
NOAA Technical Memorandum ERL GLERL-63

USER'S MANUAL FOR GLERL DATA ACCESS SYSTEM (GDAS)

David J. Schwab
Edward W. Lynn
Gary E. Spalding

Great Lakes Environmental Research Laboratory
Ann Arbor, Michigan 48104
March 1987

UNITED STATES NATIONAL OCEANIC AND
DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION

Malcolm Baldrige, Anthony J. Calio,
Secretary Administrator

Environmental Research
Laboratories

Vernon E. Derr,
Director

NOTICE

Mention of a commercial company or product does not constitute
an endorsement by NOAA/ERL. Use for publicity or advertising
purposes, of information from this publication concerning
proprietary products or the tests of such products, is not
authorized.

For sale by the National Technical Information Service. 5285 Port Royal Road
Sprmgfield. VA 22161

ii

CONTENTS

PAGE

ABSTRACT... 1

INTRODUCTION... 11.

2. GDAS FILE STRUCTURE.. 2

2.1 Header Record .. 5

2.2 Descriptor Records ... 7

2.3 Subheader Records .. 7

3. GDAS PROGRAMMING EXAMPLES..............,.....,.,...........,....,....,. 8

3.1 Creating a New GDAS Data Base (Header File and
Initialized Data File) 8

3.2 Reading From or Writing To an Existing GDAS Data Base 10

3.3 Generating a Summary of an Existing Data Base Header
File ... 11

3.4 Determining Data Availability 11

4. GDAS SUBROUTINES.. 12

I 5. DOCUMENTATION OF GDAS SUBROUTINES..................................... 13

5.1 DBDAT .. 13

5.2 DBDATE ... 14

5.3 DBHED .. 14

5.4 DBINDX ... 16

5.5 DBINFO..: .. 17

5.6 DBJDAT ... 18

iii

Page

5.7 DBLOOK ... 18

5.8 DBMMDD ... 20

5.9 DBNEW .. 20

5.10 DBOPEN ... 22

5.11 DBREAD ... 24

5.12 DBSUBH ... 25

5.13 DBTINC ... 26

5.14 DBWRIT ... 27

5.15 NPTSDB ... 28

5.16 NRECDB ... 29

6. GDAS SAMPLE PROGRAM ... 30

7. SUPPLEMENTARY DATA FOR GDAS ... 37

7.1 GDAS Files ... 37

7.2 Example Compilation, Link, and Run of User's Main
Program with GDAS Subroutine Object Library 37

7.3 How To Run the Example Interactive Main Program 37

7.4 Example of Data Base Data Files and Header Files
in GDAS Format ... 37

FIGURES

Figure 1. --Organization of a "time-series" GDAS datafile with NCOL=5 3

Figure 2. --Organization of a "time-synchronous" GDAS data file with
NROW-3 ... 4

Figure 3. --Date and time relative to different values of INTERV 6

iv

USER'S MANUAL FOR GLERL DATA ACCESS SYSTEM (GDAS)*

David J. Schwab, Edward W. Lynn and Gary E. Spalding

ABSTRACT. The GLERL Data Access System (GDAS) is a series of
FORTRAN subroutines designed to aid in the storage and retrieval
of data from time-series data bases (collections of time-series
with a common start date, start time, duration, and recording
interval). Each time-series within the data base is uniquely
identified by a station identifier, a parameter descriptor code
identifying the type of data, and a fixed height or depth rela-
tive to the water surface. Information about the time-series is
contained in a GDAS header file; the data are stored in a GDAS
data file. This report describes the format of GDAS files and
the GDAS subroutines used to access GDAS files, and gives an
example of how to use the GDAS subroutines.

1. INTRODUCTION

GLERL has a large number of data sets comprising time series of data for
various physical parameters. These data sets have been developed at various
times by, or for, various scientists; the way in which data are stored
and accessed differs among the data sets. The lack of uniformity of data
formats sometimes makes' it difficult for scientists to gain access to needed
data.

This report describes a uniform format for computerized storage of time-
series data. The format is general enough to allow storage of a wide variety
of data types. It is also intended that the format serve as self-
documentation for archived data. Standardized access and processing programs
can then be developed to facilitate analysis of diverse data types and reduce
duplication of program development and coding.

The GLERL Data Access System (GDAS) has been developed to overcome
problems stemming from the nonuniformity of current data sets. GDAS has these
features:

- Data are stored in a standard format, independent of the content or
size of a particular data set.

- Data can be stored in "time-series" or "time-synchronous" format.

- The data-recording interval can range from hundredths of seconds to
years.

- The routines that create, read, and write data set contents are
written in the new FORTRAN standard (FORTRAN 77) and use no non-
standard code.

- There are routines that document data set contents.

'GLERL Contribution No. 522

- Any number of data sets can be accessed simultaneously.

- The number of parameter time series (PTS) in a single data set is
limited only by the computer's disk capacity.

- Error conditions are reported by helpful error messages.

- Relocatable GDAS routines are in a library. The user need supply only
the main program and any additional routines required in order to use
GDAS.

GDAS is intended to consolidate a data set consisting of various types of
time-series data into a single data file with a specified start date, start
time, duration, and recording interval. It will generally be applied to data
from an array of instruments,
subset of the array,

although it could just as easily accommodate a
or a single instrument. However, all data within a

single data set must have the same recording interval. Recording intervals
ranging from hundredths of seconds to years can be accommodated by GDAS. Each
time-series of data within the data set will have a unique station identifier,
a parameter descriptor code identifying the type of data, and a fixed height
or depth relative to the water surface.

2. GDAS FILE STRUCTURE

A GDAS data system consists of two files, a "header" file and a "data"
file, both of which are direct access files (under the FORTRAN 77 definition).
The header file contains information about the parameters in the data system.
It can be thought of as a set of instructions about how data values are orga-
nized in the data file. It contains the start date and time of the data set,
the time interval between successive data values, and a description of each
different type of data in the data set. GDAS subroutines DBNEW or DBHED can
be used to create a GDAS header file. The user supplies the information to be
contained in the header file in arrays passed to the subroutines.

The data file contains only the data values.
as a large matrix of numbers.

It can be thought of simply
The matrix has one row for each time series of

data in the data set and one column for each point in time at which the data
were recorded. Missing values in a time-series are flagged by a missing-data
code. When the data file is created, all data files are usually initialized
to the missing data value. GDAS subroutine DBNEW or DBDAT can be used for
this purpose. Actual data values are then inserted into the data file by GDAS
subroutine DBWRIT. Subroutine DBREAD is used to retrieve data from the data
file.

For efficiency, when the numbers in the data set matrix are stored in the
data file, each record (a record is the amount of data retrieved with a single
FORTRAN 'READ' statement) may contain several data values. The records can be
made up of either successive data values from along one row of the matrix or
successive values from one column of the matrix, but the way records are made
up must be the same for all records in the data file. The information about
how the records in the data file are made up is contained in the header file.

2

If the records in the data file are made up of data values from along the rows
of the data matrix, the data file format will be called "time-series" format.
If the records in the data file are made up of data values from down the
columns of the data matrix, the data file format will be called "time-synchro-
nous" format (See Figs. 1 and 2).

In applications where the data are going to be used mainly as time-series
of values from a single station, the data file should be organized in "time-
series" format. In applications where data values from a large percentage of
the stations in the data base at a single point in time are more likely to be
required, the data file should be organized in "time-synchronous" format.

GDAS variable types follow the FORTRAN default naming conventions; i.e.,
variables whose first letter is in the range I-N are INTEGERJc4, all others are
REAL*4. Only the following character variables are used in calls to the GDAS
subroutines:

NAME - CHARACTER*80 UNITS - CHARACTER*48
DSDES - CHARACTER*80 STA - CHARACTER*5
DESCR - CHARACTER*8 DES - CHARACTER*2

Time: 1 2 3 4 5

IData IData IData JData JData I
Parameter 1 lValuelValuelValuelValuelValuel

1 l! 2 ! 3 ! 4! 5 I

6 7 8 9 10 ..,

IData IData IData IData IData I
JValuelValuelValuelValuejValuel .,,
I6! 7! 8! 9 !lO 1

Record 1 Record 2

IData IData IData IData IData I
Parameter 2 IValuelValue(ValuelValuelValuel

1 l! 2 ! 3 ! 4! 5 I

IData IData IData IData IData 1
lValuelValuelValuelValuelValuel . . .
I6! 7! 8! 9 110 1

Record NMAX + 1 Record NMAX + 2

IData IData IData IData IData I
Parameter 3 lValuelValuelValuelValuelValuel

1 l! 2 ! 3 ! 4! 5 1

Data IData IData IData IData I
ValuelValuelValuelValuelValuel ..,
6!7!8!9!101

Record 2*NMAX + 1 Record 2*NMAX + 2
. .
. .
. .

IData IData IData IData IData I
Parameter lValuelValuelValuelValuelValuel
NUMPTS 1 l! 2 ! 3 ! 4! 5 I

Record (NUMPTS-l)*NMAX + 1

.

Data IData (Data IData IData 1
ValuelValuelValuelValuelValuel . . .
6!7!8!9!lOl

Record (NUMPTS-l)*NMAX +2

Figure 1. --Organization of a "time-series"- GDAS data file with NCOL - 5.
"Data Value" indicates order of data values in array DATA in subroutines
DBREAD and DBWRIT.

3

Time: 1

Parameter 1

Parameter 2

Parameter 3

I Data I
I Value I

I 1 I
I Data I
I Value I
I 2 I
I Data I
I Value

Parameter 4

Parameter 5

Parameter 6

I 3 I

Record 1

I Data I
I Value I
I 4 I
I Data I
I Value I

I 5 I
I Data I
I Value I

I 6 I

Record 2

Parameter NUMPTS-2

Parameter NUMPTS-1

Parameter NUMPTS

I Data I
I Value I
JNUMPTS-21
I Data I
I Value I
JNUMPTS-11
I Data I
I Value I
I NUMPTS I

2 3 . . .

Record NUMPTS/3 + 1

I Data I
I Value I

I 1 I
I Data I
I Value I

I 2 I
I Data I
I Value I

I 3 I

I Data I
I Value I

I 1 I
I Data I
I Value I . . .
I 2 -I
I Data I
I Value I

I 3 I

Record 2*NUMPTS/3 + 1

I Data I
I Value I
I 4 I
I Data I
I Value I

I 5 I
I Data I
I Value I

I 6 I

Record NUMPTS/3 + 2

I Data I
I Value I
I 4 I
I Data I
I Value I . . .
I 5 I
I Data I
I Value I

I 6 I

Record 2*NtJMPTS/3 + 2

/ Data I
1 Value I
NUMPTS-21
Data I
Value I

NUMPTS-1)
Data I
Value I
NUMPTS I

Record NUMPTS/3 Record 2*NUMPTS/3

I Data I
I Value I
JNUMPTS-21
I Data I
I Value I . . .
INUMPTS-l(
I Data I
I Value I
I JYUMPTS I

Record NUMPTS

Figure 2. --Organization of a "time-synchronous" GDAS data file with
NROW - 3. "Data Value" indicates order of data values in array DATA in
subroutine DBREAD and DBWRIT.

4

One LOGICAL variable called DBERR is used as the last parameter in every
GDAS subroutine to indicate if an error condition was detected by GDAS. If an
error condition was detected, a message is printed to FORTRAN I/O unit 6 (by
default this is the normal output for a FORTRAN program) and DBERR is set to
.TRUE.. Control is then returned to the calling program. It is up to the
calling program to check DBERR and take appropriate action.

The header file for each data set in GDAS "time-series" or "time-synchro-
nous" format contains (1) a Header Record, (2) any number of Descriptor (text)
Records, and (3) a Subheader Record for each parameter time series (PTS) in
the data set. The record length of all records in the header file is 20 words
(80 characters). GDAS subroutines DBNEW or DBHED can be used to create a GDAS
header file. Information for the Header Record, Descriptor Records, and Sub-
header Records is passed to the subroutine in arrays. Information from an
existing GDAS header file can be retrieved by calling subroutines DBOPEN and
DBSUBH. Subroutine DBINFO will print a complete or partial summary of the
information in a GDAS header file. Subroutine DBLOOK allows the user to scan
the data base data file to determine data availability.

2.1 Header Record

Record 1 of the header file is the Header Record, which consists of 20
integer values describing the organization of the data file. The GDAS subrou-
tines store these values in array IHEAD as follows:

IHEAD(1) - NCOL The number of data values per record for each parameter for
a data file in "time-series" format, or 1 for a data file
in "time-synchronous" format.

IHEAD(2) - NROW The number of data values per record for each time for a
data file in "time-synchronous' format, or 1 for a data
file in "time-series" format. NROW must be a submultiple
of NUMPTS.

IHEAD(3) - NUMPTS The number of parameter time-series (PTS's) in the data
set. A PTS is a time series of values of a particular
parameter at a particular location (latitude, longitude,
and height or depth from surface).

IHEAD(4) = NMAX Total number of data records in the data file for each PTS.

IHEAD(5) = INTERV Basic time interval indicator.
6 = Years
5 = Months
4 = Days
3 - Hours
2 = Minutes
1 = Seconds

-1 e Tenths of Seconds
-2 = Hundredths of Seconds

IHEAD(6) = NINTRV

IHEAD(7) = IYEARS

IHEAD(8) = IJULS

IHEAD(9) = ITIMES

IHEAD(10) = NDSDES

IHEAD(11) - ITZONE

IHEAD(12-20)

Figure 3 illustrates the effect a particular choice of
INTERV has on the meaning of IYEARS, IJULS, and ITIMES.

Recording interval, i.e., the time interval between
successive data values in units of the basic time interval
(INTERV).

The year of the first record in the data file.

The Julian day (or month if INTERV = 5) of the first record
in the data file. Not used if INTERV - 6. See Figure 3
for definitions of IJULS for different values of INTERV.

The number of basic time intervals (INTERV) after 0O:OO
local time (see IHEAD(11)) at which the first record in the
data file starts. Not used if INTERV > 3. See Figure 3
for definitions of ITIMES for different values of INTERV.

The number of data system descriptor records.

Number of hours between local time zone for this data base
and GMT (i.e., 4 = EDT, 5 - EST, 6 = CST, 0 - GMT).

Unused (reserved for future use).

BASIC TIME
INTERV INTERVAL IYEARS IJULS ITIMES

6 YEARS YEAR NOT USED NOT USED

5 MONTHS YEAR MONTH NOT USED

4 DAYS YEAR JULIAN DAY NOT USED

3 HOURS YEAR JULIAN DAY HOURS

2 MINUTES YEAR JULIAN DAY MINUTES

1 SECONDS YEAR JULIAN DAY SECONDS

-1 TENTHS OF YEAR JULIAN DAY TENTHS OF
SECONDS SECONDS

-2 HUNDREDTHS YEAR JULIAN DAY HUNDREDTHS
OF SECONDS OF SECONDS

--

Figure 3. --Date and time arguments relative to different values of INTERV.
Note that IYEARS=IHEAD(7), IJULS=IHEAD(8), and ITIMES=IHEAD(9) may have
different meanings depending on the value of INTERV-IHEAD(5).

2.2 Descriptor Records

Records 2 through (NDSDES + 1) of the header file consist of 80-character
Descriptor Records:

DSDES(N) character*80 descriptors of data set. N = 1,2,...,NDSDES.

These records should contain a summary of general information about a
particular data base, i.e., who collected the data, where they were collected,
why they were collected, and reference to any relevant literature about the
data base.

2.3 Subheader Records

Record (NDSDES + 2) through record (NDSDES + NUMPTS + 1) of the header
file contain Subheader Records, one for each PTS in the data system. Each
Subheader Record consists of the following fields:

DESCR Eight-character descriptor for this PTS.
* DESCR(1:5) is the station identifier or station number.
* DESCR(6:7) is the parameter descriptor ('AT' for air temp. etc.).

DESCR(8:8) is the parameter type ('R' for real, 'I' for integer).

* NVERT Height or depth relative to water level, in centimeters,

RLAT Latitude in degrees north (i.e., 43.887).

RLON Longitude in degrees west (i.e., 82.667).

BIAS Bias to be added to each data value, if required or IBIAS if
DESCR(8:8) = 'I').

RMISS Code for missing data (or IMISS if DESCR(8:8) - 'I').

REDIT Code for edited data (or IEDIT if DESCR(8:8) = 'I').

UNITS 48-character description of units (i.e., 'CM/SEC'
for currents) for this PTS and any other relevant
information.

The parameter descriptor field should be used to identify the physical
parameter being measured in this PTS. These parameter descriptors are
suggested:

*These fields uniquely identify any PTS in the data file. No two PTS's in the
same data file can have identical station identifier, parameter descriptor,
and height. All other fields in the Subheader Record are not required by GDAS
but should be included to fully document the contents of the data file. In
addition, Descriptor Records can be used to describe the particular station
identifiers, parameter descriptors, and height values used in the Subheader
Records.

7

cs - current speed

CD - current direction

cu - eastward component of current

cv - northward component of current

ws - wind speed

WD - wind direction

AT - air temperature

WT - water temperature

BP - barometric pressure

RH - relative humidity

WL - water level

SW - vsignificant waveheight

DP - dominant wave period

AP - average wave period

PF - peak energy wave frequency

Any nonstandard parameter descriptors used in a Subheader Record should be
defined in the Descriptor Records.

When the header file for a data base is initially created, the user is
required to specify values for all the parameters in the Header Record and
Subheader Records as well as the Descriptor Records. These values are then
fixed for that data base. In order to change any of the values, a new header
file and a new data file should be created.

3. GDAS PROGRAMMING EXAMPLES

3.1 Creating a New GDAS Data Base (Header File
and Initialized Data File)

First: Dimension header file arrays.

(1) Dimension Header Record array IHEAD(21).

(2) Dimension 80-character Descriptor Record array DSDES(N) to at
least the number of descriptor records describing the data
system.

(3) Dimension all Subheader Record array variables to the number of
PTS's (parameter time-series) in the data system.

C
C ARRAYS CONTAINING HEADER RECORD AND DESCRIPTOR RECORDS
C

DIMENSION IHEAD(21)
CHARACTER DSDES(5)*80

C
C ARRAYS CONTAINING SUBHEADER RECORDS OF THE DATA BASE HEADER
C FILE
C

DIMENSION NVERT(500),RLAT(500),RLON(500)
DIMENSION BIAS(500),RMISS(500),REDIT(5OO)
CHARACTER DESCR(500)*8, UNITS(500)*48

Second: Fill the Header Record, Descriptor Record, and Subheader Record
arrays.

(1) Fill Header Record array IHEAD with integer values that describe
the data base. See Sec. 2.1 for a description of what the
integer values in IHEAD mean.

(2) Fill 80-character Descriptor Record array DSDES(N) with text that
describes the data system.

(3) Fill all Subheader Record arrays, one entry for each PTS in the
data system.

C
C SET VALUES IN THE HEADER RECORD ARRAY FOR A DATA BASE IN
C TIME-SERIES FORMAT WITH A RECORDING INTERVAL OF ONE HOUR, A
C RECORDING LENGTH OF 24 HOURS, CONTAINING 500 PTS'S, STARTING
C AT 0000 GMT ON 1 JANUARY 1983, AND EXTENDING TO 2300 GMT ON
C 31 DECEMBER 1983.
C

IHEAD(1) = 24
IHEAD(2) - 1
IHEAD(3) = 500
IHEAD(4) = 365
IHEAD(5) - 3
IHEAD(6) - 1
IHEAD(7) = 1983
IHEAD(8) = 1
IHEAD(9) = 0
IHEAD(5
IHEAD(0

C
C READ THE DATA SYSTEM DESCRIPTOR RECORDS FROM A FILE
I,

DO 10 I = 1, IHEAD(10)
READ(l,'(A)') DSDES(1)

10 CONTINUE

.

C
C READ THE SUBHEADER RECORDS FROM A FILE
c,

DO 20 I = 1, IHEAD(3)
READ(l,*,ERR-99,END-99) DESCR(I),NVERT(I),RLAT(I),RLON(I),
1 BIAS(I),RMISS(I),REDIT(I),UNITS(I)

20 CONTINUE

Third: Pass data base name, LUN (logical unit number), Header Record array,
Descriptor Record array, and all Subheader Record arrays to GDAS
subroutine DBNEW.

LUN = 7
CALL DBNEW('MYDATA',LUN,IHEAD,DSDES,DSDES,DESCR,~ERT,R~T,RLON,BIAS,
1 RMISS,REDIT,UNITS,DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WHILE CREATING DATA BASE'

If multiple GDAS data bases are used by a program at the same
time, each data base will require its own IHEAD, DESCR, and NVERT
arrays.

3.2 Reading From or Writing To an Existing GDAS Data Base

First: Dimension header file arrays.

(1) Dimension Header Record array IHEAD(21).

(2) Dimension Subheader Record character array DESCR(N) to the number
of PTS's (parameter time-series) in the data system.

(3) Dimension Subheader Record array NVERT(N) to the number of PTS's
in the data system.

(4) Dimension an array to send or receive actual data values

DIMENSION IHEAD(21)
CHARACTER*8 DESCR(500)
DIMENSION NVERT(500)
DIMENSION DATA(120)
DATA IDIM/500/

Second: Open the data base with a call to DBOPEN.

LUN = 7 (or LUN = -7 for WRITE access to file)
CALL DBOPEN('MYDATA',LUN,IHEAD,DESCR,NVERT,IDIM,DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WHILE OPENING DATA BASE'

Third: Find the index corresponding to the particular station identifier
parameter descriptor,
or writing.

and height you are interested in reading

C
C GET AIR TEMPERATURE DATA FOR STATION 45007 AT 5 METERS ABOVE

10

C WATER SURFACE
C

STA = '45007'
DES = 'AT'
IHIGH = 500
NPTS = NPTSDB(IHEAD,DESCR,NVERT,STA,DES,IHIGH)

Fourth: Assign the starting date for read or write and call DBREAD
or DBWRITE to read or write data values.

C
C GET 120 DATA VALUES STARTING AT 0600 GMT ON 19 JULY 1983.
C

IYR = 1983
IJUL = 200
ITIME - 6
NDATA = 120
CALL DBREAD(IHEAD,NPTS,IYR,IJUL,ITIME,NDATA,DATA,DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WHILE READING DATA BASE'

OR
C
C READ DATA FROM A FILE
C

DO 10 I = 1, 120
10 READ(l,*) DATA(I)

CALL DBWRIT(IHEAD,NPTS,IYR,JDAY,ITIM,NDATA,DATA,DBERR)
IF(DBERR) PRINT *,
1' ERROR OCCURRED WHILE WRITING TO DATA BASE'

3.3 Generating a Summary of an Existing Data Base Header File

First: Pass data base name and option parameters to GDAS subroutine DBINFO.

CALL DBINFO('MYDATA',1,1,1,1,1,1,DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WHILE GENERATING SUMMARY' .

3.4 Determining Data Availability

First: Dimension header file arrays.

(1) Dimension Header Record array IHEAD(21).

(2) Dimension all Subheader Record array variables to the number of
PTS's (parameter time-series) in the data system.

C
C ARRAYS CONTAINING HEADER RECORD AND SUBHEADER RECORDS OF THE
C DATA BASE HEADER FILE
C

DIMENSION IHEAD(21)
DIMENSION NVERT(500),RLAT(500),RLON(500)

11

DIMENSION BIAS(5OO),RMISS(500),REDIT(5OO)
CHARACTER DESCR(500)*8, UNITS(500)*48

Second: Open the data base with a call to DBOPEN.

LUN - 7 (or LUN - -7 for WRITE access to file)
CALL DBOPEN('MYDATA',LUN,IHEAD,DESCR,NVERT,IDIM,DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WHILE OPENING DATA BASE'

Third: Retrieve subheader data with a call to DBSUBH.

CALL DBSUBH('mDATA',IHEAD,RLAT,RLON,BIAS,RMISITS, DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WHILE READING SUB HEADER'

Fourth: Call subroutine DBLOOK to scan data base data matrix

CALL DBLOOK(IHEAD,DESCR,NERT,RMISS,DBERR)
IF(DBERR) PRINT *,' ERROR OCCURRED WITHIN SUBROUTINE DBLOOK'

4. GDAS SUBROUTINES

As more experience is gained with the GDAS system, additional useful
subroutines will probably be developed by users of the sytem. It is hoped
that the structure of the basic subroutines will serve as a model for the
structure of any new subroutines. These subroutines are now available:

DBDAT - Creates a GDAS data file and initializes all data values in the data
file file to the missing data flag for each PTS.

DBDATE - Adjusts time by incrementing the time arguments by the specified
number of days.

DBHED - Creates a GDAS header file.

DBINDX -* Returns the column index number of the data matrix corresponding to a
particular date.

DBINFO - Prints different types of summaries of the information in the header
file.

DBJDAT - Returns the Julian day given the year, month, and day.

DBLOOK - Allows the user to scan the data base data file to determine data
availability.

DBMMDD - Converts a given year and Julian day to month and day of month.

DBNEW - Creates a GDAS header file and a GDAS data file and initializes all
data values in the data file to the missing data flag for each PTS.

DBOPEN - Opens an existing GDAS data file and reads the GDAS header file.

12

DBREAD - Retrieves data values from a GDAS data file.

DBSUBH - Reads the Subheader Records from the GDAS header file.

DBTINC - Adds a specified number of basic time intervals to a specified date.

DBWRIT - Writes data values to a GDAS data file.

NPTSDB - Returns the row number in the data matrix given station identifier,
parameter descriptor, and height.

NRECDB - Returns the record number of the record in the data file
corresponding to a particular date.

5. DOCUMENTATION OF SUBROUTINES

5.1 DBDAT

DBDAT (NAME, LUN, IHEAD, RMISS, DBERR)

Purpose: This subroutine creates a GDAS data file with the VAX filename
NAME and file extension ' .DAT' and initializes all data values in
the data file to the missing data flag for each PTS.

Arguments on input:

NAME - CHARACTER*80 VAX filename for GDAS data file.

LUN - FORTRAN I/O unit to be associated with GDAS data file.

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
11-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track
of the FORTRAN logical unit number associated with the GDAS data
file.

RMISS - Array of dimension IHEAD(3) containing missing data flag value for
all PTS's in this data set.

Arguments on output:

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

None

13

I/O Units used:

LUN - FORTRAN I/O unit associated with GDAS data file for this data set.
6 - Used for error reports.

5.2 DBDATE

DBDATE (IYEARS, IMON, IDAY, IDINC, IYEARSM, IMONM, IDAYM, DBERR)

Purpose: This subroutine adjusts time by incrementing the time arguments
(IYEARS,IMON,IDAY) by the specified number of DAYS specified by
IDINC.

Arguments on input:

IYEARS - Starting year (no limit restriction).

IMON - Starting month (1 - 12).

IDAY - Starting day (1 - 31).

IDINC - Number of days to increment time arguments. No limit on the
number of days to advance time.

Arguments on output:

IYEARSM - The adjusted year (no limit restriction).

IMONM - The adjusted month (1 - 12).

IDAYM - The adjusted day (1 - 31).

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

None

I/O units used:

6 - Used for error reports.

5.3 DBHED

DBHED (NAME, IHEAD, DSDES, DESCR, NVERT, RLAT, RLON, BIAS, RMISS, REDIT,
UNITS, DBERR)

14

Purpose: This subroutine creates a GDAS header file with the VAX filename
NAME and file extension '.HED'.

Arguments on input:

NAME - CHARACTER*80 VAX filename for GDAS header file.

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track
of the FORTRAN logical unit number associated with the GDAS data
file.

DSDES - CHARACTER*80 array of dimension IHEAD(12) containing data system
descriptor records for this GDAS data set.

DESCR - CHARACTER*8 array of dimension IHEAD(3) containing station
identifier (DESCR(1:5)), parameter descriptor (DESCR(6:7)), and
type (DESCR(8:8)) for all PTS's in this data set.

NVERT - Array of dimension IHEAD(3) containing height or depth relative to
water level in centimeters for all PTS's in this data set.

RLAT - Array of dimension IHEAD(3) containing latitude in degrees north
for all PTS's in this data set.

RLON - Array of dimension IHEAD(3) containing longitude in degrees west
for all PTS's in this data set.

BIAS - Array of dimension IHEAD(3) containing biases for data values
for all PTS's in this data set.

MISS - Array of dimension IHEAD(3) containing missing data flag value
for all PTS's in this data set.

REDIT - Array of dimension IHEAD(3) containing edited data flag value
for all PTS's in this data set.

UNITS - CHARACTER*48 array of dimension IHEAD(3) containing description
of units for all PTS's in this data set.

Arguments on output:

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

None

15

I/O Units used:

99 - Temporarily associated with GDAS header file for this data set.
6 - Used for error reports.

5.4 DBINDX

DBINDX (IHEAD, IY2, IJ2, IT2, JINDEX, DBERR)

Purpose: This function calculates the elapsed time, in basic time units,
between the beginning date of the data base stored in IHEAD as year,
Julian day, and time in seconds (IHEAD(7)-IHEAD(9)) and a given date
given as year (IY2), Julian day (IJ2), and time (IT2). The
subroutine then returns the column index number of the data matrix
corresponding to date IY2, IJ2, and IT2. The subroutine also makes
:ure that a recording was made at the time specified.

Arguments on input:

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file. (see IHEAD

t (l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track
of the FORTRAN logical UNIT number associated with the GDAS data
file.

IY2 - Year for which column index number will be returned.

IJ2 - Julian day (or month if INTERV = 5) for which column index number
will be returned. Value not used if INTERV = 6.

IT2 - Time in basic time units for which column index number will be
returned. Value not used if INTERV > 3.

Arguments on output:

JINDEX - Column index number of the data matrix corresponding to
date IY2, IJ2, and IT2.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

None

I/O units used:

6 - Used for error reports.

16

5.5 DBINFO

DBINFO (NAME, IPARl, IPAR2, IPAR3, IPAR4, IPARS, IPAR6, DBERR)

Purpose: Prints six different types of summaries of the information in the
header file for data set NAME. This subroutine assumes that a file
with the VAX filename NAME and the file extension '.HED' is a GDAS
header file. If any one of the values of IPARl through IPAR is
equal to 1 then the summary report corresponding to that parameter
is printed. If any one of the values of IPARl through IPARS is not
equal to 1 then the summary report corresponding to that parameter
is not printed. See the input arguments for a description of the
summary report that is associated with a particular parameter.

Arguments on input:

NAME - CHARACTER*80 VAX filename for GDAS data set.

IPARl - Prints the descriptor records and the Header Record.

IPAR - Prints all the parameter descriptor and height pairs for each
0 station identifier.

IPAR - Prints the station location for each station identifier.

IPAR - Prints all the station identifiers for each parameter descriptor
and height pair.

IPARS - Prints a subheader summary including all subheader parameters
except the 48-character descriptor for units.

IPARG - Prints a subheader summary including station identifier, parameter
descriptor, height, and 48-character descriptor for units.

Arguments on output:

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

I/O units used:

6 - Formatted summary and error reports.
99 - Temporarily associated with header file.

Subroutines called:

DBMMDD - Accepts the year and Julian day and returns the month and day of
month.

17

DBDATE - Adjusts time by incrementing the time arguments by the specified
number of seconds.

DBTINC - Adds a specified number of basic time units to a specified date.

5.6 DBJDAT

DBJDAT (IYEARS, IMON, IDAY, IJULS, DBERR)

Purpose: This subroutine converts a Gregorian calendar date to the
corresponding Julian day number IJULS. The Julian day number IJULS
is computed from the given day IDAY, month IMON, and year IYEARS.
without using tables. The procedure is valid for any valid
Gregorian calendar date. Leap year is defined to be any year
divisible by 4 except centenary years not divisible by 400.

Arguments on input:

IYEARS - Year for which Julian day is to be calculated.

IMON - Month for which Julian day is to be calculated.

IDAY - Day for which Julian day is to be calculated.

Arguments on Output:

IJULS - Julian day calculated from IYEARS, IMON and IDAY.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

None

I/O Units used:

6 - Used for error report.

5.7 DBLOOK

DBLOOK (IHEAD, DESCR, NVERT, RMISS, DBERR)

Purpose: This subroutine allows the user to scan the data file to determine
if data are available, partially available, or missing. The
subroutine is useful because of the speed with which the user can
cursor through the data matrix to determine the availability of
data, Each entry in the table created by this subroutine for data

18

bases in time-series format represents a whole record as defined by
the value of NCOL in the data base header file. Each entry in the
table created by this subroutine for data bases in time-synchronous
format represents an individual data value. Input parameters
IHEAD, DESCR, and NVERT are initialized by calling GDAS subroutine
DBOPEN. Input parameter MISS is initialized by calling GDAS
subroutine DBSUBH.

Arguments on input:

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track
of the FORTRAN logical unit number associated with the GDAS data
file.

DESCR - CHARACTER*8 array of dimension IHEAD(3) containing station
identifier (DESCR(l:5)), parameter descriptor (DESCR(6:7)), and
type (DESCR(8:8)) for all PTS's in this data set.

NVERT - Array of dimension IHEAD(3) containing height or depth relative to
water level in centimeters for all PTS's in this data set.

RMISS - Array of dimension IHEAD(3) containing missing data flag value for
all PTS's in this data set.

Arguments on output:

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

DBMMDD - Accepts the year and Julian day and returns the month and day of
month.

DBTINC - Adds 'INC' basic time units to the date.

NPTSDB - Returns the row number in the data matrix, given a station
identifier, parameter descriptor, and height.

NRECDB - Returns the record number, given a PTS and a date.

I/O units used:

5 - Used for information prompting.
6 - Used for reporting results.

19

5.8 DBMMDD

DBMMDD (IYEARS, IJULS, IMON, IDAY, DBERR)

Purpose: This routine accepts the year and Julian day (IYEARS,IJULS) as
input, and returns the month and day of month (IMON,IDAY).

Arguments on input:

IYEARS - Year for which month and day of month are calculated.

IJULS - Julian day for which month and day of month are calculated.

Arguments on output:

IMON - Month calculated from date IYl, and IJULl.

IDAY - Day of month calculated from date IYl, and IJULl.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
‘and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

None

I/O units used:

6 - Used for error reports.

5.9 DBNEW

DBNEW (NAME, LUN, IHEAD, DSDES, DESCR, NVERT, RLAT, RLON, BIAS, RMISS,
REDIT, UNITS, DBERR)

Purpose: This subroutine creates a GDAS header file and a GDAS data file
with the VAX filename NAME and file extensions of '.HED' and '.DAT'
respectively. The GDAS data file remains associated with FORTRAN
I/O unit LUN.

Arguments on input:

NAME - CHARACTER*80 VAX filename for GDAS header and data files.

LUN - FORTRAN I/O unit to be associated with GDAS data file.

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track

20

of the FORTRAN logical unit number associated with the GDAS data
file.

DSDES - CHARACTER*80 array of dimension IHEAD(12) containing data system
descriptor records for this GDAS data set.

DESCR - CHARACTER*8 array of dimension IHEAD(3) containing station
identifier (DESCR(1:5)), parameter descriptor (DESCR(6:7)), and
type (DESCR(8:8)) for all PTS's in this data set.

NVERT - Array of dimension IHEAD(3) containing height or depth relative to
water level in centimeters for all PTS's in this data set.

RLAT - Array of dimension IHEAD(3) containing latitude in degrees north
for all PTS's in this data set.

RLON - Array of dimension IHEAD(3) containing longitude in degrees west
- for all PTS's in this data set.

BIAS - Array of dimension IHEAD(3) containing biases for data value for
all PTS's in this data set.

RMISS - Array of dimension IHEAD(3) containing missing data flag value for
all PTS's in this data set.

REDIT - Array of dimension IHEAD(3) containing edited data flag value for
all PTS's in this data set.

UNITS - CHARACTER*48 array of dimension IHEAD(3) containing description of
units for all PTS's in this data set.

Arguments on output:

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

Subroutines called:

DBHED - Creates a GDAS header file.
DBDAT - Creates a GDAS data file.

I/O units used:

LUN - FORTRAN I/O unit associated with GDAS data file for this data set.
99 - temporarily associated with GDAS header file for this data set.
6 - Used for error reports.

21

5.10 DBOPEN

DBOPEN (NAME, LUN, IHEAD, DESCR, NVERT, NDIM, DBERR)

Purpose: This subroutine opens an existing GDAS data file with the VAX
filename NAME and associates it with FORTRAN I/O unit LUN. It also
reads the GDAS header file for this data file and initializes the
arrays IHEAD, DESCR, and NVERT. The GDAS data file NAME'.DAT' will
be opened as READONLY if LUN is greater than 0. It will be opened
for WRITE ACCESS if LUN is less than 0. .

Note: If multiple GDAS data bases are used by a program at the same
time, each data base will require its own IHEAD, DESCR, and NVERT
arrays.

Arguments on input:

NAME - CHARACTER*80 VAX filename for GDAS header and data files.

LUN - FORTRAN I/O unit to be associated with GDAS data file. The actual
FORTRAN I/O unit number used is the absolute value of LUN.

NDIM - Dimension of arrays DESCR and NVERT as dimensioned in calling
program.

Arguments on output:

IHEAD - Array of dimension 21. IHEAD is returned as the 20 integer values
that describe the organization of the data file. IHEAD(21) is used
by the GDAS to keep track of the FORTRAN logical unit number
associated with the GDAS data file.

IHEAD(1) - NCOL The number of data values per record for each
parameter for a data file in "time-series" format, or
1 for a data file in "time-synchronous,, format.

IHEAD(2) = NROW The number of data values per record for each time
for a data file in "time-synchronous,, format, or 1
for a data file in 'time-series" format. NROW must
be a submultiple of NUMPTS.

IHEAD(3) - NUMPTS The number of parameter time-series (PTS's) in the
data set. A PTS is a time series of values of a
particular parameter at a particular location
(latitude, longitude, and height or depth from
surface).

IHEAD(4) - NMAX Total number of data records in the data file for
each PTS.

IHEAD(5) = INTERV Basic time interval indicator.

22

6 - Years
5= Months
4 - Days
3 = Hours
2 - Minutes
l- Seconds
-1 - Tenths of Seconds
-2 = Hundredths of Seconds

Figure 3 illustrates the effect a particular choice of INTERV has on the
meaning of IYEARS, IJULS, and ITIMES.

IHEAD(6) - NINTRV Recording interval, i.e., the time interval between
successive data values in units of the basic time
interval (INTERV).

IHEAD(7) - IYEARS The year of the first record in the data file.

IHEAD(8) = IJULS The Julian day (or month if INTERV = 5) of the first
record in the data file. Not used if INTERV = 6. See
Figure 3 for definitions of IJULS for different values
of INTERV.

IHEAD(9) = ITIMES The number of basic time intervals (INTERV) after 0000
local time (see IHEAD(11)) at which the first record in
the data file starts. Not used if INTERV > 3. See
Figure 3 for definitions of ITIMES for different values
of INTERV.

IHEAD(10) - NDSDES The number of data system descriptor records.

IHEAD(11) = ITZONE Number of hours between local time zone for this data
base and GMT (i.e., 4 = EDT, 5 = EST, 6 = CST, 0 = GMT).

IHEAD(12-20) Unused (reserved for future use).

DESCR - CHARACTER*8 array of dimension IHEAD(3) returned as the station
identifier (DESCR(1:5)), parameter descriptor (DESCR(6:7)), and type
(DESCR(8:8)) for all PTS's in this data set.

NVERT - Array of dimension IHEAD(3) returned as the height or depth relative
to water level in centimeters for all PTS's in this data set.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors are
detected and the value of .TRUE. if an error is detected. Calling
program must declare this variable to be of type LOGICAL and is
responsible for checking this variable to see if an error has
occurred.

Subroutines called:

None

23

I/O units used:

LUN - Associated with GDAS data file for this data set.
99 - Temporarily associated with GDAS header file for this data set.
6 - Used for error reports.

5.11 DBREAD

DBREAD (IHEAD, NPTS, IYR, JDAY, ITIM, NDATA, DATA, DBERR)

Purpose: This subroutine retrieves data values from a GDAS data file. For a
data file in "time-series" format, NDATA data values for PTS index
number NPTS starting at IYR, JDAY, ITIM are returned in the array
DATA. For a data file in "time-synchronous" format, data for PTS
index NPTS through NPTS+NDATA-1 at IYR, JDAY, ITIM are returned in
the array DATA. Function NPTSDB can be used to determine NPTS for a
given station identifier, parameter descriptor, and height. For a
"time-series" data file, an error results if the index number of the
last data value requested is greater than the maximum index. For a
"time-synchronous" data file, an error results if NPTS+NDATA+l is
greater than the total number of PTS's in the data base.

.
Arguments on input:

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track of
the FORTRAN logical unit number associated with the GDAS data file.

NPTS - The index number of the PTS for which data are to be read.

IYR - Desired year.

JDAY - Desired Julian day (month if INTERV = 5). Not used if INTERV = 6.

ITIM - Desired time in basic time units. Not used if INTERV - 4, 5 or 6.

NDATA - The number of data values to read.

Arguments on output:

DATA - Array in which data values are returned by DBREAD.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors are
detected and the value of .TRUE. if an error is detected. Calling
program must declare this variable to be of type LOGICAL and is
responsible for checking this variable to see if an error has
occurred.

Subroutines called:

24

NRECDB - Returns the record number, given a PTS and a date.
DBINDX - Returns the column index number of the data matrix, given a date.

I/O units used:

IHEAD(21) - FORTRAN I/O unit associated with GDAS data file for this
data set.

6 - Used for error reports.

5.12 DBSUBH

DBSUBH (NAME, IHEAD, RLAT, RLON, BIAS, RMISS, REDIT, UNITS, DBERR)

Purpose: This subroutine reads the GDAS header file NAME and returns values
for RLAT, RLON, BIAS, RMISS, REDIT, and UNITS for all PTS's in this
data set.

Arguments on input:

NAME - CHARACTER*80 VAX filename for GDAS header file.

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.11. IHEAD(21) is used by the GDAS to keep track of
the FORTRAN logical unit number associated with the GDAS data file.

Arguments on output:

RLAT - Array of dimension IHEAD(3) returned as latitude in degrees north
for all PTS's in this data set.

RLON - Array of dimension IHEAD(3) returned as longitude in degrees west
for all PTS's in this data set.

BIAS - Array of dimension IHEAD(3) returned as biases for data values for
all PTS's in this data set.

RMISS - Array of dimension IHEAD(3) returned as missing data flag value for
all PTS's in this data set.

REDIT - Array of dimension IHEAD(3) returned as edited data flag value for
all PTS's in this data set.

UNITS - CHARACTER*48 array of dimension IHEAD(3) returned as description of
units for all PTS's in this data set.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors
are detected and the value of .TRUE. if an error is detected.
Calling program must declare this variable to be of type LOGICAL
and is responsible for checking this variable to see if an error
has occurred.

25

Subroutines called:

None

I/O units used:

99 - Temporarily associated with GDAS header file for this data set.
6 - Used for error reports.

5.13 DBTINC

DBTINC (IHEAD, IYR, IMON, IDAY, IJUL, ITIME, INC,
IYEARSM, IMONM, IDAYM, IJULM, IHM, IMINM,
ISECM, ITENM, IHUNM, DBERR)

Purpose: This subroutine adds the number of basic time units indicated by
input parameter 'INC' to the date and converts the time calculated
in basic time units to hours, minutes, seconds, tenths of seconds,
and hundredth of seconds.

Arguments on input:

IHEAD -

IYR -

IMON -

IDAY -

IJUL -

ITIME -

INC -

Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track of
the FORTRAN logical unit number associated with the GDAS data file.

Year for which INC basic time units will be added.

Month for which INC basic time units will be added. Not used if
INTERV > 4.

Day of month for which INC basic time units will be added. Not used
if INTERV > 4.

Julian day if -2 5 INTERV 1. 4 for which INC basic time units will be
added. Month if INTERV = 5 for which INC basic time units will be
added. Not used if INTERV - 6.

Time in basic time units for which INC basic time units will be
added. Not used if INTERV > 3.

Number of basic time units to increment date and time arguments.

Arguments on output:

IYEARSM - Adjusted year after incrementing day and time arguments.

IMONM - Adjusted month after incrementing day and time arguments. Not
adjusted if INTERV = 6.

26

IDAYM - Adjusted day of month after incrementing day and time arguments.
Not adjusted if INTERV > 4.

IJULM - Adjusted Julian day if 4 2 INTERV 5 -2 after incrementing day and
time arguments. Month adjusted if INTERV - 5 and not adjusted if
INTERV - 6.

IHM - Calculated hour after incrementing day and time arguments. Not
calculated if INTERV > 3.

IMINM - Calculated minute after incrementing day and time arguments. Not
calculated if INTERV > 2.

ISECM - Calculated second after incrementing day and time arguments. Not
calculated if INTERV > 1.

ITENM - Calculated tenth of second after incrementing day and time
arguments. Not calculated if INTERV > -1.

IHUNM - Calculated hundredth of second after incrementing day and time
arguments. Not calculated if INTERV > -2.

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors are
detected and the value of .TRUE. if an error is detected. Calling
program must declare this variable to be of type LOGICAL and is
responsible for checking this variable to see if an error has
occurred.

Subroutines called:

DBDATE - Adjusts time by incrementing the time arguments by the specified
number of days.

I/O units used:

None

5.14 DBWRIT

DBWRIT (IHEAD, NPTS, IYR, JDAY, ITIM, NDATA, DATA, DBERR)

Purpose: This subroutine writes data values to a GDAS data file. For a data
file in "time-series" format, NDATA data values for PTS index number
NPTS starting at IYR, JDAY, ITIM are written to the data file from
the array DATA. For a data file in "time-synchronous" format, data
for PTS index NPTS through NPTS+NDATA-1 at IYR, JDAY, ITIM are
written to the data file from the array DATA. Function NPTSDB can
be used to determine NPTS for a given station identifier, parameter
descriptor, and height. For a "time-series" data file, an error
results if the index number of the last data value requested is
greater than the maximum index. For a "time-synchronous" data file,
an error results if NPTS+NDATA+l is greater than the total number of
PTS's in the data base.

27

Arguments on input:

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track of
the FORTRAN logical unit number associated with the GDAS data file.

NPTS - The index number of the PTS for which data are to be written.

IYR - Desired year.

JDAY - Desired Julian day (month if INTERV - 5). Not used if INTERV - 6.

ITIM - Desired time in basic time units. Not used if INTERV = 4, 5, or 6.

NDATA - The number of data values to write.

DATA - Array from which data values are written by DBWRIT.

Arguments on output:

DBERR - LOGICAL variable returned with the value of .FALSE. if no errors are
t detected and the value of .TRUE. if an error is detected. Calling
program must declare this variable to be of type LOGICAL and is
responsible for checking this variable to see if an error has
occurred.

Subroutines called:

NRECDB - Returns the record number, given a PTS and a date.
DBINDX - Returns the column index number of the data matrix, given a date.

I/O units used:

IHEAD(21) - FORTRAN I/O unit associated with GDAS data file for the data set.
6 - Used for error reports.

5.15 NPTSDB

FUNCTION NPTSDB (IHEAD, DESCR, NVERT, STA, DES, IHIGH)

Purpose: This function returns the row number in the data matrix for a given
station identifier (STA), parameter descriptor (DES), and height
(IHIGH). The arrays IHEAD, DESCR, and NVERT must have previously
been initialized by DBOPEN. The value of the function is negative
if an error is detected.

Arguments on input:

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD

28

(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track of
the FORTRAN logical unit number associated with the GDAS data file.

DESCR - CHARACTER*8 array of dimension IHEAD(3) containing station
identifier (DESCR(1:5)), parameter descriptor (DESCR(6:7)), and type
(DESCR(8:8)) for all PTS's in this data set.

NVERT - Array of dimension IHEAD(3) containing height or depth relative to
water level in centimeters for all PTS's in this data set.

STA - CHARACTER*5 station identifier.

DES - CHARACTER*2 parameter descriptor.

IHIGH - Height or depth relative to water surface, in centimeters.

Subroutines called:

None

I/O units used:

6 - Used for error reports.

5.16 NRECDB

FUNCTION NRECDB (IHEAD, NPTS, IYR, JDAY, ITIM)

Purpose: This function returns the record number of the record in the data
file corresponding to data for IYR, JDAY, ITIM for parameter time
series number NPTS. The value of the function is negative if an
error is detected.

Arguments on input:

IHEAD - Array of dimension 21. IHEAD is expected to contain the 20 integer
values that describe the organization of the data file (see IHEAD
(l-20) in Sec. 2.1). IHEAD(21) is used by the GDAS to keep track of
the FORTRAN logical unit number associated with the GDAS data file.

NPTS - The index number of the PTS.

IYR - Desired year.

JDAY - Desired Julian day (month if INTERV = 5). Not used if INTERV = 6.

ITIM - Desired time in basic time units. Not used if INTERV = 4, 5 or 6.

Subroutines called:

DBINDX - Returns the column index number of the data matrix given a date,

29

I/O units used:

6 - Used for error reports.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C

PROGRAM GDASM

6. GDAS SAMPLE PROGRAM

This is a sample program that demonstrates the use of the GDAS
data base subroutines.

This program can be used to create a new user-defined header
file by creating a formatted ASCII file with the name of the data
base and extension ' .ASC' that contains the header file information
in the format described below.

LINE 1 of the formatted ASCII header file is the Header Record, which
consists of 20 integer values describing the organization of the data
file.

LINES 2 through (NDSDES + 1) of the formatted ASCII header file
consist of 80-character descriptor records.

LINES (NDSDES + 2) through line (NDSDES + NUMPTS + 1) of the formatted
ASCII header file contain Subheader Records, one for each PTS in the
data system.

This program reads the formatted ASCII file and sends the data to
subroutine 'DBNEW' where an unformatted binary file with an extension
'.HED' is created containing the header file information. In
addition an initialized unformatted binary data file is created
with the extension '.DAT'. Once the data base has been defined in
this way the user can extract summaries of the header data, add data
to the data file, and examine data in the data file.

This program runs interactively (i.e., all parameter prompting
is output to the terminal and all parameter input is read from the
keyboard) regardless of an assign statement.

This program is set up to run interactively. However, data that are
to be written to the data base can optionally be read from a file by using
an ASSIGN statement (e.g., ASSIGN INPUTDATA.DAT FOR005). On program
termination the DEASSIGN statement should be given (e.g., DEASSIGN
FOR005). Data that are to be read from the data base can optionally be
written to a file by using an ASSIGN statement (e.g., ASSIGN OUTPUTDATA.DAT
FOR006). On program termination the DEASSIGN statement should be
given (e.g., DEASSIGN FOR006).

This program will support all basic time intervals (Header file
parameter number 5 = INTERV) except tenths and hundredths of seconds
(INTERV = -l,-2).

HISTORY: Written by Edward W. Lynn, December 1984.

Array containing Header Record of the data base header file

DIMENSION IHEAD(21)

Array containing the Descriptor Records of the data base header file

30

C
CHARACTER DSDES(5000)*80

C Array containing Subheader Records of the data base header file
C

DIMENSION NVERT(5OO0),RLAT(5000),RLON(5000)
DIMENSION BIAS(5000),RMISS(500O),REDIT(5OOO)
CHARACTER DESCR(5000)*8, UNITS(5000)*48
LOGICAL DBERR
DIMENSION DATA(5000)
CHARACTER NAME*80, NAME1*80, STA*5, DES*2, ANS*l

C
C Set dimension of arrays
C

DATA IDIM/5000/
C
C Get data base file name, do not include file extension,
C default file extensions will apply
C

5 WRITE(*,'(A)') ' ENTER DATA BASE FILE NAME:'
READ(*,'(A)', ERR=5,END=5) NAME

C
C User will either create or open an existing data base
C

15 WRITE(*,'(A)') ' ENTER N IF YOU WANT TO CREATE A NEW DATA BASE'
WRITE(*,'(A)')
1' ENTER 0 IF YOU WANT'TO OPEN AN EXISTING DATA BASE'
READ(*,'(A)',ERR=15,END=15) ANS
CALL STR$UPCASE(ANS,ANS)
IF(ANS .NE. 'N' .AND. ANS .NE. '0') GOT0 15

c **
C
C Open data base to prepare for access
C

IF(ANS .EQ. '0') THEN
C
C Determine access type for data base and assign a LUN to the
C data base data file. LUN must be < 0 to have data base opened
C for
C

17
1

1

write access

WRITE(*,'(A)')
' ENTER R IF YOU WANT DATA BASE OPENED FOR READ ACCESS ONLY'
WRITE(*,'(A)')
' ENTER W IF YOU WANT DATA BASE OPENED FOR READ/WRITE ACCESS'
READ(*,'(A)',ERR=17,END=l7) ANS
CALL STR$UPCASE(ANS,ANS)
IF(ANS .NE. 'R' .AND. ANS .NE. 'W') GOT0 17
IF(ANS .EQ. 'R') THEN
LUN - 1

ELSE
LUN = -1

END IF
CALL DBOPEN(NAME,LUN,IHEAD,DESCR,NVERT,IDIM,DBERR)

31

IF(DBERR) GOT0 5
INTERV - IHEAD(5)

C
c **
C
C Create new data base header file and initialize data base data file
C

ELSE
C
C Confirm ASC, HED, and DAT filenames
C

INDX - INDEX(NAME,' ') -1
NAMEl(l:INDX+4)

18 WRITE(*,'(3A)')
- NAME(l:INDX) // '.ASC'

1' THE HEADER FILE IN FILE: ',NAME(l:INDX),'.ASC WILL BE USED TO'
WRITE(*,'(3A)')

1 ' CREATE GDAS HEADER FILE: ',NAME(l:INDX),'.HED AND GDAS'
WRITE(*,'(3A)')

1 ' DATA FILE: ' ,NAME(l:INDX),' .DAT IS THIS OK? (INPUT Y..OR..N)'
READ(*,'(A)',ERR-18,END=l8) ANS
CALL STR$UPCASE(ANS,ANS)
IF(ANS .NE. 'Y' .AND. ANS .NE. 'N') GOT0 18
IF(AN,S .EQ. 'N') GOT0 5

C
C Open formatted ASCII header file, file name is assumed to be the same
C as the data base with the extension '.ASC'
C

OPEN(l,FILE-NAMEl,STATUS='OLD')
C
C Fill parameters to send to 'DBNEW' subroutine, read the Header Record
C

READ(l,*,ERR=gg,END-99) (IHEAD(I),I=l,ll)
NUMPTS = IHEAD(3)
INTERV - IHEAD(5)
NDSDES = IHEAD(10)

C
C Make sure IDIM is greater than or equal to NUMPTS
C

IF(IDIM .LT. NUMPTS) THEN
WRITE(*,*)

1 ' DIMENSION IDIM IS TO SMALL IN GDASM'
STOP

END IF
C
C Read the data system Descriptor Records
C

DO 10 I = 1, NDSDES
READ(l,'(A)',ERR=gg,END=gg) DSDES(1)

10 CONTINUE
C
C Read the Subheader Records
C

DO 11 I = 1, NUMPTS

32

READ(l,*,ERR==99,END=99) DESCR(I),NVERT(I),RLT(I),RLON(I),
1 BIAS(I),RMISS(I),REDIT(I),UNITS(I)

11 CONTINUE
GOT0 27

99 WRITE(*,'(2A)')
1 ' ERROR OR END OF FILE FOUND ON FILE: ',NAME(l:INDX)

CLOSE(l)
GOT0 5

C
C Now send initialized arrays to DBNEW to create a new
C header file and initialized data file
C

27 CALL DBNEW(NAME,LUN,IHEAD,DSDES,DESCR,NVERT,R~T,RLON,BIAS,
1 RMISS,REDIT,UNITS,DBERR)

IF(DBERR) GOT0 5
END IF

C
C Type the list of options
C

20 WRITE(*,*) ' '
WRITE(*,'(A)') ' ENTER S IF YOU WANT SUMMARY INFORMATION'
WRITE(*,'(A)') ' ENTER R IF YOU WANT TO READ DATA'
WRITE(*,'(A)') ' ENTER W IF YOU WANT TO WRITE DATA'
WRITE(*,'(A)') '8 ENTER Q IF YOU WANT TO QUIT'
READ(*,'(A)',ERR-20,END-20) ANS
CALL STR$UPCASE(ANS,ANS)
IF(ANS .NE. 'S' .+D. ANS .NE. 'R' .AND. ANS .NE. 'W' .AND.

1 A.NS .NE. 'Q') GOT0 20
C
c ************~***
C
C List options available for data base summaries
C

IF(ANS .EQ. 'S') THEN
22 WRITE(*,'(A)') ' '

WRITE(*,'(A)')
1 ' OPTION: 1 PRINTS THE DESCRIPTOR RECORDS AND THE HEADER RECORD'
WRITE(*,'(A)')

1 ' OPTION: 2 PRINTS ALL THE PARAMETER DESCRIPTOR AND HEIGHT',
2 ’ PAIRS FOR EACH STATION IDENTIFIER'
WRITE(*,'(A)')

1 ' OPTION: 3 PRINTS THE STATION LOCATION FOR EACH STATION',
2 ’ IDENTIFIER'
WRITE(*,'(A)')

1 ' OPTION: 4 PRINTS ALL THE STATION IDENTIFIERS FOR EACH',
2 ’ PARAMETER DESCRIPTOR AND HEIGHT PAIR'
WRITE(*,'(A)')

1 ' OPTION: 5 PRINTS A SUBHEADER SUMMARY INCLUDING ALL SUBHEADER',
2 ’ PARAMETERS EXCEPT 48 CHARACTER DESCRIPTOR FOR UNITS'
WRITE(*,'(A)')

1 ' OPTION: 6 PRINTS A SUBHEADER SUMMARY INCLUDING STATION',
2 ’ IDENTIFIER, PARAMETER DESCRIPTOR, HEIGHT, AND',
3 ’ 48 CHARACTER DESCRIPTOR FOR UNITS'

33

C

WRITE(*,'(A)') ' OPTION: 7 RETURN TO MAIN MENU'
WRITE(*,'(A)') ' '
WRITE(*,'(A)') ' ENTER OPTION NUMBER:'
READ(*,*,ERR=ZX,END=Z) IOP
IF(IOP .LT. 1 .OR. IOP .GT. 7) GOT0 22
IF(IOP .EQ. 1) THEN
CALL DBINFO(NAME,l,O,O,O,O,O,DBERR)

ELSE IF(IOP .EQ. 2) THEN
CALL DBINFO(NAME,O,l,O,O,O,O,DBERR)

ELSE IF(IOP .EQ. 3) THEN
CALL DBINFO(NAME,O,O,l,O,o,O,O,DBERR)

ELSE IF(IOP .EQ. 4) THEN
CALL DBINFO(NAME,O,O,O,l,o,O,O,DBERR)

ELSE IF(IOP .EQ. 5) THEN
CALL DBINFO(NAME,O,O,O,O,l,O,DBERR)

ELSE IF(IOP .EQ. 6) THEN
CALL DBINFO(NAME,O,O,O,O,o,l,DBERR)

ELSE IF(IOP .EQ. 7) THEN
GOT0 20
END IF
GOT0 22

c **
C
C Example of reading data from data base, given Start Date, Station
C Identifier, Parameter Descriptor, Height, and number of data
C values required
C

ELSE IF(ANS .EQ. 'R') THEN
25 IF(INTERV .EQ. 6) THEN

WRITE(*,'(A)')
1 ' ENTER YEAR TO READ DATA BASE (E.G. 1984)'

READ(*,*,ERR=25,END=25) IYR
ELSE IF(INTERV .EQ. 5) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR AND MONTH TO READ DATA BASE (E.G. 1984,2)'
READ(*,*,ERR=25,END-25) IYR, IJUL
ELSE IF(INTERV .EQ. 4) THEN
WR?"E(*,'(A)')

1 ' hNTER YEAR AND JULIAN DAY TO READ DATA BASE (E.G. 1984,345)'
READ(*,*,ERR=25,END=25) IYR, IJUL
ELSE IF(INTERV .EQ. 3) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR, JULIAN DAY AND TIME IN HOURS TO READ DATA BASE',
2 ' (E.G. 1984,345,12)'

READ(*,*,ERR=25,END=25) IYR, IJUL, ITIME
ELSE IF(INTERV .EQ. 2) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR, JULIAN DAY AND TIME IN MINUTES TO READ DATA BASE',
2 ' (E.G. 1984,345,720)'

READ(*,*,ERR=25,END=25) IYR, IJUL, ITIME
ELSE IF(INTERV .EQ. 1) THEN
WRITE(*,'(A)')

34

1 ' ENTER YEAR, JULIAN DAY AND TIME IN SECONDS TO READ DATA BASE',
2 ' (E.G. 1984,345,43200)'

READ(*,*,ERR=25,END-25) IYR, IJUL, ITIME
ELSE
WRITE(*,'(A)')

1 ' SORRY, SAMPLE MAIN PROGRAM "GA CM" DOES NOT SUPPORT BASIC',
2 ' TIME INTERVALS LESS THEN A SECOND.'

STOP
END IF

C
30 WRITE(*,'(A)')

1' ENTER THE STATION IDENTIFIER, PARAMETER DESCRIPTOR, AND',
2' HEIGHT OR DEPTH RELATIVE TO WATER LEVEL IN CENTIMETERS',
3' (E.G. "TWR","AT",500)'
READ(*,*,ERR=30,END=30) STA, DES, IHIGH

C
C Get the column index corresponding to the particular Station Identifier,
C Parameter Descriptor, and Height
C

NPTS = NPTSDB(IHEAD,DESCR,NVERT,STA,DES,IHIGH)
IF(NPTS .LT. 0) GOT0 20

C
35 WRITE(*,'(A)')

1 ' ENTER THE NUMBER OF DATA VALUES THAT YOU WOULD LIKE READ'
READ(*,*,ERR=35,END=35) NDATA

C
C On return from 'DBREAD', NDATA values will be in array DATA for your use
b

CALL DBREAD(IHEAD,NPTS,IYR,IJUL,ITIME,NDATA,DATA,DBERR)
IF(DBERR) GOT0 20
WRITE(G,*) (DATA(I),I=l,NDATA)
GOT0 20

C
C Example of writing data to data base given Start Date, Station
C Identifier, Parameter Descriptor, Height, and number of data
C values required
C

ELSE IF(ANS .EQ. 'W') THEN
40 IF(INTERV .EQ. 6) THEN

WRITE(*,'(A)')
1 ' ENTER YEAR TO WRITE DATA BASE (E.G. 1984)'

READ(*,*,ERR=40,END=40) IYR
ELSE IF(INTERV .EQ. 5) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR AND MONTH TO WRITE DATA BASE (E.G. 1984,2)'
READ(*,*,ERR=40,END=40) IYR, IJUL
ELSE IF(INTERV .EQ. 4) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR AND JULIAN DAY TO WRITE DATA BASE (E.G. 1984,345)'
READ(*,*,ERR=40,END=40) IYR, IJUL
ELSE IF(INTERV .EQ. 3) THEN

35

WRITE(*,'(A)')
1 ' ENTER YEAR, JULIAN DAY AND TIME IN HOURS TO WRITE DATA BASE',
2 ' (E.G. 1984,345,12)'

READ(*,*,ERR-40,END-40) IYR, IJUL, ITIME
ELSE IF(INTERV .EQ. 2) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR, JULIAN DAY AND TIME IN MINUTES TO WRITE DATA BASE'
2 ' (E.G. 1984,345,720)'

kAD(*,*,ERR=40,END=40) IYR, IJUL, ITIME
ELSE IF(INTERV .EQ. 1) THEN
WRITE(*,'(A)')

1 ' ENTER YEAR, JULIAN DAY AND TIME IN SECONDS TO WRITE DATA BASE'
2 ' (E.G. 1984,345,43200)'

READ(*,*,ERR=40,END=40) IYR, IJUL, ITIME
ELSE
WRITE(*,'(A)')

1 ' SORRY, SAMPLE MAIN PROGRAM "GDASM" DOES NOT SUPPORT BASIC',
2 ' TIME INTERVALS LESS THEN A SECOND.'

STOP
END IF

C
45 WRITE(*,'(A)')

1' ENTER THE STATION IDENTIFIER, PARAMETER DESCRIPTOR, AND',
2' HEIGHT OR DEPTH RELATIVE TO WATER LEVEL IN CENTIMETERS',
3' (E.G. "TWR","AT",500)'

READ(*,*,ERR=45,END=45) STA, DES, IHIGH

Get the column index corresponding to the Particular Station Identifier,
Parameter Descriptor, and Height

NPTS = NPTSDB(IHEAD,DESCR,NVERT,STA,DES,IHIGH)
IF(NPTS .LT. 0) GOT0 20

C
50 WRITE(*,'(A)')
1 ' ENTER THE NUMBER OF DATA VALUES THAT YOU WOULD LIKE TO WRITE'

READ(*,*,ERR==SO,END-50) NDATA
C

55 WRITE(*,'(A,I4,A)')
1 ' ENTER ',NDATA,' VALUES THAT YOU WOULD LIKE TO WRITE'
READ(S,*,ERR=56,END=56) (DATA(I),I-l,NDATA)
GOT0 57

56 WRITE(*,*) ' ERROR IN INPUTING DATA'
GOT0 20

On return from 'DBWRIT', NDATA values from array DATA will have
been written to the data base

57 CALL DBWRIT(IHEAD,NPTS,IYR,IJUL,ITIME,NDATA,DATA,DBERR)
IF(DBERR) GOT0 20
GOT0 20
END IF
END

36

7. SUPPLEMENTARY DATA FOR GDAS

7.1 GDAS Files

GDAS SOURCE CODE:
[PLM.GDAS]GDAS.FOR FILE CONTAINING GDAS SUBROUTINE SOURCE CODE.
[PLM.GDAS]GDASM.FOR EXAMPLE MAIN PROGRAM USING GDAS SUBROUTINES.

GDAS OBJECT LIBRARY:
[PLM.GDAS]GDAS.OLB OBJECT LIBRARY CONTAINING GDAS SUBROUTINES

7.2 Example Compilation, Link, and Run of Users Main Program
with GDAS Subroutine Object Library

FOR prog
LINK prog,[PLM.GDAS]GDAS/L
RUN prog

7.3 How To Run the Example Interactive Main Program

RUN [PLM.GDAS]GDASM

7.4 Examples of Data Base Data Files and Header Files in GDAS Format

NDBC DATA
DISK$NDBC:[NDBC]NDBCl981,DAT, DISK$NDBC:[NDBC]NDBCl98l.HED
DISK$NDBC:[NDBC]NDBC1982.DAT; DISK$NDBC:[NDBC]NDBC1982.HED
DISK$NDBC:[NDBC]NDBCl983DAT, DISK$NDBC:[NDBC]NDBCl983.HED
DISK$NDBC:[NDBC]NDBCl984.DAT, DISK$NDBC:[NDBC]NDBCl984.HED

NOTE THAT THE NDBC DATA ARE ON A MOUNTABLE DISK PACK.
USE THE MOUNTPACK COMMAND TO MOUNT THE DISK (I.E., MOUNTPACK NDBC).

*U.S. G o v e r n m e n t P r i n t i n g O f f i c e : 1987---756~657/40196

37

