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Introduction

In order to protect public health, the amount of bacteria at Great Lakes beaches is
monitored throughout the swimming season (typically late May through early
September). This monitoring is routinely carried out by local county health departments
but, due to the limitations of analysis methods, test results cannot be obtained in a timely
manner and beach closures and advisories are commonly based on day-old bacterial
monitoring results. The need to advance predictive ability and move beyond the current
closure protocol is essential to protecting human health. Scientific and management
communities alike are increasingly interested in linking watershed and nearshore
processes in order to predict the fate and transport of pollutants, including bacteria, for
application in decision support tools.

Unfortunately, traditional monitoring programs designed for beach management are not
sufficiently informative to understanding the spatio-temporal variability of water quality
at scales relevant to process modeling. During the ice free periods of 2012, 2013, and
2014 we carried out an increasingly intensive monitoring program specifically designed to
support the development of a linked watershed-hydrodynamics modeling framework
simulating the impacts of the Clinton River on the nearshore bacterial water quality in
Lake St. Clair.

Although our project has focused on a single study site, the proximity of major tributaries
to Great Lakes beaches makes this modeling framework potentially relevant to hundreds
of world class freshwater beaches in this region (figure 1).

Figure 1: Great Lakes swimming
beaches in the United States
colored by their distance to the
nearest major tributary.
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Study Site

Located between Lakes Huron and Erie, Lake St. Clair is the smallest lake within the
Laurentian Great Lakes system (figure 2B,C) and one of the most densely utilized lakes
for recreational purposes.

The Clinton River watershed encompasses 1965km? of southeast Michigan draining via 2
outlets, the natural channel and a constructed spillway, to Lake St. Clair (figure 2D). Our
sampling area includes the downstream reach of the Clinton River and 19.7km of Lake St.
Clair shoreline including 2 popular public swimming beaches.
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Figure 2: A) Geographical context for the Laurentian Great Lakes within North America.
B) Location of Lake St. Clair within the Great lakes system C) Extent of study site in the
Clinton River watershed and Lake St. Clair D) Map of offshore, shoreline, and
watershed sampling sites. Public swimming beaches are also indicated.

Monitoring Program Design
Watershed Monitoring

Watershed monitoring provides observed data for the calibration and verification
of the watershed hydrology model. This data is also used to increase our
understanding of water quality variability over the hydrograph and how to most
appropriately scale daily modeled loading output from the watershed model to
hourly load input to the hydrodynamics model.

Three sampling sites were established in the lower Clinton River; 1 site upstream
of where the spillway splits from the natural channel and 2 sites downstream of
this split — one in each channel (figure 2D). Grab samples were collected weekly
from all 3 sites for 3 years during ice free periods totaling 176 samples. In
addition to grab samples, 6 multi-hour sets of sub-hourly samples were collected
at site B1 in 2013. In 2014 an automated sampling station was established at site
B1 in order to collect samples at high temporal frequency (hourly) during high-
flow, rainfall events during the summer and early fall. Hourly samples were also
collected at this location during baseflow conditions in 2014.

Shoreline Monitoring

Shoreline monitoring data is used for hydrodynamic model calibration and
verification. It also helps inform how to scale load to hydrodynamic model
particles.

Routine shoreline monitoring was conducted at 19 locations and constitutes the
core of our monitoring program (figure 2D). In accordance with regulatory
guidelines, grab samples were collected from approximately 35cm below the
water surface at approximately 1 meter depth. Samples were collected, typically
weekly, between June 2012 and October 2014 totaling 938. In additional to
weekly samples, 13 sets of sub-hourly samples were collected from sites C2, D4,
and D3 during the summer of 2013 (figure 2D).

Offshore Monitoring

Like other types of sampling, offshore monitoring provides observed values for
model output comparison. The unique value of offshore data is that it allows for
comparison of model accuracy near the model boundaries, that is the shoreline
and nearshore zone where we are most interested in, against where the model is
already known to be well resolved (offshore).

During the 2013 field season samples were collected along offshore transects
perpendicular to the shore (figure 2D). These samples were collected monthly. In
2014, offshore monitoring expanded to include additional sampling transects
parallel to the shore running the length of our study area (figure 2D). Sampling
frequency was also increased to 1-2 times monthly. A total of 171 offshore
samples have been collected.

Spatial Variability

Observed E. coli varied spatially in the nearshore environment (figures 3 and 4).
Sampling sites located nearest to each other did not always exhibit the most
similar E. coli concentrations. The magnitude of variability differed between
sites but remained relatively the same at each site annually (figure 3).

Temporal Shoreline Variability

Variation in E. coli concentration was observed on sub-hourly (figure 5), daily
(figure 4), weekly (figure 3) , and annual (figure 3) time steps. The magnitude of
variability depends on the site and the period of sampling (figures 3, 4, and 5).
Daily and sub-hourly variability on a single day is also important to acknowledge
when the concentration is at or near the decision threshold. Due to this
inherent variability, a management decision made according to common
practice, could be different depending on precisely when the sample was
collected (figures 4 and 5).

Turbidity
NTU or FNU

o - 2012 . 500
B T =
O BEi T T —
P T T %400 0 o3
i TS S &
N B} Q T **EHQ S 300
H D ﬁ | BHEE+ : o 0C2
N LT T T - =
O T LR = 200
5 O BEEBI H S A E2
o ! & g Lad i i W
g - 100 V'S O
< 2013 ? A
v 00 e
T o & &  wg * | % g%
" o . i : - _ May June July
Z\ Q [ e T H* 19 20 21 9 10 11 14 15 16
i s I
£ < EQ Q O e -
§ = 0L Q HB HHQB H Figure 4: Daily observed E. coli concentrations at selected
> SERE R SRR shoreline sites during three 2014 events.
o | - R -
= B T T i
= © B B B 6 ! iy
S - - g - E3s0
W i =
o 201il o E 5 2150
s . 2 =
o) T o . - C 4 - S150 2
- | . f o ': W 10:45 11:45 12:45 13:45
: — - : - = Time
< R I QHE 37
e T | _
N il EQ QBE - S 2 A -
i ; T T L4 ~
T olTT Lt z : | s
°1 1. L s 1- 5
A1l A3C2 C4 D3 D5 D7 E2 E4 E6 S 5 |
A2 C1 C3D2D4 D6E1 E3 E5 -
Flgure. 3: -Varlz-;\blllty of E. coli at shore!me May 22 June 24 July 8 July 29
sampling sites in 2012, 2013, and 2014. Sites
are arranged along the x-axis in the same Figure 5: E. coli variability in sub-hourly sampling at Site C2 on
order which they are ordered along the select 2013 dates. Subset plot shows observed sub-hourly results
shoreline southwest to northeast. Individual on May 22, 2013. Horizontal gray reference line indicates threshold

boxplots represent the weekly variability.

value at which a beach is closed.

Sub-hourly Watershed Variability

During baseflow, little variability in E. coli was observed in the river. When we observe discharge response to a rainfall
event however, we observe E. coli concentration rising with discharge but lingering well after discharge has returned to
baseflow (figure 6). This unmatched pattern in rainfall response is important to understanding the distribution of E. coli
load over the hydrograph. Furthermore, turbidity, which is often used as a rapid indicator for E. coli, does exhibit a

response similar to discharge but does not match that of E. coli concentrations (figure 6).
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Correlations between observed E. coli and
indicators of river influence

We observed that each sampling site has a different relationship to the presence of
river tracer as well as flow and load influences from the river on nearshore water
quality (figure 7). Because there may be unmodeled sources of E. coli, such as
waterfow| defecation, contributing to the nearshore water quality as well, these
simple correlations help us identify the general relationship between E. coli and river
influence at any given site. For example, at site A1 we observe a negative correlation
to all tracers, flow, and load measurements. In contrast, site D3 expresses all positive
correlations with these factors. At other sites we observed little to no correlations
(E6), or a mix of positive and negative correlations (C1) (figure 7).
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Figure 7: Visual display of correlations between E. coli and indicators of river influence. Dots
are scaled by both color and size. Larger dots indicate stronger correlations, smaller dots
weaker correlations. Darkening shades of red represent increasingly negative correlations
while darkening shades of blue indicate increasingly positive correlations. ‘Tracer dye’ is the
modeled ratio of river to lake water concentration produced by the hydrodynamics model-.
Modeled flow and modeled load correlations are made with E. coli in the spillway channel
(spill), in the most downstream reach of the natural channel (nc), and upstream of the
spillway/natural split at site B1. Please see poster B13F-0250 for more information about the
hydrodynamics and loading models.

Conclusions

- Monitoring to inform knowledge of in situ E. coli spatial variability indicates that modeling
frameworks must be resolvable to the scale of meters.

- Monitoring at multiple temporal scales provides a basis for determining the most
appropriate interval water quality models should operate at in order to be most useful as
decision-support tools.

- A high temporal understanding of how the pollutant load is distributed over the
hydrograph is critical in order to be able translate daily modeled washoff (hydrologic
model) into hourly load input for a hydrodynamic-particle model.

- We expect the hydrodynamic model to perform best at locations where there are strong
relationships, positive or negative, between observed E. coli and indicators of river
influence.
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