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Introduction Ice thickness distribution 7 —
The unstructured-grid framework has advantage in local grid refinement and representing complicated coastlines in the Laurentian . Wide spectrum in the observed ice thickness (5-100 cm) is captured by the multi- | ﬂ’& p - S ﬁ //‘ |
Great Lakes. In the context of the regional climate model development and the next generation operational Great Lakes Coastal category ice thickness distribution model with the ridge parameterization in FVCOM- . o 7
Forecasting System at CILER and GLERL, we configured an unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) to Lake Ice, while the single category model in ICEPOM produced a narrow peak in ~20 cm. ; | /”j
Erie to simulate seasonal ice cover and hydrodynamics. The model is coupled with an unstructured-grid, finite-volume version of the Los || ° Models captured the observed ice thickness, but in the eastern basin (downwind), | '*\ *‘/ —
Alamos Sea Ice Model (UG-CICE, Gao et al., 2011). The simulation results are validated in comparison with the satellite and in-situ they tend to overestimate ice thickness. EE’S;ﬁ,eat:)'ﬁi”f:fer222i“£§rr?§fétzge§y o i
observations, as well as the previous modeling results based on the Princeton Ocean Model coupled with an ice model (ICEPOM, (GLERL) and U.S. Coast Guard since 2008.
Fujisaki-Manome et al. 2013). The sensitivity study of ice mechanical deformation parameters is conducted to identify adequate values ’ -
for the freshwater application. We also tested the original 2-time-step Euler forward scheme in time integration by the central difference ST | _ T T T T T ‘ :
(i.e., leapfrog) scheme to assure a neutrally inertial stability. gft’]t: gfi’i‘;r";:f o Dote: Observation - . :
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»  Both models are successful to reproduce annual maxima and tend to underestimate the sharp development of ice extent in January. AL Eluurz'fzcé*;gM é U:A Lk . |
« RMSEs are similar between the two models. &:4\ | | : by o o EVCOM
« |CEPOM tend to simulate too fast ice melting in spring, while FVCOM-Ice simulates decline of ice extent closer to the observation. N B PSS == s ———— . 0_ " :1“ ~ Blue: ICEPOM
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water correction In the ice +  Winter thermal structure was better simulated by FVCOM-Ice than by ICEPOM.

period s.||ght|y.|mproved the ice . Diffuse thermocline in the model results was slightly improved by introducing the central difference time integration scheme.
extent simulation. 0 W w
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+  Atmospheric forcing: Interpolated meteorology based on the observations from the National Data Buoy Center and the Coastal e s — 200s Zoolg et
Marine Automated Network. Over-land/over-water correction was applied (Croley, 1989). e — e Fig. Temperature profiles at the station .‘not?ie eastern basin (#12). Top: FVCOM-Ice
. S tivity study: | | R S results with the centered difference time integration scheme. Bottom: the difference
ensitvity study. Fig. Water temperature profile. Top: Thermistor observations are in 2005 from International Field  petween the centered difference and the default schemes, i.e. Euler forward scheme
« Tunable parameters in ice mechanical deformation Year on Lake Erie (IFYLE). Middle: FVCOM-Ice. Bottom: ICEPOM. and the modified Runge-Kutta scheme.
« Over-land/over-water correction to the interpolated meteorology was suppressed linearly with areal ice fraction.
Summary
The ice thick distribution of ridges (Li b et al. 2007 Ice strength P (Li b et al. 2007 . . .
e;e(h) feQE‘E‘S(h'SZ“ﬁ%’ ndges (Lipscomb et al. 2007) ce strength P {Lipscomb et al. 2007) «  FVCOM coupled with UG-CICE (FVCOM:-Ice) was configured and tested for a freshwater lake , Lake Erie.
A= uht .- tunable parameter [m"] P=0C1GB2, [—aPnhi+%(Him”Hmm“?V)] Cy: empirical parameter « FVCOM-Ice performs similarly to ICEPOM, but outperforms in reproducing slow melting in spring and in reproducing the ice thickness
vdrod _ distribution.
r Nnami ' : : : L : : : : :
. ydrodyna : €S Ice physics + The modeled thermocline, which was somewhat diffusive in comparison with the thermistor measurements, was slightly improved
overning equations rimitive equations _ : : : . : :
J °1 A UG-CICE ICEPOM thermal structure by introducing the central difference time integration scheme.
Resolution 200m-3km (horizontal), Rheology Elastic-Viscous-Plastic
21 layers (o coordinate) Thickness distribution | Multi categories Single category Ref
ererences
turbulence model Mellor and Yamada 2.5-level Closure o _ _ _ _ o o _ _
Model (vertical) — Fujisaki (Manome), A., J. Wang., X. Bai, G. Leshkevich, and B. Lofgren (2013), Model-simulated interannual variability of Lake Erie ice cover, circulation,
Smagorinsky (horizontal) Ridging Yes No and thermal structure in response to atmospheric forcing, 2003-2012, J. Geophys. Res. Oceans, 118, doi;10.1002/jgrc.20312.
_ _ _ Albedo Function of surface temperature |Constant 0.7 (0.5 when Lipscomb, W.H., E. C. Hunke, W. Maslowski, and J. Jakacki (2007), Improving ridging schemes for high- resolution sea ice models. J. Geophys. Res.—
a’[mOSpheI‘IC fOI’Clng |n’[erp0|a’[ed observations. Hourly. and thickness meltlng) OceanS, 112C03891, doi’10.1029/2005JC003355.
Time integration schemes Euler forward (internal mode) Gao, G., C. Chen, J. Qi, and R. C. Beardsley (2011), An unstructured-grid, finite-volume sea ice model: Development, validation, and application, J.
+modified Runge-Kutta (external Geophys. Res., 116, CO00DO04, doi:10.1029/2010JC006688.
mode) Thermodynamics Multi layer (4 layers) O layer
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