Modeling five Great Lakes ice-wave-circulation system using unstructured-gerid coupled models
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applied to all five Great Lakes simultaneously to simulate ice-wave-circulation system and thermal structure from 1993 to 2018. Model results are compared to available pl 1 I SWH difference (m)
observations of currents and temperature and previous modeling work. Maps of climatological circulation for all the five Great lakes were presented. The model successfully 124} 1 | 1€ 46|
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accurately reproduce the ice-attenuated waves when validated by wave observations from bottom-moored AWAC; moreover, the AWAC wave data show quick responses A _ =47
between waves and ice, suggesting a sensitive relationship between them and arguing that accurate ice modeling 1s necessary for quantifying wave-ice interaction. The . i =461
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Figure 4. AWAC mooring locations (purple Figure 5. (a) and (b) The monthly-mean NIC satellite-measured ice concentration over =46
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feedback will be considered 1n next stage.
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Figure 8. Comparisons of /4, modeled by the wave-only (EXP9) and coupled-wave-ice (EXP10) experiments with / observed by
AWAC at stations 4a, 5a, and 6a in February 2011. (b), (d), and (f) The comparisons between the EXP10-modeled ice concentration and Contacts

the NIC product for stations 4a, 5a, and 6a, respectively. Cyan, yellow, and gray shadings mark off Period 1 (February 01-February 14, Jia Wang: jia.wang@noaa.gov
2011), Period 2 (February 18—February 20, 2011), and Period 3 (February 23—March 02, 2011), respectively. Peng Bai: peng.bai@noaa.gov

Figure 3. FVCOM-simulated summer circulation (upper left), winter circulation (upper right), and August lake surface temperature (lower right);
Satellite measured August lake surface temperature 1s on the lower left).




