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• Bayesian hierarchical modeling provides a statistically rigorous way to accommodate multiple sets of bloom observations and non-
linear model interactions.  Furthermore, the use of gamma error distributions outperformed  models based on the more-common normal 
and log-normal distributions (not shown). 

 

• Spring TP load (February-June) is a significant predictor of late summer (August-September) peak bloom size, and results suggest that 
much of the particulate phosphorus (i.e., non-DRP) load may become bioavailable over the course of a summer. 

 

• Results suggest Lake Erie has become increasingly susceptible to cyanobacteria blooms over the last decade.  While neither water 
temperature nor nutrient loading (P or N) directly explained this trend, more research into long-term bloom dynamics would beneficial.  
The increasing trend in bloom susceptibility will likely complicate effort to reduce HABs in western Lake Erie. 

 

Abstract 

Over the past decade, there has been a dramatic rise in the magnitude of harmful 
algal blooms (HABs) in western Lake Erie.  These cyanobacteria blooms have 
drawn attention to phosphorus loading, a common driver of freshwater 
productivity.  However, it is unclear how much of the year-to-year variability in 
bloom size is explained by anthropogenic phosphorus loading, and how much 
variability is related to other factors, including weather/climate drivers and 
measurement error.  Here, we aim to advance the state-of-the-art in HAB 
forecasting by explicitly quantifying uncertainties in late-summer bloom 
observations, and propagating them through a Bayesian modeling framework 
that relates bloom size to phosphorus load.  Because of the need to accurately 
represent predictive uncertainty, different statistical formulations are critically 
evaluated through cross validation.  A model based on a novel implementation of 
a gamma error distribution is found to provide the most realistic uncertainty 
characterization, as well as high predictive skill (Obenour et al., 2014).  Our 
results also underscore the benefits of a hierarchical approach that allows us to 
assimilate data sets from multiple sources.  Finally, our modeling analysis 
suggests that Lake Erie has become increasingly susceptible to large 
cyanobacteria blooms.  We explore the nature of this change and assess 
potential biophysical explanations. 
 

The model predicts annual peak bloom size in Western Lake Erie as a function of 
spring phosphorus loading from the Maumee River (Figures 2, 3). The model also 
includes a temporal term that captures changes in the lake`s susceptibility to 
HAB formation: 
 

 𝑧̂𝑖 =  �𝛽𝑏 + 𝛽0 + 𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖
𝛽𝑏

  for𝛽0 + 𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖 > 0  
  for𝛽0 + 𝛽𝑤𝑊𝑖 + 𝛽𝑡𝑇𝑖 < 0   

 
where 𝛽𝑏, 𝛽0, 𝛽𝑤, and 𝛽𝑡 are model parameters that predict bloom size, 𝑧̂𝑖, in year 
i, in terms of the bioavailable fraction of total phosphorus (TP) load, 𝑊𝑖, and 
model year, 𝑇𝑖. The parameter 𝛽𝑏 is a background bloom level representing the 
bloom size in years of minimal phosphorus loading. The parameter 𝛽0 is an 
intercept term (1000 MT bloom dry weight), and 𝛽𝑡 represents how that intercept 
changes over time. The parameter 𝛽𝑤 represents the unit increase in bloom size 
per unit increase in P load (1000 MT/mo).  
 
  

Using a Bayesian calibration process, prior 
information about model parameters is updated based 
on model relationships and observed bloom data 
(Figure 5). The updated model estimate for θ suggests 
that around 50% of Maumee PP loading becomes 
bioavailable, though there is considerable uncertainty.  
Also note that trend parameter, 𝛽𝑡 , is significantly 
positive.  The load weighting parameter, 𝛽𝜓, suggests 
that loads occurring prior to February (<2) will not 
contribute directly to the summer bloom. 
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Bloom Response Data 

Three sets of bloom observations are used in this study (Figure 1).  The first set is 
developed from MERIS satellite remote sensing imagery, per a procedure 
developed by NOAA (Stumpf et al., 2012).  The second set of observations is 
developed from a University of Toledo field monitoring program (Bridgeman et al., 
2013).  The third set is developed from SeaWiFS satellite remote sensing imagery 
by MTRI under contract to the Water Center, using procedures similar to 
Shuchman et al. (2006).  Together, these sources cover the period of 1998-
present. 

Figure 1:  Illustration of MERIS remote sensing bloom estimates and field 
sampling bloom estimates. 

Phosphorus Loading Data 

Nutrient loads (TP and DRP) are generated from Maumee River nutrient 
concentration data collected by Heidelberg University’s National Center for Water 
Quality Research (NCWQR, http://www.heidelberg.edu/academiclife/distinctive/ 
ncwqr/data), and stream flow data collected by the United States Geological 
Survey (USGS, http://www.usgs.gov/water) at Waterville, Ohio (USGS Station 
04193500).  Nutrient concentration data are available on a near-daily basis, and 
missing concentrations are imputed using a local regression with flow. 
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Figure 2:  Deterministic load-bloom 
relationship 

For each year, spring P load is determined as a weighted average of January to 
June (m = 1 to 6) monthly loads, based on the following equations, where 𝛽𝜓 is a 
weighting parameter: 
 

 𝑊𝑖 = 1
∑𝜓𝑚

∑ 𝑤𝑖,𝑚𝜓𝑚6
𝑚=1  where         𝜓𝑚 =  �

0
𝑚 + 1 − 𝛽𝜓

1 

         for 𝑚 ≤  (𝛽𝜓−1)  
         for (𝛽𝜓 − 1) < 𝑚 < 𝛽𝜓

for 𝑚 ≥ 𝛽𝜓
  

 
The bioavailable fraction of the TP load was estimated as the sum of the 
bioavailable fractions of Dissolved Reactive Phosphorus (DRP) and Particulate 
Phosphorus (PP) loads:  Bioavailable P = DRP + θ*PP.  DRP is expected to be 
100% readily available to algae (Lambert, 2012), while only a fraction θ of the PP 
load is expected to be available (DePinto et al., 1981; Baker et al., 2014). The 
parameter θ was estimated probabilistically, together with other model 
parameters, through Bayesian inference (Obenour et al., 2014).  

Two probabilistic expressions relate predicted 
values to the bloom observations, 𝑧𝑖,𝑗 : 
 
 𝑧𝑖,𝑗 ~ 𝐺𝐺𝐺𝐺𝐺 𝑧̂𝑖 + 𝛾𝑖 2/𝜎𝜖2, 𝑧̂𝑖 + 𝛾𝑖 /𝜎𝜖2   
 
𝛾𝑖 ~ 𝐺𝐺𝐺𝐺𝐺 𝑧̂𝑖

2/𝜎𝛾2, 𝑧̂𝑖/𝜎𝛾2 − 𝑧̂𝑖  
 
The gamma distributions have shape (gα) and rate 
(gβ) parameters (i.e., Gamma(gα, gβ)) such that the 
mean and variance are gα/gβ and gα/gβ

2, 
respectively (Figure 4). Model prediction errors (𝛾𝑖) 
are drawn from a gamma distribution with variance 
𝜎𝛾2, and observation measurement errors are drawn 
from a gamma distribution with variance 𝜎𝜖2.  Here, 
subscript j differentiates between multiple 
observations of the same bloom. 

Results Model Development 
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Figure 4:  Example gamma 
probability distributions for 

different bloom sizes. 

Figure 3:  DAG representation of bloom forecast 
model. Circles represent the modeled variables and 

parameters, rectangles represent the input data, and 
arrows represent the conditional dependencies. 

Subscripts S and B refer to the Stumpf and Bridgeman 
observations (Obenour et al., 2014). 

Figure 5: Prior (dashed) and marginal posterior (solid) model parameter distributions.  
The two distributions for σϵ represent the measurement error for (1) Stumpf and 

Bridgeman observations and (2) SeaWiFS observations.  

The model explains 91% of the annual variability in the Stumpf and Bridgeman 
bloom observations. To assess the model`s performance when predicting data 
not included in the calibration process, a leave-one-year-out cross-validation 
was carried out, and performance was similar (R2=81%).  Performance was 
somewhat lower for SeaWiFS observations, which are expected to have larger 
measurement error.  The model is used to generate load-response curves 
(Figure 6) to aid in forecasting and management. 

A change-point version of the model was also developed, but it does not explain 
long-term variability as well as the gradual (linear) trend.  Nitrogen loading and 
temperature were also considered, but did not improve model performance.  
Future research will explore climate variability and invasive species as potential 
drivers of long-term bloom susceptibility. 

Figure 6: Load-response curve, with median prediction 
(thick lines), mean prediction (thin lines), and 95% predictive 

intervals (dashed). Grey lines: 2008 lake conditions, black 
lines: 2013 lake conditions. Bloom observations are shaded 

on a linear gradient from white (1998) to black (2013).  

Summary 
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