Open In App

How To Add Regression Line Per Group with Seaborn in Python?

Last Updated : 25 Nov, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

In this article, we will learn how to add a regression line per group with Seaborn in Python. Seaborn has multiple functions to form scatter plots between two quantitative variables. For example, we can use lmplot() function to make the required plot.

What is Regression Line?

A regression line is just one line that most closely fits the info (in terms of getting the littlest overall distance from the road to the points). Statisticians call this system for locating the best-fitting line an easy rectilinear regression analysis using the smallest amount squares method.

Steps Required 

  1. Import Library.
  2. Import or create data.
  3. Use lmplot method. This method is used to add a regression line per group by simply adding the hue parameter with the categorical variable name.
  4. Use different arguments for better visualization.

Example 1:

Python3
# import libraries
import seaborn

# load data
tip = seaborn.load_dataset('tips')

# use lmplot
seaborn.lmplot(x="total_bill",
               y="size",
               hue="sex",
               data=tip)

Output:

Example 2:

Python3
# import libraries
import seaborn

# load data
tip = seaborn.load_dataset('tips')

# use lmplot
seaborn.lmplot(x="total_bill",
               y="tip",
               hue="day",
               markers='*',
               data=tip)

Output:

Example 3:

Python3
# import libraries
import seaborn

# load data
iris = seaborn.load_dataset('iris')

# use lmplot
seaborn.lmplot(x="sepal_length",
               y="sepal_width",
               hue="species",
               markers='+',
               data=iris)

Output:


Article Tags :
Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy