Open In App

plotly.figure_factory.create_bullet() in Python

Last Updated : 21 Jul, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

Plotly library of Python can be very useful for data visualization and understanding the data simply and easily.

plotly.figure_factory.create_bullet

This method is used to create bullet charts. This function can take both dataframes or a sequence of dictionaries.

Syntax: plotly.figure_factory.create_bullet(data, markers=None, measures=None, ranges=None, subtitles=None, titles=None, orientation='h', **layout_options)

Parameters:

data: either a list/tuple of dictionaries or a pandas DataFrame.

markers: the column name or dictionary key for the markers in each subplot.

measures:  This bar usually represents the quantitative measure of performance, usually a list of two values [a, b] and are the blue bars in the foreground of each subplot by default.

ranges: This parameter is usually a 3-item list [bad, okay, good]. They correspond to the grey bars in the background of each chart.

subtitles: the column name or dictionary key for the subtitle of each subplot chart. 

titles ((str)) – the column name or dictionary key for the main label of each subplot chart.

Example 1: 

Python3
import plotly.figure_factory as ff


data = [
  {"label": "revenue", 
   "sublabel": "us$, in thousands",
   "range": [150, 225, 300], 
   "performance": [220,270],
   "point": [250]},
  
  {"label": "Profit", 
   "sublabel": "%", 
   "range": [20, 25, 30],
   "performance": [21, 23], 
   "point": [26]},
  
  {"label": "Order Size", 
   "sublabel":"US$, average",
   "range": [350, 500, 600],
   "performance": [100,320],
   "point": [550]},
  
  {"label": "New Customers", 
   "sublabel": "count",
   "range": [1400, 2000, 2500],
   "performance": [1000, 1650],
   "point": [2100]},
  
  {"label": "Satisfaction", 
   "sublabel": "out of 5",
   "range": [3.5, 4.25, 5],
   "performance": [3.2, 4.7],
   "point": [4.4]}
]

fig = ff.create_bullet(
    data, titles='label',
    subtitles='sublabel', 
    markers='point',
    measures='performance',
    ranges='range', 
    orientation='h',
    title='my simple bullet chart'
)

fig.show()

Output:

Example 2: Using a Dataframe with colors

Python3
import plotly.figure_factory as ff
import pandas as pd


data = [
    {"title": "Revenue",
     "subtitle": "US$, in thousands",
     "ranges": [150, 225, 300],
     "measures":[220, 270],
     "markers":[250]},

    {"title": "Profit",
     "subtitle": "%",
     "ranges": [20, 25, 30],
     "measures":[21, 23],
     "markers":[26]},
    
    {"title": "Order Size",
     "subtitle": "US$, average", 
     "ranges": [350, 500, 600],
     "measures":[100, 320],
     "markers":[550]},
    
    {"title": "New Customers", 
     "subtitle": "count",
     "ranges": [1400, 2000, 2500],
     "measures":[1000, 1650], 
     "markers":[2100]},
    
    {"title": "Satisfaction", 
     "subtitle": "out of 5",
     "ranges": [3.5, 4.25, 5], 
     "measures":[3.2, 4.7],
     "markers":[4.4]}
]

fig = ff.create_bullet(
    data, titles='title', 
    markers='markers',
    measures='measures',
    orientation='v',
    measure_colors=['rgb(14, 52, 75)', 'rgb(31, 141, 127)'],
    scatter_options={'marker': {'symbol': 'circle'}},
  width=700)

fig.show()

Output:


Article Tags :
Practice Tags :

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy