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THE FREE OSCILLATIONS OF LAKE ST. CLAIR--AN APPLICATION OF
LANCZOS' PROCEDURE'

David J. Schwab

The frequencies and structures of the five lowest free os-
cillations of Lake St. Clair are determined by a Lanczos proce-
dure. With the Lanczos procedure, a high resolution numerical
grid can be used to resolve the detailed structures of the modes.
The lowest mode has a calculated period of 4.06 h.

1. INTRODUCTION

The purpose of this paper is to present a method of determining the fre-
quencies of free oscillation of an enclosed basin and, more importantly, a
high resolution representation of the modal structures. The method used is a
Lanczos procedure applied to the linear shallow water equations. The advan-
tage of this procedure is that the governing differential operator can be
discretized  on a high resolution numerical grid without taxing the memory
capacity of the computer.

2. GOVERNING EQUATIONS

The linearized, inviscid shallow water equations in the absence of rota-
tion and forcing can be written as

+
iiK=at - gv'5

a5x+ V*(h:) = 0 ,

where ; is the horizontal velocity vector, 5 is the free surface fluctuation,
h is the water depth, t is the time, and V is the horizontal gradient opera-
tor. The boundary condition is that of perfect reflection, that is,

++
v*n = 0 (3)

at the shoreline. The term z is a vector normal to the shoreline.

'GLERL Contribution No. 237.

1



Eliminating : from (1) and (2) to find a single equation for 5, we find

a25- - gV'hVc = 0 .
at2

(4)

The boundary condition for 5 is, from (1) and (3)

ac 0
an' * (5)

The free solutions of (4) are

c*(x,Y,t) = Il*(X’Yk
iant

* (6)

Substituting into (4) and eliminating the time dependent part gives

-a;~, - gV'hVnn = 0

or V'hVrln = hnnn, (7)

th
where the w- characteristic value, X,, is defined as

-02
A, = 2.

g (8)

To show that A,, is real and negative, and therefore that on is real so the
free solutions are purely harmonic,
area of the basin.

multiply (7) by 11: and integrate over the

Irl;V*hVn$A  = hnln;ndA .

Partial integration and use of the boundary condition (5) gives

";, = -IhVn;*V~ndA/In;~ndA .

This shows hn to be real and negative.

One can also show the nn to be orthogonal. Since Xn is real, rln is real.

One can write (7) for a different mode m as



V'hVnm = X,n;

Now multiply (7) by 'I,, (9) by 'I,, and subtract to obtain

qmV'hVnn - nnV'hVn
m
= (A* - Xm)llnnm.

(9)

(10)

Integrate (10) over the area of the basin.

,(nmV*hVQ
n

- nnV'hVnm)dA = (An - Xm)lnnrlmdA

Partial integration of the left side and use of the boundary condition (5) gives

(A* - hm)InnnmdA = 0. (11)

If m = n, this equation is satisfied trivially. For two different characteris-
tic values, (An - Xm) * 0 so

hnnmdA = 0. (12)

The eigenfunctions are orthogonal.

The free solutions to equations (1) and (2) are then characterized by pure
harmonic time dependence with frequencies a, and mathematically orthogonal spa-
tial structures.

3. LANCZOS PROCEDURE

To solve (7) for X, and n,,, we use a Lanczos procedure. When applied to the
discretized  version of a differential operator, the Lanczos procedure (developed
by Lanczos, 1950. and explained more fully in Paige. 1972) results in a tri-
diagonal matrix with the same eigenvalues as the general matrix of the dif-
ferential operator. To proceed, first expand nn as follows:

(13)

where the Wi are orthonormal over the area of the basin and satisfy the same
boundary conditions as ~1, i.e.,

awi-= 0.an
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The orthonormality  condition is

JWiWjdA = bij, (14)

where 6iJ
is the Kronecker delta.

Later the Wi will be further specified to simplify the calculation. (7) is then

V*hViglC;Wi = An ,$,C&.

Multiply by Wj and integrate over the area of the basin.

IWjV'hVi;lC~idA = ~nli~lC~idA

Let Aij = mjV*hVWidA

and use the orthogonality condition (14) to obtain

? A C* = h C:
i=l ij i n J

or Asn = h $
n n'

(15)

(16)

(17)

(18)

which is a standard eigenvalue  problem. Note that discretizing  the differen-
tial operator in (7) would result in the same sort of system as (18). The
order of the matrix A would be proportional to the number of grid squares in
the digitization of the basin and the structure would be somewhat banded but
lacking any symmetric properties. The entire matrix would have to be stored
in the computer to obtain eigenvalues and vectors. In the Lanczos procedure
the Wi functions are chosen so that the matrix A is symmetric tridiagonal.
Special numerical routines described in Smith et ~2. (1974) are used to find
the eigenvalues and eigenvectors of the tridiagonal matrix. Only the main
diagonal and first off-diagonal of the matrix are stored in the computer since
the rest of the matrix elements are zero. Let

Oi
= iWiV'hVWidA (19)

'i+l
= (V.hV - ai)Wi - BiWiml i>l (20)-

bi+l
= (Ilji+ltii+ldA)l/Z u-1)



(22)

If Wl is given, (19)-(22) define a recursion relation for Wi, "i, and Bi. A
useful way of writing (20) is

'i+l'i+l
= (V*hV - ai)Wi - tliWiel

or V'hVWi = *iwi + Si+l'i+l + 'i'i-1' (23)

Multiply (23) by Wj and integrate over the area of the basin.

IWjV.hVWidA = uilWjWidA + Bi+llWjWi+ldA + diiWjWi-ldA (24)

We obtain the diagonal elements of A in (18) by letting j = i in-(24).

A
ii

= jWiV*hVWidA = a.
1 (25)

The first off-diagonal is obtained by letting j = i-l in (24).

Ai-l i = jWi_1 V*hVWidA = tii. (26)

It is easy to see that the matrix is symmetric

A
i i-1

= IWiV'hVWi-1dA = tl. (27)1

and that all other elements are zero.

In summary, the Lanczos procedure for the solution to (7) consists of: 1)
selecting a starting function Wl; 2) applying (19)-(22)  recursively to obtain
ai, Bi and Wi; 3) solving (18) for eigenvalues on and eigenvectors ?&; and 4)
constructing qn from (13).

4. APPLICATION TO LAKE ST. CLAIR

The outline and bathymetry of Lake St. Clair are digitized on a 1200-m grid
yielding 731 square elements as shown in Fig. 1. The depth plotted in this
figure includes a 0.8-m stage above low water datum (an average value for
recent years). The recursion procedure (19)-(22)  is applied with centered
difference formulas for the gradient operator and simple summation for the
integrations. Analytically, all the Wi are orthogonal according to (14).
After applying (19)-(22)  to the numerical grid 731 times, we should find
that W732 = 0. In practice, however, truncation error sets in after about 50
iterations and W50 is not orthogonal to Wl. The Wi do remain orthogonal in a
"local" sense in that W50 is orthogonal to W25 - W75. Platzman (1975) has
shown that the "local" orthogonality  is adequate for determining periods and
structures of at least the lowest modes.
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St.  Clair Shores

Figure l.--Numerical grid for Lake St. Cl&r. Depth contours at 2-m intervats.



In the case of fake se. Clair, the procedure was truncated at 244, 488, and
731 wi. A large number of Wi are required to resolve the modal structures, but
the eigenfrequencies are determined quite well even at low truncation. At
higher truncations the loss of orthogonality tends to cause spurious values of
.Q to appear. These can be recognized in two ways. First, the lowest eigen-
values are well determined at low truncation, so that if a new eigenvalue
appears at a higher truncation limit, it is probably spurious. Second, we can
test the structure of the free mode as constructed by (13) with the parameter c
defined as follows:

E - I(V'hVn
n

- XnnJ2dA/.fnn2dA.

Analytically E is zero, but when the discretized version of (28) is calculated
numerically, s is some small number and tends to be higher for spurious
eigenvalues.

Table 1 lists the lowest 10 frequencies determined by the Lanczos procedure
at the three different truncations. The value of E at truncation 731 is also
show". Spurious eigenvalues are marked by asterisks. The lowest four fre-
quencies remain constant to five significant figures for the three different
truncations. The fifth mode frequency changes in the second significant figure.

The spatial structures of the five lowest modes are shown in Figs. 2-6.
The contour interval is 10 percent of the maximum value. The lowest mode, in
Fig. 2, with a period of 4.06 h shows maximum amplitude in the Anchor Bay
region north of the main lake basin. The nodal line runs across the lake from
the St. Clair giver inflow to the St. Clair Shores region. On the eastern
end of the lake, the amplitude attains only 20 percent of its maximum value.

The second mode, shown in Fig. 3, has a period of 3.12 h. There are two nodal
lines so that the oscillation in the northern reaches of Anchor Bay is in phase
with the eastern end of the main basin where maximum amplitude occurs. This
mode is probably more important than the lowest mode in the generation of storm
surges since the predominant westerly wind would pile water up at the eastern
shore, conforming to the structure of this mode.

The 2.17-h mode in Fig. 4 also has two nodal lines, but the axis of oscil-
lation is oriented north-to-south. The 1.89-h mode in Fig. 5 is the fundamental
oscillation of Mitchell Bay. Note that this mode has a very small space scale
and requires a fine grid mesh for sufficient resolution. The fifth mode in Fig.
6 at 1.74h  involves the whole Lake St. Clair Basin.

5. CONCLUSION

The Lanczos procedures is able to provide more detailed normal mode struc-
tures than traditional methods because it is more efficient in terms of computer
storage. This was demonstrated on a 1200-m grid representation of Lake St. Clair
involving 731 grid squares. The structures of the five lowest modes show detail
that could not be resolved on a coarser grid.
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Table l.--Frequencies of oscillation of Lake St. Clair as determined by the
Lanczos  procedure at varioue truncations. Frequencies are in cycles per
hour. Asterisks denote spurious eigenvaluee  ae explained in the text.

Mode
244

Truncation

488
E

731

1 0.24619 0.24619 0.24619 7.99 x 10-31

2 0.32000 0.32000 0.32000 1.95 x 10-31

3 0.45985 0.45985 0.45985 2.26 x 1O-31

4 0.52949 0.52949 0.46388" 3.54 x 10-15

5 0.59269 0.57374 0.52949 5.53 x 10-31

6 0.60725 0.59464* 0.55362X 3.18 x lo-l4

7 0.63336 0.60640 0.57374 a.16 x lo-28

8 0.68462 0.61965 0.60640 5.39 x lo-27

9 0.74091 0.68302" 0.61965 3.84 x lo-26

10 0.77816 0.68385 0.68385 8.11 x lO-2g
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Figure Z.--Amplitude distribution j-or the first norm1  mode of Lake St. Cl&r,
with a period of 4.06 h.
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Wv= 3.--Ampzituue distribution for the second normal mode of Lake St. Cl&r,
with a period of 3.12 h.

Figure 4.--AtnpZiiude  distribution for the third normal mode of Lake St. Cl&r,
with a period of 2.17 h.
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Figure 5.--Amplitude distribution for the fourth normal mode of Lake
with a period of 1.89 h.

Figure 6.--Amplitude distribution j’or the fifth nom1 mode of6.--Amplitude distribution j’or the fifth nom1 mode of
with a period of 1.74 h.with a period of 1.74 h.

St. Cl&r,

St. Cl&r,
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