increase
in C input is suggested as default values to test potential. This increase in C—
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inputs will not always be possible where C—inputs are already high. On the other
hand, this increase in C inputs can be low in regions or productive systems with
current low C inputs. However, to obtain consistent and harmonized results,
and allow comparisons between countries and regions the use of standard SSM
scenarios and 5, 10, 20 percent is kindly requested in this first stage. National
experts’ opinion and local data are essential in order to accurately estimate or
validate the target areas and carbon input levels for the different SSM scenarios
in forthcoming versions. Countries are encouraged to provide supplementary
alternative maps developed using alternative percent increases in C inputs or
specific absolute increases in C inputs of specific SSM practices in the different
agro—ecological regions and productive systems of the country, based on local
knowledge or obtained from a literature search of local studies. We believe the
comparison of results will greatly enrich the final product. The information
generated by the different countries will allow us to select and model specific
practices in forthcoming versions.

Finally, the precision of models relies heavily on the quality and quantity of
data used in executing and validating them (FAO, 2019). Often, the datasets
for running models are not collected for that specific purpose but are taken from
previous or ongoing studies. In many cases the format and amount of data may
be inappropriate for the models. There may be several potential pitfalls for the
integration of data to calibrate, drive and evaluate a SOC model. Careful har-
monization of datasets and input estimation methodologies is essential to obtain
consistent results across regions and countries. Ideally, calibration and driving
data should match the scale of the model simulation. However, data limitations
will prompt the use of data of coarser resolution and/or mixing data of vary-
ing quality from different sources. The 1 km x 1 km scale for the GSOCseq is
required in the final product to allow comparisons among countries. However,
input datasets from different resolutions will be probably used, and this may
introduce uncertainties (e.g. climate data that usually occurs at coarser resolu-
tions). In the proposed approach, global sources are proposed (same resolution
and quality) but countries are encouraged to develop and deliver SOCseq maps
using the best available national climatic, soil, and land use data.

Data availability for model evaluation will also affect the assessment of model
accuracy, as well as its ability to support hypothesis testing. Although there is
a wealth of measured data from carefully monitored long—term agronomic ex-
periments to evaluate SOC models, especially in the northern hemisphere and
temperate climate conditions, there are comparatively few similar datasets from
natural ecosystems (Falloon and Smith, 2009). The suite of datasets may then
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become sources of uncertainty in SOC model predictions (Keenan et al., 2011;
Palosuo et al., 2012). Datasets are also often difficult to identify or compare
between SOC models, particularly in large—scale ecosystem or global analyses.
Furthermore, soil carbon measurements from available experiments are rarely
available in replicate and hence attributing uncertainty to these measurements,
and ultimately confidence in SOC model predictions is limited (Falloon and
Smith, 2003). Data availability to validate model performance will be a limita-
tion for many countries.

A meta—analysis should be conducted on the basis of the latest available local
and regional studies to estimate how agricultural practices affect average annual
C inputs, SOC sequestration rates and SOC stocks. However, meta—analyses
and comparisons have often suffered from datasets based on diverging defini-
tions (e.g. concerning definitions of sample depth, baselines for comparisons,
or the components of soil respiration), (Bahn et al., 2012). We hope that this
exercise, together with other GSP activities, will also be an opportunity for
the different countries to establish long—term observatories that will allow us
to monitor the effect of different management practices on SOC stocks under
different environments, and this will in turn allow us to improve model esti-
mations. We acknowledge that consistency among input datasets and results
would be improved if there was only one actor involved in the entire process.
However, it is of most importance that information is locally generated, involv-
ing local experts and institutions, building technical capacities in the process,
as this will encourage countries to implement national and subnational policies,
and to get involved in regional and global policies. Moreover, we believe that a
‘bottom—up’, country—driven approach, using country specific data and expert
knowledge, is a fundamental step for iterative improvements. As it is the case
of other GSP documents, this manual constitutes a living document, which will
be continuously improved and refined after its use and implementation.
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Annex I: troubleshooting

Common errors and considerations

The following section provides an overview of common issues and potential
solutions.

1. SOC stocks at Ty, Final SOC stocks, and Sequestration Rates with sig-
nificantly lower values than expected (refer to section 16.1)

— Possible reason & solution: The SOC and Clay layer were in the wrong unit
(e.g. the input SOC layer was in kg/m? instead of t/ha and Clay was in g/kg
instead of percent). The units need to be corrected and the whole process has
to be repeated.

2. High percent of -999 values, negative/positive values outside the expected
ranges that do not show a clear dispersion pattern

— Possible reason € solution: The input data was missing for several pixels,
and/or the differential equations calculated with the “euler” method did not
generate results. If these values do not exceed 10 percent of all pixel values and
are dispersed without any clear pattern they can be simply masked out.

3. More than 10 percent of clustered No data values (values equal to -999)
and negative/positive values outside the expected ranges
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— Possible reason & solution: Potential errors in the input data e.g. missing
values and/or wrong units are present. Additionally, errors can occur due to
potential model limitations including:

e Model limitations when simulating changes in soils with high initial SOC
content (>200 t/ha); percent clay).
e Model limitations when simulating changes in tropical conditions.

If more than 10 percent of the modeled area shows no values, the procedure
should be re-run using the “Isoda” method in the SoilR package to solve the
differential equations in scripts 13 to 15. For more information on the limitations
of the RothC model please refer to chapter 14.

4. Very high uncertainty values — Possible reason € solution: Minimum
and maximum values used for the various input layers (e.g. GSOCmap,
Clay, Temperature and Precipitation) when running the model should
be checked. They should represent the upper and lower limits of the 95
percent confidence interval. For more information on the approach used
for the estimation of uncertainty please refer to chapter 12.



Annex |l: quality assurance
and quality control

The following protocol was devised to provide National Experts with a step—by—
step guideline to perform a Quality Assurance (QA) and Quality Control (QC)
of the 29 GSOCseq products that result from the proposed methodology.

The following protocol does not provide any guidance in terms of uncertainty
estimation and validation. For more details and information on the estimation
of uncertainties and potential map validation strategies please refer to Chapter
12.

Quality assurance and quality control consist of activities to ensure the quality
of a particular result. Quality control is a reactive process that focuses on
identifying defects and errors while quality assurance is a proactive approach
aimed at preventing defects and errors. In the context of digital soil mapping,
both processes are often interlinked. A QA is interlinked with a QC when it
identifies defects and the QA remodels the process to eliminate the defects and
prevent them from recurring (Chapman, 2005)(Figure 16.1).

Each step in the following protocol should be considered in order to detect and
eliminate errors, address data inaccuracies and assess the output completeness.

229



230

Quality Assurance
@ prevention

o

Y

Quality Control
@ detection

Quality Assurance & Quality Control

Step 1 Check that the 29 products have been labeled
appropriately and are in the correct format

The following Table (Table 16.1) gives an overview of all the GSOCseq
products in alphabetical order.  Each product should include the ISO
3166-1 alpha-3 country code in its name. For instance, in the case of
Turkey, ISO_GSOCseq AbsDiff BAU_ Map030 should be changed to
TUR_GSOCseq_AbsDiff BAU_ Map030.

All 29 products must be georeferenced TIF (.tif) files.
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Overview of the 29 GSOCseq Products.

Product.overview

Formula

a. Absolute differences in SOC stocks:

ISO GSOCseq_AbsDiff BAU_Map030
ISO GSOCseq_AbsDiff SSM1_Map030
ISO GSOCseq_AbsDiff SSM2_ Map030
ISO GSOCseq__AbsDiff  SSM3_ Map030

b. Absolute sequestration rates with uncertainties:

ISO GSOCseq_ASR_ BAU_ Map030
ISO GSOCseq_ASR_ BAU_ UncertaintyMap030
ISO GSOCseq_ASR._ SSM1_Map030
ISO GSOCseq_ASR__SSM1_ UncertaintyMap030

ISO GSOCseq_ASR_ SSM2_ Map030
ISO GSOCseq_ASR_ SSM2_ UncertaintyMap030
ISO GSOCseq_ASR.__SSM3_ Map030
ISO GSOCseq_ASR._ SSM3_ UncertaintyMap030

c. Final SOC stocks after 20 years with uncertainties:

ISO GSOCseq BAU_ UncertaintyMap030
ISO GSOCseq_SSM_ UncertaintyMap030
ISO GSOCseq_ finalSOC_BAU_ Map030

ISO GSOCseq_ finalSOC__SSM1_ Map030
ISO GSOCseq_ finalSOC__SSM2_ Map030

ISO GSOCseq_ finalSOC__SSM3_ Map030
d. Relative differences:

ISO GSOCseq_ RelDiff SSM1_Map030
ISO GSOCseq_ RelDiff SSM2_Map030
ISO GSOCseq_ RelDiff  SSM3_ Map030

e. Relative sequestration rates with uncertainties:
ISO GSOCseq RSR,_ SSM1_Map030
ISO GSOCseq_RSR_ SSM1_ UncertaintyMap030
ISO GSOCseq_RSR.__SSM2_ Map030
ISO GSOCseq_ RSR_ SSM2_ UncertaintyMap030

ISO GSOCseq_RSR_ SSM3_ Map030
ISO GSOCseq_ RSR_ SSM3_ UncertaintyMap030

f. Initial SOC stocks at year 2020 (T0) with uncertainties:

ISO_GSOCseq_T0_Map030
ISO__GSOCseq_TO_ UncertaintyMap030

Scenario -
Carbon at T0

(Scenario -
Carbon at T0)/20

BAU - SSM

scenario

(BAU - SSM
scenario) /20
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Step 2 Check the projection and resolution of all
products

Open the products in QGIS or any other preferred GIS platform. Check that the
projection of all products is EPSG:4326 — WGS 84 (Layer properties). Check
that the spatial resolution (pixel size) (Layer properties) is equal to ~0.00833
degrees ; 1 km x 1km at the equator.

Step 3 Check that the products were generated for
agricultural and grazing areas only

Visualize the 29 products in QGIS or any preferred GIS platform. Load a
land—use layer to visually assess that the simulations were done exclusively on
agricultural areas.

Step 4 Check for units, range, and outliers

In the following section expected value ranges for each product category are
presented. It is important to note that the provided ranges represent a gross
approximation of what can be normally expected when running the proposed
methodology. Results that fall outside these ranges and that did not occur due
to common issues presented in the section 15.2 need to be carefully evaluated
based on local expertise and available literature.

The provided ranges can be compared in QGIS, R, or any preferred platform.
Descriptive layer statistics can be viewed in QGIS under Layer Properties in
the Information tab (Figure 16.2).

Soil organic carbon at TO (2020)

The product ISO__GSOCseq T0O _Map030 refers to the SOC stocks 0-30 cm in
t/ha used as input in the Forward phase.
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Check statistics of ISO__GSOCseq TO0_Map030 file. The provided reference
values may vary for each country depending on external factors that need to be
carefully evaluated. However, the following values can be generally expected:

o Most of the values should fall between 15-100 t/ha

e Minimum values should be greater than 0 (except for -999 Values, which
indicate no data values)

e -999 values should be masked out

o There should not be negative values other than -999

o Maximum values should not exceed 800 t/ha.

Final SOC stocks after 20 simulation years for all scenarios
(BAU, SSM1, SSM2, SSM3)

These products refer to the SOC stocks 0-30 cm in t/ha at the end of the
forward phase simulations for the 4 scenarios (BAU, SSM1, SSM2, SSM3).

Check the statistics of:

. ISO_GSOCseq_ finalSOC_BAU_ Map030

. ISO_GSOCseq_ finalSOC__SSM1_ Map030
. ISO_GSOCseq_ finalSOC_SSM2_Map030
. ISO_GSOCseq_ finalSOC_SSM3_ Map030

=W N

The provided reference values may vary for each country depending on external
factors that need to be carefully evaluated. However, the following values can
be generally expected:

o Most of the values should fall between 15-100 t/ha

o Minimum values should be greater than 0 (except for -999 Values, which
indicate no data values)

e -999 values should be masked out

o There should not be negative values other than -999

o Maximum values should not exceed 800 t/ha.

e Mean values SOC SSM3 > SSM 2 > SSM 1 > BAU
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Absolute differences in SOC stocks

The layers showing the absolute differences in SOC stocks refer to the SOC
change 0-30 c¢m in t/ha (Final SOC stocks vs initial stocks T0) for the BAU,
SSM1, SSM2, and SSM3 scenarios.

Check the statistics of:

. ISO_GSOCseq_AbsDiff  BAU_Map030

. ISO__GSOCseq_AbsDiff SSM1_ Map030
. ISO__GSOCseq_AbsDiff SSM2_ Map030
. ISO__GSOCseq_AbsDiff SSM3_ Map030

[ENEOCR NR

The provided reference values may vary for each country depending on external
factors that need to be carefully evaluated. However, the following values can
be generally expected:

o The expected range should fall usually between -80 to +80 t/ha (with an
approximate average of -15 to +15)

o Negative values can occur and indicate SOC losses between 2020 and 2040
(-999 indicate no data values).

e -999 values should be masked out

o Negative values other than -999 values should usually not exceed -80

e Maximum values should usually not exceed +80

o Check if extreme values (values > +80 and values < -80) are grouped or
dispersed (refer to Annex I, Common errors and considerations)

e Mean values in order of size SSM3 > SSM 2 > SSM 1 > BAU

Relative differences in SOC stocks

These products refer to the SOC change 0-30 c¢m in t/ha (Final SOC stocks in
SSM scenarios vs Final stocks BAU scenario) for the SSM1, SSM2, and SSM3

scenarios.

Check the statistics of:

1. ISO_GSOCseq_ RelDiff SSM1_Map030
2. ISO__GSOCseq_RelDiff SSM2_ Map030



236

3.

ISO_GSOCseq_ RelDiff SSM3_Map030

The provided reference values may vary for each country depending on external
factors that need to be carefully evaluated. However, the following values can
be generally expected:

Expected range usually falls between 0 to +80 t/ha

-999 values should be masked out

There should not be negative values other than -999

Maximum values should usually not exceed +80

Check if extreme values (values > +80) are grouped or dispersed (refer to
Annex I, Common errors and considerations)

Mean values SSM3 > SSM 2 > SSM 1

Absolute sequestration rates (ASR)

Absolute sequestration rates (ASR) refer to the SOC change rate 0-30 cm in
t/ha/yr (Final SOC stocks vs initial stocks TO divided by 20 years) for the BAU,
SSM1, SSM2, and SSM3 scenarios.

Check the statistics of:

Ll ol

ISO_GSOCseq_ASR_BAU_ Map030

ISO__GSOCseq ASR_ SSM1_Map030
ISO_GSOCseq_ASR_SSM2 Map030
ISO_GSOCseq ASR_SSM3_ Map030

The provided reference values may vary for each country depending on external
factors that need to be carefully evaluated. However, the following values can
be generally expected:

The expected range for all maps should fall between -4 to +4 t/ha

ASR BAU: usually most values from -0.5 to + 0.5, with median values
near 0 or lower

ASR SSM1: usually most values -0.4 to + 0.6, with median near 0 or
higher (similar to BAU)

ASR SSM2: usually most values -0.3 to + 0.7
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e ASR SSM3: usually most values -0.2 to + 0.8

e -999 and -49.95 Values (-999/20) indicate no data values. Values <=
-49.95 should be masked out

o Negative values other than -999 and -49.95 (meaning SOC losses between
2020 and 2040) should not exceed -4

e Maximum values should usually not exceed +4.

o Check if extreme values (> +4; <-4) are grouped or dispersed (refer to
Annex I, Common errors and considerations)

e Mean values SSM3 > SSM 2 > SSM 1 > BAU

Relative sequestration rates (RSR)

Relative sequestration rates refer to the SOC change rate 0-30 cm in t/ha/yr
(Final SOC stocks under SSM vs Final stocks BAU divided by 20 years) for the
SSM1, SSM2, and SSM3 scenarios, compared to BAU scenario.

Check the statistics of:

1. ISO_GSOCseq_RSR_SSM1_ Map030
2. ISO_GSOCseq RSR_ SSM2_Map030
3. ISO_GSOCseq_RSR_SSM3_ Map030

The provided reference values may vary for each country depending on external
factors that need to be carefully evaluated. However, the following values can
be generally expected:

o The expected range should fall between 0 to +4 t C/ha (with most data
being distributed between 0 to +1)

e« RSR SSM1: usually most values range from 0 to + 0.6, with median near
0 or higher (similar to BAU)

o RSR SSM2: usually most values range from 0 to + 0.7

e RSR SSM3: usually most values range 0 to + 0.8

e -999 and -49.95 Values (-999/20) indicate no data values. Values <=
-49.95 will be excluded from Global product

e There should not be negative values other than -999 and -49.95:

o Check if grouped or dispersed (refer to Annex I)

e Maximum values should usually not exceed +4.

o Check if grouped or dispersed (refer to Annex I)

e Mean SOC values in order of size SSM3 > SSM 2 > SSM 1
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Uncertainties

Check the statistics of:

ISO_GSOCseq_ASR_ BAU_ UncertaintyMap030
ISO_GSOCseq_ASR,__SSM1_ UncertaintyMap030
ISO_GSOCseq_ASR__SSM2_UncertaintyMap030
ISO_GSOCseq_ASR__SSM3_ UncertaintyMap030
ISO_GSOCseq_BAU_ UncertaintyMap030
ISO_GSOCseq_RSR__SSM1_ UncertaintyMap030
ISO_GSOCseq_RSR_ SSM2_ UncertaintyMap030
ISO_GSOCseq_RSR_ SSM3_ UncertaintyMap030
ISO_GSOCseq_SSM_ UncertaintyMap030
ISO_GSOCseq_T0_ UncertaintyMap030

CORXNS TR W
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The provided reference values may vary for each country depending on external
factors that need to be carefully evaluated. However, the following values can
be generally expected:

o Expected range all maps, usually between 0 to +200 percent (most data
generally between 15 to 50 percent)

e -999 indicates no data values. Negative values and -999 values should be
masked out

e Maximum values should usually not exceed +200 percent.

o Check if extreme values (>200 percent and <0 percent) are grouped or
dispersed (refer to Annex I, Common errors and considerations)



GLOBAL SOIL

The Global Soil Partnership (GSP) is a globally recognized mechanism established
in 2012. Our mission is to position soils in the Global Agenda through collective
action. Our key objectives are to promote Sustainable Soil Management (SSM)
and improve soil governance to guarantee healthy and productive soils, and
support the provision of essential ecosystem services towards food security and
improved nutrition, climate change adaptation and mitigation, and sustainable
development. | | %
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