
1

Michiel van der Leeuw
Technical Director - Guerrilla Games

The PlayStation®3’s SPUs
in the Real World
 A KILLZONE 2 Case Study

2

• Things we did on SPUs

• What worked or didn’t work for us

• Practical advice on using SPUs

• Some food for thought

TAKEAWAY

3
- Firstly a post-mortem
- Talk about what we did and if we liked it
- Iʼll try to add lots of numbers, because I like it in other presentations

- Will try to put this into perspective
- So you can apply this to your own game

KILLZONE 2
• Announced E3 2005
• Gold Master end 2008

• ~ 120 Average team size
• ~ 27 Programmers

4
Team:
- Peak 140 in Amsterdam, 50 at other Sony studios
- Average around 120

Coders (peak):
- 5 Network coders
- 9 Game coders
- 6 AI coders
- 7 Tech coders
- 27 Total

KILLZONE 2
Franchise and engine goals:

• Cinematic

• Dense

• Realistic

• Intense

Can SPU’s help?

5
Cinematic:
- Movie-like quality in everything (animation, special effects)
- Make people forget itʼs a video game

Dense:
- Dense, lots of everything
- Over-the-top

Realistic:
- Not just from a graphics point of view
- Responds to player actions
- AI behaves logically

Intense:
- Frantic, lots of everything (see a pattern)

SPUs OVERVIEW

• 6 x 3.2GHz of processing power

• General purpose instruction set

• 256KB local memory per SPU
• No caches! Only local code

• Very fast DMA in/out

• Libraries for scheduling

6
Problems:
- Hard to program, especially at the start
- Lack of instruction of data and instruction cache difficult
- Basically impossible to use as a ʻnormalʼ core out of the box

Virtues:
- Truly parallel
- Incredibly incredibly fast
- DMA allows hiding of all memory latency

Difficult to unlock the power

KILLZONE 2 SPU USAGE

7

KILLZONE 2 SPU USAGE

• Animation

• AI Threat prediction

• AI Line of fire

• AI Obstacle avoidance

• Collision detection

• Physics

• Particle simulation

• Particle rendering

• Scene graph

• Display list building

• IBL Light probes

• Graphics post-processing

• Dynamic music system

• Skinning

• MP3 Decompression

• Edge Zlib

• etc.

44 Job types

8

KILLZONE 2 SPU USAGE

• Per frame
• ~ 100 physics objects simulated
• ~ 600 image-based light probes
• ~ 250 rays cast per frame
• ~ 200 animations sampled
• ~ 250 particle systems active
• ~ 6 scene graph traversals
• ~ 2000 graphics objects drawn
• ~ 75 skinning batches

9
Notes:
- Started out with simple stuff (skinning, particle vertices)
- Ditched fluid sim running on SPUs (artistic reasons, couldnʼt get it to look right)

Next up:
- Movie from game

Killzone 2 - SPU usage in cut scene

KILLZONE 2 SPU USAGE

10
On-screen:
- Left side = PPU and SPU activity bars

 - Top is PPU

 - Below is six SPUs (Flickering due to bug in my code)
- Right side = SPU activity by job

 - Column 1: Name

 - Column 2: Job count

 - Column 3: Time taken in percentage of one SPU on a 30 Hz frame

Usage:
- Lots of different things
- Lots of jobs, about 1000
- This is still light usage, 1.5 SPUs used

 - Cut-scene

 - No AI or gameplay

 - Normally about 4 to 5 SPUs used

Killzone 2 - SPU usage in cut scene

KILLZONE 2 SPU USAGE

11

GRAPHICS
SPUs in

12
Presentation overview
- Take a look at different areas

 - Graphics

 - Game code

 - AI

LIGHT PROBE SAMPLING

• Purpose: Make dynamic objects blend in with lightmaps
of environment

• ~ 2500 static light probes per level
• Created offline during lightmap rendering
• Stored as 9x3 Spherical Harmonics in KD-tree

• When object needs to be lit by light probes
• A job is added to sample lighting for that object
• Blend four closest light probes
• Rotate result into view space
• Create 8x8 spherical mapped texture for sampling

13
Notes:
- Will explain with pictures to make it clear
- Sounds expensive, but itʼs not too bad
- Do roughly 600 light probes per frame (13% of one SPU)
- Sometimes more
- Multiple probes per object (legs, torso, arms), never bothered to optimize

Light probe placement in world

LIGHT PROBE SAMPLING

14

Light probes around a dynamic object

LIGHT PROBE SAMPLING

15

Blended light probe at object’s position

LIGHT PROBE SAMPLING

16

Blended probe sampled in texture space

LIGHT PROBE SAMPLING

17
Notes:
- This is actually fake

 - This is a latitude-longitude map

 - In-game is spherical map
- But this seemed to explain better by the artist

Final shot with lightmaps and light probes

LIGHT PROBE SAMPLING

18
Notes:
- This is the final scene as you see it in-game

 - Or on TV, in this case

 - Or on PlayStation®Network, soon

- Can you see what is

 - Lightmapped

 - Lit by light probes?

Base scene, no light probes, no textures

LIGHT PROBE SAMPLING

19
Notes:
- Light probes replaced with single white probe
- All dynamic objects and destructibles are lit with probes
- Only floor is static in this case

...add light probes sampling and sunlight

LIGHT PROBE SAMPLING

20
Notes:
- All lighting and directional information in shadow is light probes
- Blend of sun light and light probes ʻpullʼ the scene together

...add textures

LIGHT PROBE SAMPLING

21
Notes:
- Textures add less ʻfeelingʼ than lighting

CINEMATIC - Because you forget itʼs a game, objects donʼt “pop out” of the scene

PARTICLE SIMULATION

• We’re quite particle heavy, per 30 Hz frame:
• ~ 250 particle systems simulated
• ~ 150 systems drawn
• ~ 3000 particles updated
• ~ 200 collision ray casts

• Difficult to optimize for multi-core
• System had grown feature-heavy over time
• Had to refactor in-place, incremental steps
• Code was quite optimized, but generic C++
• Memory accesses all over the place

22
Notes:
- A lot of our look comes from effects
- Particles very key to our look
- Not designed for PlayStation®3! Like, really...

Features:
- Geometry/mesh particles
- Collision particles (ray casts)
- Recursive system (impact causes new particle system)
- Attach sounds
- Lots of curves and tweakability

You:
- Everyone has one of these hideous beasts in their code somewhere

PARTICLE SIMULATION

• System was refactored for SPUs in four steps
1. Vertex generation (~1 month)

2. Particle simulation inner loop (~2 months)

3. Initialization and deletion of particles (~3 months)

4. High-level management / glue (~4 months)

• Everything now done on SPUs except
• Updating global scene graph
• Starting & stopping sounds

• Had “Learning Experience” written all over it

23
Steps:
1. Simple, vectorised when moved as well
2. Also quite straightforward, particles already configured, just need simulation
3. Tough, had to read all artist curves, tweaks, variable-sized arrays, linked lists, etc. (data all over the place)
4. Elite, had to remove memory allocation altogether, difficult edge cases

 - But definitely the biggest win, SPU pain caused us to do stuff ʻthe right wayʼ which in the end helped

Notes:
- Now runs almost completely on SPUs
- Almost zero PPU overhead left
- And many many times faster than old version

 - SPU memory locality = cache locality

 - Custom memory allocator
- Every time we made it faster, the artists started using more of it

 - Requiring us to further optimize

 - Because we liked the look it gave us
- “Incremental” was the keyword
- Learning experience because we learned how memory-bound we really were, but never knew

CODE STYLE DIFFERENCE
PPU Version

• Single-threaded

• Malloc & free

• Pointers to objects

• Input control curves

• Raycasts during update

• ~ 20ms update on PPU

SPU Version
• Heavily parallel
• Linear memory block
• Embedded objects
• Sampled lookup tables
• Queues raycast jobs

• < 1ms update on PPU
• ~ 15ms update on SPUs

20x Less PPU overhead!
Incredible amount of work

24
Notes:
- First looked more like game code than engine code
- Turned into lean and mean, memory-local system
- Forced to change it by SPUs architecture, but donʼt regret it in the end

Performance:
- Optimized a lot along the way
- Final system now runs faster on SPUs than same code on PPU

 - DMA hides memory latency
- Runs faster on Intel Xeons as well (no longer fall off D$)

Example movie

PARTICLE SIMULATION

25
Notes:
- Explosions in presentation are cool
- Higher budgets than the actual game (3x higher)

At peak:
- 1700 particle emitters
- 1100 visible systems
- 120% of an SPU for update
- 110% of an SPU for vertex generation

Future:
- Code is fairly unoptimized, with optimization itʼll probably run in-game

DENSE & INTENSE - This is a large part of what makes everything so over-the-top, in your face

IMAGE POST-PROCESSING

• Effects done on SPU
• Motion blur
• Depth of field
• Bloom

• SPUs assist the RSX with post-processing
1. RSX prepares low-res image buffers in XDR
2. RSX triggers interrupt to start SPUs
3. SPUs perform image operations
4. RSX already starts on next frame
5. Result of SPUs processed by RSX early in next frame

• Improved version available in PlayStation®Edge 1.1!

• Similar (but different) approach in PhyreEngine now!

26
Notes:
- Moved some work normally done on RSX to SPUs

 - 20% on RSX was too much

 - Freed up to draw more geometry/lighting
- Ported only the low-res effects

 - SPUs not fast enough for full-res effects (for us)
- 4pm talk on PhyreEngine that uses SPU-assisted RSX-post processing

 - Room 3002, West Hall, called “Deferred Lighting and Post Processing on PlayStation®3”

 - Different tradeoff, may suit you better

 - Two techniques now available to all 3rd parties!

IMAGE POST-PROCESSING

• Comparison
• @ 30 Hz

• SPUs are compute-bound
• Bandwidth not a problem
• Code can be optimized further

• Our trade-of: RSX vs. SPU time
• SPUs take longer
• But SPUs look better
• And RSX was our bottleneck

RSX Time SPU Time Quality
RSX 20% 0% Medium
RSX + 5 SPUs 14% 12% High

27
Notes:
- Top line is the RSX, bottom SPUs
- SPUs are slower

 - At time of Killzone 2 shipping, Edge is faster!

 - Dropped in at last moment

Quality:
- SPUs have higher internal precision
- Dropped in late in the day (everybody was optimizing)
- IGN picked up on it (preview vs. review code)

 - Some of the quality itself

 - Most of it the tweaks done with the extra budget (increased light map resolution, detail textures, etc.)

Input quarter-res image in XDR

IMAGE POST-PROCESSING

28
Notes:
- Output from deferred renderer after MSAA resolve
- 640x360
- No visible motion, quite static

Input quarter-res depth buffer

IMAGE POST-PROCESSING

29
Notes:
- Depth buffer at 640x360

Input quarter-res 2D motion vectors

IMAGE POST-PROCESSING

30
Notes:
- Projected 2D motion vector
- Written out to a rendertarget in deferred pass

BLOOM + LENS REFLECTION

• Takes roughly 13.1% of one SPU

• SPUs do
• Depth-dependent intensity response curve
• Hierarchical 7x7 gaussian blur (16 bit fixed point)
• Upscaling results from different levels
• Internal Lens Reflection (inspired by Masaki Kawase)
• Accumulating into results buffer

31
Notes:
- First effect we ported, most linear
- 2.6% of five SPUs
- Repeated downsample until 1/64th buffer size
- Accumulate into premultiplied alpha compositing buffer

MOTION BLUR

• Takes roughly 9.5% of one SPU

• Input
• Quarter-res image from deferred renderer
• Sixteenth-res 2D motion vector

• Steps:
• Blur motion vectors (dilation)
• Blur image along motion vectors (8-tap point samples)
• Combine blurred image with source

• Use motion vector amplitude as alpha

• Low-motion areas are unaffected (alpha = 0)

32
Notes:
- Second effect we ported
- 1.9% of five SPUs
- Worried about texture sampling
- Ended up not doing bilinear filtering

 - Filtering on SPUs is very expensive

 - Looks more grainy

 - Exactly what we wanted!

 - Nice artifacts may stay
- Leaves static parts untouched

DEPTH OF FIELD

• Takes roughly 23% of one SPU

• Input
• Quarter-res image from deferred renderer
• Quarter-res depth buffer

• Samples image in floating point
• 36 jittered disc point samples

• Much more than the 8 bilinear samples on RSX!
• Got rid of all banding / stair-stepping

• Weighted by ‘fuzziness’ value based on focus point

33
Notes:
- Last effect we ported
- 4.6% of five SPUs
- Never thought it would work

 - But ended up being biggest success!
- The point samples are cheap

 - So we could do a lot more!

Quality:
- Quality of effect determined largely by radius of circle of confusion
- Less by sampling quality
- The 36 jittered samples were a test
- But looked so good we kept them in

Edge bleeding:
- Intricate sampling methods to avoid edge bleeding

 - From background to foreground

 - But heavily blend front-to-background
- See Edge code

Image before post

IMAGE POST-PROCESSING

34
Notes:
- Putting it all together

 - Image without post

Image generated on the SPUs (bloom, DoF, motion blur)

IMAGE POST-PROCESSING

35
Notes:
- Result of all of the SPU jobs combined
- Quarter-res premultiplied alpha format
- Only areas affected by post-processing are present

Visual:
- Motion blur: Actor at front
- Bloom: Sunlight
- Depth of field: Gun is out of focus (it actually always is, too bad for the detail)

Composited image

IMAGE POST-PROCESSING

36
Notes:
- Final image as composited by the RSX
- Blending the out-of-focus and blurry areas in

Input quarter-res image in XDR

IMAGE POST-PROCESSING

37
CINEMATIC - All of these techniques come directly from film. If we hadnʼt done them on SPUs we may not have been able to do them at this quality

GAME CODE
SPUs in

38
Notes:
- Enough graphics
- On to game code, the most difficult area to use SPUs

ANIMATION SAMPLING

• Using Edge Animation (in PS3 SDK)
• Our extensions for IK, look-at controller, etc.

• Work per 30 Hz frame
• ~40 animation jobs
• ~200 animations sampled
• Less than 12% SPU time on one SPU
• Was ~20% PPU time with our old code!

Edge Animation Is FAST!

39
Notes:
- Used to be bottleneck on PS2 and on PPU
- Very heavy on animation

 - Blending dozens of animations (2 to 50 per humanoid)
- Large part of Edge Animation design inspired by our requirements
- High-level animation code still a bottleneck

Advice:
- If you have animation sampling showing up on PPU

 - Use this, itʼs incredibly fast

REALISTIC - We require hundreds of animations to make the characters stick to the ground, move realistically. Animation is key to this, and with it
performance

ARTIFICIAL INTELLIGENCE
SPUs in

40
Notes:
- Thatʼs largely it for game code
- We also do raycasts from game code
- Says something about what we can use SPUs for

 - Very difficult to use SPUs in pure logic code

 - Also felt it wouldnʼt give us much to focus there

 - Didnʼt suit our franchise needs

WAYPOINT COVER MAPS

• Killzone 2's cover maps are waypoint-based
• Each waypoint has a depth cubemap

• Generated off-line in pre-processing step
• Allows line-of-fire checks between waypoints
• This is how the AI understands the environment

• Suitable for SPUs
• Small data size (compressed cubemaps)
• Very compute-heavy
• Can DMA waypoint data around easily

41
Notes:
- The AI in Killzone 2 ʻseesʼ based on waypoints
- Levels are populated with thousands of waypoints, divided into zones

Reasoning:
- Allows reasoning about tactical waypoint positions

 - Can a person standing on waypoint A see me if Iʼm on waypoint B?

 - How can I plan a path from A to B without somebody on waypoint C seeing me?
- Large problem space to search
- But allows intelligent behavior

 - More checks than we could ever do before

Example waypoint cover map

WAYPOINT COVER MAPS

42
Notes:
- White areas are closeby
- Red area is player position
- Depth compressed to 6 bits
- Less detail in floor/ceiling than walls

FAIL:
- Tried all sorts of novel compression techniques on cubemaps

 - FAIL

 - Simple solution worked best

Visual:
- Small hallway, so lots of closeby walls
- Dark area looks out into room in camera-facing direction

Example waypoint cover map

WAYPOINT COVER MAPS

43

THREAT PREDICTION

• Example: You hide behind cover
• Result: AI searches for you, suppressive fire...

• How? (Killzone AI doesn’t cheat! - that much)

• AI remembers time and waypoint of last contact
• Mark waypoints where threat could move to
• If waypoints are visible then remove from list

• i.e. you can see waypoints and threat is not there!
• If waypoint list grows too long, then stop expanding

• If threat’s predicted position is a small set then
• Based on how AI’s brain is configured…
• ...attack position or search based on possible location

44
Notes:
- (run through slide first)
- AI doesnʼt cheat

 - We donʼt tell it the player position, ever

 - (though game scripters may cheat...)

How this works:
- When an AI loses sight or sound of a threat

 - At start of AI update, fire max 4 jobs (one for each ʻlost threatʼ)

 - Process current set of possible positions

 - Scan all waypoints in this list to see if the player is visible there

 - If found -> threat found!

 - If not, expand adjacent waypoints to see which ones are visible

 - Result is:

 - Possible location list

 - Fed back into the AI planner and ʻbrainʼ

Deals with:
- People running into a building
- You hiding behind cover and standing up to shoot
- People inside a building shooting out of windows, etc.

Threat Prediction using SPUs and cover maps

THREAT PREDICTION

45
Notes:
- Part of Killzone 2 demo level
- Warehouse section
- Green = waypoint grid

Encounter between enemy and friendly

Friendly’s position known

Line of sight
Enemy

THREAT PREDICTION

46
Notes:
- Immediately engaged by enemy
- Knows player position

Player enters cover position

THREAT PREDICTION

47

Player enters cover position

Possible Player
Hiding Spots

Enemy can’t see these
two waypoints

Player might
re-appear here

THREAT PREDICTION

48
Notes:
- Re-appearance waypoint is very important, good place to shoot!
- Helghast shoot at windows, etc. to pin you down

 - NOT pre-programmed!

 Adjusts to your actions!

Enemy looking for player

THREAT PREDICTION

49

LINE OF FIRE

• Problem: AI agents running into each other’s line-of-fire
• Solution: Line-of-fire annotations

• Each AI agent publishes ‘hints’
• Calculate which waypoints may be in my line-of-fire
• Published as ‘advice’ for other entities
• Most AI tasks use this advice in path planning

• SPU does many tests
• Each line-of-fire against each waypoint link
• Tapered-capsule vs. tapered-capsule

50
Notes:
- Challenge to make AI look believable in dynamic situations
- Standing in your or their friendʼs line of fire is STUPID

 - Breaks all immersion

Approach:
- For each entity engaged in combat
- Check current threat and see which waypoint links lie in the line of fire
- Hints are in the form “donʼt stand here or be shot in the head, KTHXBYE”

Result:
- Flanking, walking around enemies engaged in battle
- Behavior is ʻinterpretedʼ by humans as being more intelligent

Two friendlies engaging a foe

LINE OF FIRE

51

Capsule indicate Line of Fire

LINE OF FIRE

52

Red links = In line of fire of upper NPC

LINE OF FIRE

53
REALISTIC & INTENSE - Our AI code on SPUs allow the AI agents to act realistically

The most intense battles in our game are the ones where the AI is chasing you, hunting you down, responding to you.

It doesnʼt become just another pattern-matching game. These guys can be tough as nails, because theyʼre smart.

PUTTING IT ALL TOGETHER

54

SCHEDULING

• Almost all SPU code we have are jobs
• Many different job managers (middleware)
• Managed by own high-level job manager

• Manages the other job managers / workloads
• Easy to write your own, or grab somebody else’s

• High-level scheduling hardcoded in main loop
• Use barriers, mutexes and semaphores sensibly
• Could use generalization, but good enough for now

• None of this is rocket science, just work

55
Notes:
- High-level scheduling decisions done by hand
- Point of this all is that we had ideas on how to over-engineer it
- But under-engineering works fine and it probably wonʼt change
- Pick whatever suits you best

- PPU and SPU can both add jobs to the queue

GAME CODE

PPU THREAD

SPU JOBS
SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

RSX PUSH BUFFER

PRE-DRAW KICK GAME CODEPHYSICS AIPHYSICS AI

Particle vertices

Skinning

Main scene graph

Audio

System, unzip, etc.
Havok Physics

AI Jobs

Animation

Ray casts

Forward display list

Lighting display list

Shadowmap scene graph

Shadowmap display list

Post-processing

Particle update

Main display list

IBL Sampling

LEGEND

56
Buildup is roughly:
- draw SPU6 audio background jobs, audio encoding, nextsynth
- draw other background jobs, decompression
- show AI kicking off logic jobs, picking up the results in the same frame
- show monolithic Havok block with one SPU unclaimed
- show animation jobs starting during the game update
- show particle update jobs starting
- show PPU draw activity
- show skinning jobs starting
- show particle results being picked up on PPU
- while PPU continues, SPU starts firing off particle draw jobs
- main scene graph query begins
- query continues while particle and skinning jobs run
- when query is done, the transparent, lighting and normal geometry jobs start
- the lighting job fires off a few extra scene traversals for shadowcasting
- the geometry job fires off hundreds of lightprobe jobs
- a few shadowmap scene graph queries end and start a shadowmap displaylist builder job
- the SPU post-process jobs are added later in the frame
- this concludes all of the data that needs to be done in the frame

LOOKING BACK

57

RESULTS

• SPUs cost us a lot of development time

• But our code is now future-proof
• Scales well to many cores
• Built a toolset so we can continue this path

• Supported our franchise values
• Cinematic
• Dense
• Realistic
• Intense

58

WHAT WE DID (WRONG)

• We started off re-writing a lot of stuff for SPUs
• Special SPU versions of code
• Minimalistic, mirrored equivalents of old structures

• Huge amount of code and data duplication
• Difficult to develop, maintain and debug
• Massive waste of time! Reverted it all!

• Learned how bloated our data structures were
• And how lean they could be

59
We first found it hard to optimize our code for SPUs because our data structures were full of pointer indirections and virtual functions. They were not friendly to the SPUʼs hardcore local
memory scheme. We also had this feeling that you had to have all your data structures for SPUs really, really optimized.

So we ended up doing what many others did and that was creating special code for SPUs that worked on simplified data structures, derived from the bloated data structures we had. This
ended up as a lot of double bookkeeping and special-case code that was hard to maintain, ugly, often incompatible, and just a bad idea.

We reached some sort of mentality shift at some point when we started to notice we could actually compile our entire engine for SPUʼs - even if it wouldnʼt run, we could at least parse the
data structures and use them directly on SPUs. So we took another good look at our data structures, and started optimizing them.

- AI coders:
 - difficult to find these tasks that have small domain and large loops
 - was relatively easy, not too complicated
 - hard to find code whose design fits the SPUs and even worse to change design

- Failed
 - A* planning in parallel (now ported to SPU for new game, but only on one SPU)

WHAT WE DID (RIGHT)

• All header files cross compile for PPU and SPU
• Many data structures simplified and ‘lowered’
• Low-level code is cross-platform inline in headers

• Code and data structures shared
• DMA high-level engine classes to SPU and back
• Use C++ templates in SPU code

• We try to treat them as generic CPUs and spend our time
making generic optimizations, debugging tools, etc.

60
Notes:
- This was a big mind-switch
- In the end SPUs are not ʻjust another coreʼ

 - But it helps if you try to squint your eyes and treat them as one as much as possible

RECOMMENDATIONS

61

INVEST IN THE FUTURE

• The future is memory-local and excessively parallel

• SPUs are just one of these 'new architectures'

• Optimize for the concept, not the implementation

• Keep code portable, maintain only one version

• Keep time in schedule for parallelization of code

62
Notes:
- GPGPU, Larrabee, etc. all work well with similar algorithms

Side-notes:
- SPUs wouldnʼt have been so difficult if the PPU would have been faster
- But theyʼre here and if you invest in them youʼll get payoff in the future
- If you donʼt the problem wonʼt go away, yes itʼs hard

 - But if you embrace them youʼll at least get the benefit (on all platforms)

ç√

TREAT CPU POWER AS A CLUSTER

• Many separate equal resources

• Think in workloads / jobs

• Build latency into algorithms

• Favor computation-intensive code

• Avoid random memory accesses, globals

63
Notes:
- Makes it easier to think about how to schedule things
- Excessively parallel is something we already know, use that experience

ç√

DON’T OPTIMIZE TOO EARLY

• Blocking DMA is just as expensive as a cache miss

• You can always low-level optimize later

• Don’t re-write systems!

• Re-factor them in-place

• Work incrementally

• Don’t port your spaghetti code

64
Notes:
- Optimized code is difficult to maintain

Our approach:
- If if it runs fine on the PPU -> DONʼT port it
- If you get it on the SPU -> COOL!
- If itʼs slow but you donʼt stall on it -> DONʼT optimize it

In general:
- BE LAZY!!

ç√

FOCUS ON YOUR GAME

• SPUs can add a lot to your game

• Do things you didn’t think were possible

• Takes a lot of effort to get right

• So choose the things that will matter!

65
Notes:
- Almost too simple of a message
- But canʼt stress this enough
- Donʼt just port anything
- Think:
 - Will gamers notice this?
 - Improve my MetaCritic score?

- SPUs helped define the look and feel of Killzone 2
- What will they do to your game?

RECOMMENDATIONS

• Invest in the Future

• Treat Your CPU Power as a Cluster

• Don’t Optimize Too Early

• Focus on Your Game

66

Thank You for Listening
Any Questions?

67
Notes:
- Run around and find me
- Up for sharing experiencing or code

