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Introduction

e The purpose of this study was to assess how state-of-the-art numerical
models perform in simulating turbulent heat fluxes over the Great Lakes,
which is tied to evaporation.

Water vapor budget equation:

P=E-F, - dQ/dt (1)

where P is precipitation, E is evaporation, F, is divergence of water vapor
and dQ/dt is the change is water vapor mass over time.

FVCOM The unstructured-grid, CICE (Los Alamos Sea Ice CFSv2 (Climate Forecast System 200 m — 3 km / half hourly
Finite-Volume Model) version 2 Operational Analysis)
Community Ocean SOLAR (NOAA’s Great Lakes  Interp (Interpolated
Model Environmental Research Lab) Observations)
COARE (Met Flux Algorithm)  HRRR (High Resolution Rapid
Refresh)
CFSv2 Climate Forecast System version 2 0.2 degrees / hourly
NAM North American Mesoscale Forecast System 12 km / 6-hourly
LLTM Large Lake Thermodynamic Model Basin Average / daily
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Figure 2 shows a map of Lake Erie. The red dots indicate locations of the three different P 52
NDBC buoys. The blue squares indicate the locations of the two eddy covariance ( erm )
measurement sites.

Meteorological
forcing elements
were validated
using
observational data
from three buoy
sites (Fig. 3a-c).

3D mean water
temperature was
calculated to show
corresponding
lake heat content
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Figure 3 shows lake surface temperature at (a) 45005, (b) 45132, and (c) 45142, as well
as change of 3-D mean water temperature (d). The grey region represents the max and
min of the nine FVCOM model runs.

o All the
model runs
captured
the sharp
rise in LE

and H on
the 17,

e NAM and
CFSv2
significantly
overestim-
ated, likely
due to their
coarser
spatial
resolution.
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Figure 4 shows the comparison between the simulated and observed latent heat and sensible heat
flux at Long Point (a,b) and PermS2 (c,d). The grey region represents the max and min of the nine

FVCOM model runs.

e The water

vapor budget
eguation
shows
majority of
the moisture
came from
Lake Erie and
not a larger
synoptic
system.
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Figure 5 shows time series of the lake-wide mean (a) latent heat and (b) sensible heat fluxes
from the model results. The grey region represents the max and min of the nine FVCOM
model runs.
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Figure 6 shows simulated lake-wide cumulative evaporation (primary y-axis) and snow water
equivalent (SWE, secondary y-axis). “LD” and “SD” denotes values over the large and small

domain.
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Figure 7 shows the contribution of water vapor to the control volume integrated over time. Black
lines show the amount of precipitation, P, red lines show the amount of evaporation, E, the green
lines show the water vapor content, and the blue lines show the horizontal divergence, F,.
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Figure 8 shows the modeled spatial snow water equivalent from CFSv2, NAM, and the observational analyses
from SNODAS.

e Observational data from SNODAS shows an increase of SWE along the
east of Lake Erie during the duration of the LES event.

e These increases were somewhat captured by the CFSv2 and NAM but
both missed the intensity observed in the Buffalo area.

Conclusion

e The FVCOM-simulated LE and H agreed with direct flux measurements
better than other models.

e This study emphasized the importance of accurate simulation of
turbulent heat fluxes to better predict these intense LES events in the
Great Lakes region.
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