

# A Dynamical Downscaling study in the Great Lakes Region Using WRF/Lake: Historical Simulation

Chuliang Xiao<sup>1</sup>, Brent Lofgren<sup>2</sup>

<sup>1</sup>Cooperative Institute for Limnology and Ecosystems Research, University of Michigan, Ann Arbor <sup>2</sup>NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan



#### Introduction

The latest WRFv3.6.1 with an updated 1-D lake scheme is employed to dynamically downscale the historical simulation produced by a CMIP5 model, GFDL-CM3, from 1970 to 2004. Our interests are focused on the lake-air interaction and associated surface processes in the Great Lakes, the largest group of fresh water bodies on Earth, trying to understand the climate and climate change in this region.

# WRF/Lake Model

A 1-D lake Model originated from the CLM4.5 (Subin et al. 2012) is implemented in the latest WRF model (Gu et al. 2013). It is a mass and energy balance scheme with **20-25 model layers**, including up to **5 snow layers** on the lake ice, **10 water layers**, and **10 soil layers** on the lake bottom, based on the **actual lake points** and **lake depth**.

# **Downscaling Setup**

| GFDL-CM3       | 3D          | Surface        | Soil    |
|----------------|-------------|----------------|---------|
| 6-hr Variables | ta, ua, va, | tas, uas, vas, | ts, tsl |
| (~2° X 2.5°)   | hus, zg     | huss, ps, psl  |         |

| WRF                     |                                  |  |
|-------------------------|----------------------------------|--|
| Domain Mesh             | 30 X 30 km (78 x 111)            |  |
| Land Surface Model      | Noah LSM with MODIS land use     |  |
| <b>Lateral Boundary</b> | 1-p specified and 9-p relaxation |  |
| Oceanic SST             | ts                               |  |

#### Lake Model



# Precipitation



### Evaporation



- 1) Strong land-lake and inter-lake evaporation contrast. (Some odd spots in large urban areas)
  2) Warming (cooling) sources in winter (summer), corresponding to the maximum (minimum)
- evaporation centers.
- 3) The underestimated bias of land evaporation in GCM is amplified in WRF simulation.

#### **Discussion and Future Work**

- (I) The preliminary results show that WRF/Lake model, with a realistic lake representation, provides **significantly improved** hydroclimates: lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. **High resolution** and **comprehensive physics** are crucial to understanding the hydroclimatology in the GL region.
- (II) **Unresolved 3D mixing** processes, WRF/Lake model is insufficient to represent the real thermal diffusivity in deep lakes. Future modeling effort should explore the importance of including a three-dimensional lake circulation in the GL region.
- (III) Given that considerable uncertainties in GCM, the WRF downscaling from multiple GCMs is more proper in both historical simulations and future projections.

#### **Acknowledgement:**

This research is funded by the US Environmental Protection Agency's Great Lakes Restoration Initiative (GLRI)

C. Xiao, cxiao@umich.edu; B. Lofgren, Brent.Lofgren@noaa.gov