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THE FREE OSCI LLATIONS OF LAKE ST. CLAIR--AN APPLI CATION OF
LANCZOS'  PROCEDURE

David J. Schwab

The frequencies and structures of the five |owest free os-
cillations of Lake St. Clair are determned by a Lanczos proce-
dure. Wth the Lanczos procedure, a high resolution nunerica
grid can be used to resolve the detailed structures of the nodes.
The |owest nmode has a calcul ated period of 4.06 h.

1. I NTRODUCTI ON

The purpose of this paper is to present a method of determining the fre-
quencies of free oscillation of an enclosed basin and, nore inportantly, a
high resol ution representation of the nmodal structures. The method used is a
Lanczos procedure applied to the linear shallow water equations. The advan-
tage of this procedure is that the governing differential operator can be
discretized on a high resolution numerical grid without taxing the nmenory
capacity of the conputer.

2.  GOVERNING EQUATI ONS

The linearized, inviscid shallow water equations in the absence of rota-
tion and forcing can be witten as

-+
= eve W
and %;E* ve(hv) = 0 , (2)

where v is the horizontal velocity vector, ¢ is the free surface fluctuation,
h is the water depth, t is the tine, and V is the horizontal gradient opera-
tor. The boundary condition is that of perfect reflection, that is,

va=0 (3)

at the shoreline. The tern1§ is a vector normal to the shoreline.
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El i minating v from (1) and (2) to find a single equation for %, we find

32
~—§ ~ gV'hVg = 0 . ()

at
The boundary condition for ¢ is, from (1) and (3)

9
Frole 0 . (%

The free solutions of (4) are
(x,y)e’ 0t (6)
2, (%:¥,t) = n (x,y)e '
Substituting into (4) and elimnating the tinme dependent part gives
~0%n_ - gV+h¥n = 0
g n
nn n

or V'hVnn = Annn’ (7)

where the nt—h characteristic value, Ay, is defined as

Ay = . (8)

To show that A, is real and negative, and therefoLe that o5 is real so the
free solutions are purely harnonic, multiply (7) by n and integrate over the
area of the basin

* *
/n_V'h¥n dA = A_Sn ndA .
0 n n n
Partial integration and use of the boundary condition (5) gives
* *
A = =/hVn *Vn dA/S/n n_dA .
n n n nn

This shows An to be real and negative.
One can al so show the n, to be orthogonal. Since An is real, N is real.

One can wite (7) for a different mbode m as



V'hVnm = Amnm' (9)

Now multiply (7) by n_, (9) by n., and subtract to obtain
nehvn -n Veh¥n = (A - Ann - (10)

Integrate (10) over the area of the basin

. - . = - X dA
f(nmv hVnn nnv hVnm)dA (An m)fnnnm

Partial integration of the left side and use of the boundary condition (3) gives

(An - Am)fnnnmdA = 0. (11)

If m = n, this equation is satisfied trivially. For two different characteris-
tic val ues, (kn - Xm #% 0 so

fnnnmdA = 0. (12)

The eigenfunctions are orthogonal.

The free solutions to equations (1) and (2) are then characterized by pure
harnonic tine dependence with frequencies g, and mathematically orthogonal spa-
tial structures.

3. LANCZCS PROCEDURE

To solve (7) for X, and n,, we use a Lanczos procedure. \Wen applied to the
discretized version of a differential operator, the Lanczos procedure (developed
by Lanczos, 1950, and explained nore fully in Paige, 1972) results in a tri-
diagonal matrix with the same eigenvalues as the general matrix of the dif-
ferential operator. To proceed, first expand n, as foll ows:

@ n
no= B CiW, (13)

where the Wy are orthonormal over the area of the basin and satisfy the sanme
boundary conditions as n, i.e.,

oW
i
N 0.



The orthonormality condition is

fMiWjdA = 1, (14)

where 634 is the Kronecker delta

Later the Wy will be further specified to sinplify the calculation. (7) is then

® o
V'hv,Z. CW, = A X
= n 1=

1217474 Czwi' (15)

1

Multiply by W and integrate over the area of the basin.

g

w n
IWVRY T GV dA = S lc:widA (16)

= Ve
Let A, . fwj hvwidA (17)

i3

and use the orthogonality condition (14) to obtain

8

n

i—él Ai‘jCJI = A nC:_]
or AEn = knEn, (18)

which is a standard eigenvalue problem Note that discretizing the differen-
tial operator in (7) would result in the sane sort of systemas (18). The
order of the matrix A would be proportional to the number of grid squares in
the digitization of the basin and the structure would be sonewhat banded but
| acking any symmetric properties. The entire matrix would have to be stored
in the computer to obtain eigenvalues and vectors. In the Lanczos procedure
the Wi functions are chosen so that the matrix Ais symetric tridiagonal
Speci al nunerical routines described in Snmith et al. (1974) are used to find
the eigenval ues and eigenvectors of the tridiagonal matrix. Only the main

di agonal and first off-diagonal of the matrix are stored inthe conputer since
the rest of the matrix elements are zero. Let

o = fwiv-hvwidA (19)

Wi+1 = {(V-hV - ai)wi - Biwi-l i Z_l (20)
IR 12
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A

=W /B

w1+1 i+l Pi+l’ (22)

If Wy is given, (19)-(22) define a recursion relation for Wi, a; and Bj- A
useful way of witing (20) is

B = (V'hV - o, )W

i B, W

1+1"1+1 i Piti-l

B W

11-1° (23)

or v-hvwi = aiwi 4+ B

i+1wi+1 +
Multiply (23) by W and integrate over the area of the basin.

: = ‘ + B JW W, _ dA
[0 V-hVG A = a SH M dA By JH L dA B SHH, (24)

J
We obtain the diagonal elenents of Ain (18) by letting j =i in-(24)
Aii = fW1V'hVWidA = a.1 (25)
The first off-diagonal is obtained by letting j =i-1 in (24)
Ay 4 = ¥, V'hVW dA = 8. (26)

It is easy to see that the matrix is symetric

A iy = JWThVH_dA =8, (27)

and that all other elenents are zero

In summary, the Lanczos procedure for the solution to (7) consists of: 1)
selecting a starting function Wy; 2) applying (19)-(22) recursively to obtain
aj, B4 and W; 3) solving (18) for eigenvalues o, and eigenvectors 6n; and 4)
constructing ng from (13).

4.  APPLI CATION TO LAKE ST. CLAIR

The outline and bathynetry of Lake St. Clair are digitized on a 1200-m grid
yielding 731 square elenents as shown in Fig. 1. The depth plotted in this
figure includes a 0.8-m stage above |ow water datum (an average val ue for
recent years). The recursion procedure (19)-(22) is applied with centered
difference fornulas for the gradient operator and sinple summation for the
integrations. Analytically, all the Wy are orthogonal according to (14)

After applying (19)-(22) to the numerical grid 731 tines, we should find

that W32 = 0. In practice, however, truncation error sets in after about 50
iterations and Wsg i s not orthogonal to Wy. The W do remain orthogonal in a
"local" sense in that Wsg is orthogonal to W25 - Wy5. Platzman (1975) has
shown that the "local" orthogonality is adequate for determ ning periods and
structures of at |east the |owest nodes.



St. Clair Shores
\
Mitchelt Bay

Figure L.--Numerical grid for Lake St. Clair. Depth contours at 2-m intervale.



In the case of Lake se. Clair, the procedure was truncated at 244, 488, and
731 Wy. A large nunmber of W are required to resolve the nodal structures, but
t he eigenfrequencies are determined quite well even at |low truncation. At
hi gher truncations the |oss of orthogonality tends to cause spurious val ues of
A{ to appear. These can be recognized in two ways. First, the |owest eigen-
values are well determined at low truncation, so that if a new eigenvalue
appears at a higher truncation linit, it is probably spurious. Second, we can
test the structure of the free nobde as constructed by (13) with the paraneter ¢
defined as follows:

2 2
e = f(V hVnn - Annn) dA/fnn dA. (28)

Analytically € is zero, but when the discretized version of (28) is calculated
nunerically, e is some small nunmber and tends to be higher for spurious
eigenvalues.

Table 1 lists the lowest 10 frequencies determned by the Lanczos procedure
at the three different truncations. The value of € at truncation 731 is also
show'.  Spurious eigenvalues are nmarked by asterisks. The |owest four fre-
quencies remain constant to five significant figures for the three different
truncations. The fifth node frequency changes in the second significant figure

The spatial structuresof the five |owest nodes are shown in Figs. 2-6
The contour interval is 10 percent of the maxi num value. The |owest node, in
Fig. 2, with a period of 4.06 h shows maximum amplitude in the Anchor Bay
region north of the main lake basin. The nodal line runs across the |ake from
the St. Cair giver inflowto the St. Cair Shores region. On the eastern
end of the lake, the anplitude attains only 20 percent of its maxi num val ue.

The second node, shown in Fig. 3, has a period of 3.12 h. There are two noda
lines so that the oscillation in the northern reaches of Anchor Bay is in phase
with the eastern end of the main basin where nmaxi num anplitude occurs. This
mode is probably more inportant than the |owest node in the generation of storm
surges since the predom nant westerly wind would pile water up at the eastern
shore, conforming to the structure of this node.

The 2.17-h nmobde in Fig. 4 also has two nodal lines, but the axis of oscil-
lation is oriented north-to-south. The 1.89-h node in Fig. 5 is the fundanental
oscillation of Mtchell Bay. Note that this node has a very small space scale
and requires a fine grid nesh for sufficient resolution. The fifth node in Fig.
6 at 1.74h involves the whole Lake St. Cair Basin

5. CONCLUSI ON

The Lanczos procedures is able to provide nore detailed normal node struc-
tures than traditional methods because it is nore efficient in terms of conputer
storage. This was denonstrated on a 1200-m grid representation of Lake St. dair
involving 731 grid squares. The structures of the five |owest nodes show detai
that could not be resolved on a coarser grid.



Tabl e l.--Frequencies of oscillation of Lake St. ¢lair as determined by the
Lanecaos procedure at various truncations. Frequencies are in cycles per
hour. Asterisks denote spurious eigenvaluesas explained in the text.

Truncation
Mode €
244 488 731
1 0.24619 0.24619 0.24619 7.99 x 10-31
2 0. 32000 0. 32000 0. 32000 1.95 x 10-31
3 0. 45985 0. 45985 0. 45985 2.26 x 10731
4 0. 52949 0. 52949 0. 46388" 3.54 x 10713
5 0.59269 0.57374 0. 52949 5.53 x 10731
6 0. 60725 0.59464*% 0.55362% 3.18 x 10-1%4
7 0. 63336 0. 60640 0.57374 8.16 x 1028
8 0. 68462 0. 61965 0. 60640 5.39 x 10727
9 0. 74091 0. 68302" 0. 61965 3.84 x |0-26

10 0.77816 0. 68385 0. 68385 8.11 x 10729




Figure Z.--Amplitude distribution for the first normal mode of
with a period of 4.06 h.

Lake St. Clair,
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Figure 3.-~Ampiituae distribution for the second roraual mode sf Lake St.cClair,

with a period of 3.12 h.

Figure 4.-—smplitude distribution for the third normal mode of Lake St. Cilair,
with a period of 2.17 h.
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Figure 5>.~—Amplitude distribution for the fourth normal mode of Lake $t. Clair,
with a period of 1.89 h.
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Figure 6.--Amplitude distribution for the fifth normal mode of St. Clair,
with a period of 1.74 h.
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