

Philip Chu¹, Eric Anderson¹, Deborah Lee¹, Pengfei Xue² Theo Baracchini³, and Alfred J. Wüest^{3,4}

- ¹ NOAA Great Lakes Environmental Research Laboratory (GLERL) Ann Arbor, Michigan, USA ² Michigan Technological University, Houghton, Michigan, USA
- ³ Physics of Aquatic Systems Laboratory, EPF Lausanne, Switzerland; ⁴Eawag, Switzerland

Developing a Sustainable Lake Forecasting System

INTRODUCTION

- ◆ A Coastal Forecasting System uses weather forecasts and observations as inputs to a numerical computer model to make a prediction of water levels,
 3-D lake temperature, currents, wave heights and related environmental variables.
- Numerical models have been developed to simulate and predict physical, biological and ecological processes of oceans and lakes and now can be integrated and run simultaneously at a much higher spatial and temporal resolutions with the advances in high performance computing and software engineering.
- New approaches such as model coupling, data assimilation and ensemble forecasting techniques have been applied to hydrodynamic and weather models to improve the accuracy of model predictions.
- We use the NOAA Great Lakes Operational Forecasting System as an example to highlight the development of such an operational forecasting system, to describe current modeling/data technologies and to identify challenges of transition from research to operational systems as well as lessons learned that may benefit the European lakes research community.

LESSONS LEARNED AND CHALLENGES

- Real-time monitoring networks
- Take full advantage of remote sensing and insitu datasets
- Bi-national collaboration
- Engage stakeholders and users early
- Model coupling and Data Assimilation
- Competent teams that trust each other
- Frequent communications
- Adequate resources (staff and funding)
- Standard Operating Procedure and training
- Double resolution: 10X
- Model Coupling: 10X
- Data Assimilation: 10X
- Ensemble approach: 30X
- > 30,000X existing HPC power

