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A Data Sources and De�nitions

A.1 Figure 1

Source: Net State Domestic Product (NSDP) is from the Economic Politi-

cal Weekly Research Foundation (2005) dataset on Indian states. The sec-

toral de�nitions and sectors are:"Agriculture" includes agriculture, forestry

and �shing; "Mining"; "Manufacturing includes registered and unregistered

manufacturing; "Construction"; "Trade" includes trade, hotels and restau-

rants; "Transport, Electricity" include Transport, Storage and Communi-

cation plus Electricity, Gas & Water; "Banking" includes Financing, Insur-

ance, Business Services; "Real Estate"; "Public" includes Public Adminis-

tration and Defence; and, "Other Services".

All series are at constant 93-94 prices projected back using earlier base

years.

A.2 Figure 2

Source: The Net State Domestic Product data have been assembled from

various tables in the EPW Research Foundation (2005) dataset, the most

comprehensive and up to date dataset on Indian states. The observations

have been spliced so that all states have real NSDP �gures in constant 1993-

1994 prices, divided by state population (interpolated between census dates).

Our method of splicing ensures that our measures of state RNSDP are largely

immunized from the impact of various changes in state de�nition.34

A.3 Panel dataset Used in Section 3

Our core dataset contains output per capita data for 15 major states (the

same list of states as for Figure 2, excluding Jammu and Kashmir) using

data from the EPW Research Foundation, for fourteen sectoral headings.

All data have been spliced so that the underlying sectoral data are in con-

stant 1993-1994 prices, converted into per capita terms using total state

population as for Figure 2. The sectoral series for each state are: 1)Agri-

culture, 2)Forestry and Logging, 3)Fishing, 4) Mining and Quarrying, 5)

Registered Manufacturing 6) Unregistered Manufacturing, 7) Construction,

34 These changes mainly a¤ect Bihar and, to a lesser extent, Madya Pradhesh and
Assam. Details of precise methodology are available from the authors.
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8) Electricity, Gas and Water Supply, 9) Transport, Storage and Communi-

cation, 10) Trade, Hotels and Restaurants, 11)Banking and Insurance, 12)

Real Estate, 13) Public Administration, 14) Other Services.

We eliminate three series from the panel due to clear errors: published

data for Electricity, Gas and Water are negative in some years for Assam

and Haryana; and published data for real estate in Kerala have clear discon-

tinuities. We also investigate below the implications of omitting some other

series that may contain rogue observations.

If we exclude data for Assam, Bihar and Orissa we have a full sectoral

breakdown for the remaining 12 states from 1965; if we also exclude Haryana

and Punjab we have data for the remaining 10 states from 1960.

A.4 Consumption

To calculate aggregate nominal consumption expenditures by states, we gen-

erated a pseudo-panel by utilizing data from various NSS rounds which

provide data on nominal monthly mean per capita rural consumption and

nominal monthly mean per capita urban consumption These numbers were

multiplied by 12 to generate annual �gures, and then multiplied by obser-

vations for rural and urban population shares. The population data are

tabulated from Census �gures, with a common compound growth rate ap-

plied across decadal observations to impute annual observations for each

state. We cross check these �gures with population �gures obtained by sim-

ple extrapolation: (NRSDP/PCNRSDP)*10000000. Both the census �gures

and extrapolated �gures are consistent with each other. Rural Population

and Urban Population proportions are then obtained from various rounds of

the NSS surveys to give us a full series of rural and urban annual population

�gures from 1960 - 2005.

To calculate aggregate real consumption expenditures by states, we fol-

lowed a similar procedure. We generated a pseudo-panel by utilizing data

from various NSS rounds on real monthly mean per capita rural consump-

tion (at 1973-74 all India rural prices), real monthly mean per capita urban

consumption (at 1973-74 all India urban prices), and population data.

Aggregate annual rural consumption (in crore) is given by: real monthly

mean per capita rural consumption �12 � rural population for a given state
in a given year.

Aggregate annual urban consumption (in crore) is given by: real monthly
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mean per capita urban consumption � 12 � urban population for a given

state in a given year.

Total state (nominal) real consumption expenditures (in crore) is given

by: Aggregate (Nominal) Real Rural Consumption + Aggregate (Nominal)

Real Urban Consumption / 10000000.

B Unit Root Tests

Table A1 summarises the results of unit root tests on both the underlying

series in the panel, and on the estimated transitory components, calculated

as in (3).

[Insert Table A1]

It �rst reports the panel unit root test as in Im, Pesaran and Shin (2003),

which tests the null that all series in the panel have a unit root, and allows

for heterogeneity of auto-regressive coe¢ cients under the alternative. The

unit root null cannot be rejected for the underlying series, a feature which is

accentuated by the result that almost exactly half the individual ADF test

statistics are below and above the expected value under the unit root null.

For all three of the estimated transitory components when the factors

are estimated by principal components, the null is strongly rejected. This

is in itself not an especially strong result, since it is well-known (see, for

example, Shin & Snell, 2006), that the null will be rejected if even a quite

small number of series being tested (sometimes even a single series) are

stationary. More revealing is the distribution of individual ADF statistics,

which is shown in Figure A1 for the two models estimated in levels, and in

Figure A2 for the model estimated in di¤erences. In all three cases, as Table

A1 shows, a much higher proportion of individual test statistics are below

the expected value than would be expected under the unit root null, but this

feature is clearly very much more evident for our central case using levels

estimation and two factors, for which only 3% of individual test statistics

are above the expected value. Thus we have particularly strong evidence of

stationary transitory components for this, our central case.

[Insert Figure A1]
[Insert Figure A2]
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C Data Construction for Figure 4

For Figure 4, we let bF1t and bF2t be the �rst and second principal compo-
nents respectively, (normalized to have zero mean and unit variance, these

are the "G-Factor" and "V-Factor" as de�ned in Figure 4) derived from the

sample autocorrelation matrix of yit (or equivalently, from the autocovari-

ance matrix of the series after demeaning and rescaling to have unit sample

variance). The series PC1 is the cumulated �rst principal component ex-

tracted by the same method from the panel of di¤erenced data as in Bai

and Ng (2004).

D Robustness Checks for V-Factor Estimates

D.1 Robustness to changes of time sample

As noted in the main paper, our core analysis is carried out on a balanced

panel of data for 15 states. However, as discussed in Appendix A.3, for a

subset of ten states we have a longer run of data, back to 1960. A natural

robustness check for the dating of the turnaround in the V-Factor is to use

the longer datasets, despite the reduction in the cross-sectional dimension (in

Appendix G we show that simulation evidence that the gains from increasing

T appear to more than o¤set the losses from decreasing N). Figure A3

shows the results of this experiment. The two alternative estimates of the

V-Factor have an identical timing of their minima, and extremely similar

paths thereafter. There are somewhat greater di¤erences in earlier years but

overall the pro�les of all three estimates appear reassuringly similar. It is

striking how robust the estimates are both to the inclusion of the additional

years and the exclusion of a subset of states.

[Insert Figure A3]

D.2 Robustness to changes of cross-sectional sample

As a further robustness check we also investigate, in our panel from 1970

onwards, the impact of removing certain categories of series from the esti-

mation of the principal components. Table D1 and Figure A4 summarise

the impact of these changes.
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Table D1 lists the exclusions from the cross-section. The �rst four

exclude data based on state characteristics; the next three exclude series by

broad industry type. We also show the impact of excluding series with high

levels of volatility, and, for comparison, the impact of prior-�ltering data

for the short-term impact of �uctuations in rainfall (see next section). The

table also shows N; the cross-sectional dimension, the correlation, across

the cross-section, between actual changes in growth rates and �tted values

implied by the estimated V-Factor and G-Factor, as discussed in Section

3.5, as well as showing the year in which the estimated V-Factor reaches its

minimum

[Insert Figure A4 ]

The �rst notable feature illustrated by Figure A4 is how similar the

broad pro�les of the estimated V-Factors are after all these adjustments (as

in all other comparisons the estimates are all normalized to have unit mean

and variance), despite signi�cant di¤erences in sample both in terms of the

change in N; and in terms of the characteristics of the series. All estimates

also provide similarly good representations of the shift in growth.

The second notable feature is that, while adjustments for more volatile

series have only a modest impact on longer term properties of the estimated

V-Factor, they do (unsurprisingly) have some in�uence on short-run move-

ments. Figure A4 makes it clear that the sharpness of the minimum point

in 1987 for the estimated V-Factor using the full cross-section is reduced,

or disappears entirely, in any sample that excludes agriculture, forestry and

�shing, in particular, and that as a result for these reduced cross section

the minimum occurs a year or, at most, two years later. In the light of our

simulation results, discussed below in Appendix G, which show that the true

minimum point is only reasonably well estimated to within a year or two

either side, this should not be viewed as surprising.
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Table D1. Impact on estimated V-Factors of excluding series
from the panel

D.3 Robustness to rainfall adjustment

As an additional check to adjust for short-run volatility, we prior-�lter the

data in �rst di¤erenced form by regressing on a constant and the change in

log rainfall over the previous year, and then replace each of the underlying

series with the cumulated error from this regression. In the case of agri-

cultural output in particular we �nd strongly signi�cant positive impacts

of rainfall changes, and hence a reduction in the remaining volatility of the

series. The impact of rainfall on other sectors is typically less signi�cant.

Figure A4 and Table D1 again show that the impact of the adjustment on

the V-Factor estimate is very small.

E Policy Indicators and Data Construction and

Sources for Figure 7

The V-Factor is equal to bF2t as in Figure 4. The e¤ective tari¤ rate is

constructed consistently with Rodrik and Subramanian (2005, Figure 4.)

The central government customs duties collection (in crore) and imports (in

crore) are from the Reserve Bank of India statistical tables. The e¤ective

tari¤ rate is approximated as Customs Duties Collection/Imports. The Real

Exchange Rate data (REER) and the log openness ratio was assembled from

the Reserve Bank of India (RBI) database on the Indian Economy. Duties

as a percentage of GDP is de�ned as customs duty collection (in crore) /

GDP at factor cost (in crore). This was also obtained from the RBI dataset.

See www.rbi.org.in.

F Data Construction and Sources for State-level

Regressors inTable 3

The pro-worker dummy is taken from Aghion et al (2008).

The dummy for landlocked states is equal to unity for all series for Assam,

Bihar, Haryana, Madhya Pradesh, Punjab, Rajasthan, Uttar Pradesh, and
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is zero otherwise

The other state characteristics used in the regressions in Table 3 are

taken from a new panel dataset for Indian states assembled by the authors

comprising roughly 200 regional economic and social indicators for Indian

states. A detailed description of the variables in this dataset, and the data

used in Table 3, is available in the data appendix in an earlier working paper

version of this paper; Ghate and Wright (2008).

G Simulation Methodology

We simulate a system with an underlying common structural shift which is

a parameterised version of (1) to (3), as follows

yit = �i0 + �i1F1t + �i2Fkt + uit; i = 1::N (5)

�Fkt = gk1 + "kt; t � tb
= gk2 + "kt; t > tb; k = 1; 2 (6)

uit = i1Q1t + i2Q2t + rit (7)

Qjt = �jQjt�1 + �jt; j = 1; 2 (8)

rit = �irit�1 + !it; i = 1::N; (9)

In (1) we simulate each of the N series as a sum of factor loadings on

two I (1) factors, plus a persistent residual component. The two I (1) fac-

tors, F1t (the simulated "G-Factor") and F2t (the simulated "V-Factor") are

modelled in (6) as drifting random walks with shifts in growth rates at the

break point tb. The transitory components uit are then in turn driven by two

common stationary factors, Q1t and Q2t which capture any remaining mu-

tual correlation in the yit after extraction of the two permanent components,

plus a strictly idiosyncratic component, rit. The Qjt are modelled in (8) as

stationary AR(1) processes without shifts (we examine below the impact

of including or excluding these additional stationary factors). We estimate

the process for the two permanent and two stationary factors from the time

series properties of the �rst four principal components of the dataset. The

data point to a highly signi�cant shift in growth at tb = 1987 for the "V-

Factor" (g21 < 0; g22 > 0); with a smaller, but still signi�cant shift for

the "G-Factor (0 < g11 < g12). While conventional tests of signi�cance are
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suspect due to a data mining critique, the primary objective is to simulate

a null model where there is a structural shift in growth that also matches

the broad properties of our dataset. The estimation procedure for the factor

processes is thus for purposes of calibration, rather than to carry out any

direct hypothesis testing. The correlation matrix of the vector of estimated

factor innovations
h b"0t b�0t i0 is close to diagonal in the data so we simulate

the four factor innovations as orthogonal processes.

The factor loadings
�
f�ikg ;

�
ij
		

are calibrated to match (subject to

minor modi�cations noted below) those of the estimated factor loadings on

the principal components in the data. Each element is modelled as an inde-

pendent draw from a normal distribution with mean and standard deviation

given by the cross-sectional mean and standard deviation of the loadings on

each of the principal components in the data. The simulated orthogonality

of the factor loadings that results from this methodology is consistent with

the orthogonality (by construction) of factor loadings derived by the method

of principal components.

Finally in (9) we model the residual idiosyncratic components, the rit as

AR(1) processes with mutually uncorrelated innovations. The f�ig and the
f�ig ; (where �i = E

�
!2it
�
) are modelled as independent draws from uniform

distributions that approximate the key cross-sectional properties of these

parameters in our dataset. We draw from a uniform, rather than normal

distribution, since we need to impose bounds on both sets of parameters,

such that �i 2 (�1; 1) ; � 2 (0;1) : We calibrate these distributions to
match the cross-sectional means and standard deviations of the estimated

parameters in our dataset, subject to these inequalities.

Reassuringly the simulation methodology gives a generally good match

of the key properties of the dataset. We make only two minor modi�cations

to ensure that the simulated contribution of the two nonstationary factors to

the total variance in the dataset is on average (across simulations) equal to

that in the data (since we do not wish to over- or understate the importance

of these two factors in our simulations). This is achieved by raising �i1; the

cross-sectional mean loading on the "G-Factor" from 0.0266 in the data to

0.032 in the simulations (this ensures a match of the average contribution

of the �rst factor in the simulations), and by reducing � (�i2) ; the cross-

sectional standard deviation of the loadings on the "V-Factor" from 0.030

in the data to 0.025 (this ensures a match of the average contribution of the
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second factor in the simulations).35 Given the approximations involved in

our simulations (in particular the distributional assumptions for the para-

meters), the magnitude of the changes required is reassuringly modest.

Table G1 summarizes the key results of our simulations. The �rst row

shows our base case. In each arti�cial sample we simulate a balanced panel

of 207 series all starting in 1970, where the true break year, tb is set at

1987, in line with the pro�le of the V-Factor shown in Figure 4 in the main

paper. The results show that if the true data generating process has the

same breakpoint, the 2nd principal component in levels would identify the

breakpoint in the true V-Factor (simulated as F2t) to within � 1 year in 60%
of replications.36; in comparison the cumulated 1st principal component in

di¤erences has an equivalent percentage of only 32%. Both approaches are

somewhat biased: i.e., if the true breakpoint year were 1987, on average both

approaches would estimate it to be 1988. But this bias is to be expected

since it arises from the AR(1) processes assumed for the uit; such that the

mean lag from the impact of a shift in the factors, given by �i= (1� �i) is
always positive. Based on our dataset, �i ranges from -.15 to .67, hence the

simulated mean lags range from zero to roughly 2, hence a bias of around

one year is to be expected.

The second row of the table shows that if we simulate a smaller cross

section, over a longer sample (as in Figure A3), the loss of precision from a

lower cross-section appears to be more than o¤set by the gain in precision

from a longer sample.37

The third row of the table shows the impact of excluding the impact

of the two additional stationary factors. Using both techniques there is a

clear improvement, unsurprisingly so, since all remaining variation in the

yit is due to the mutually orthogonal uit terms. The improvement in the

performance of the approach in di¤erences is particularly marked, but it

remains less reliable than the levels approach; albeit only marginally so.

The much greater sensitivity to the exclusion of the stationary factors does

35The mean loading on the V-factor is close to zero in the data, and we retain this
feature in the simulations.
36Note that the proportions shown in the table are when the minimum of the estimated

component matches that of F2t: This does not always match the true breakpoint, since,
given random variation in the simulated F2t; it does not always reach a minimum in the
"true" breakpoint year.
37 If we increase T and decrease N separately the impacts are, as would be expected to

improve and decrease precision respectively.
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however indicate a lack of robustness of this approach (we show below that

this conclusion is further strongly reinforced by the comparative performance

of the two approaches with a stochastic breakpoint).

This improvement in identi�cation of breakpoints in the smaller cross-

section over a longer sample is clearly a helpful result in itself, but all the

more so if we wish to distinguish between the break point of 1987 identi�ed

in our dataset and the earlier breakpoints identi�ed in past research. We

note in the main paper that some studies have concluded that there was

a break point as early as the late 1970s. In the fourth and �fth rows of

the table we simulate an alternative data generating process consistent with

this earlier breakpoint. With the shorter sample and a larger cross-section

neither of the two approaches would be very successful in identifying such

an early breakpoint (i.e. only 9 years into the sample); however the fourth

row of the table shows that with a longer sample but a lower cross-section

the earlier break point would still be reasonably well estimated. We can use

this simulated DGP to assess the probability of estimating a break point

in 1987 (as in our dataset), or later, if the true breakpoint were in 1979:

using principal components in levels this occurs in only 3% of simulations,

suggesting that the technique we use can discriminate well between an earlier

and a later breakpoint.

A more general way of assessing how well the two alternative techniques

perform in identifying breakpoints is summarized in the last two rows of

Table G1 and in Table G2. These show the results of allowing the breakpoint

to be a random variable across simulations. The true breakpoint tb is drawn

for each simulation as a uniform random variable ranging between 1982

and 1992. The precision with which the breakpoint is estimated by both

techniques falls somewhat, but the proportions of simulations in which the

estimated breakpoint is within a year of the true breakpoint are quite similar.

Table G2 shows that using the levels approach the estimated breakpoint

is quite strongly positively correlated with the true breakpoint across the

simulations (with correlation coe¢ cient 0.7) but that it does not typically

move one for one: essentially there is some bias (albeit not especially strong)

towards �nding a breakpoint at or near the mid-point of the sample. In

contrast Table G2 shows that the estimated breakpoint using the di¤erences

approach is only weakly correlated with the true breakpoint across di¤erent

simulations
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[Insert Tables G1 and G2]

Finally we note that the comparative properties of the simulations sum-

marized above, which focus (for obvious reasons) on the identi�cation of

the breakpoint, are not dependent on the assumption that the deterministic

component of the "V-Factor" is precisely V-shaped. We have also exper-

imented with an alternative DGP in which the second factor is roughly

"U"-shaped - i.e., closer to the shape identi�ed by the di¤erences approach

in our dataset, as illustrated in Figure 4. The ranking of the two approaches,

expressed in terms of the correlation between the estimated principal com-

ponent and the true factor, remains the same in all cases. When the true

factor is a "U"- rather than a "V"-factor this property is captured fairly

well in the majority of simulations by the levels approach: i.e. there is no

bias in estimation towards �nding "V"- as opposed to "U"-Factors.

Thus we can feel reasonably con�dent that, even if the breakpoint of the

true V-Factor cannot be precisely identi�ed in our dataset, it seems likely

to have occurred within a year or two of the estimated breakpoint of 1987.

Furthermore, it does appear that the turnaround was relatively rapid: thus

a "V"-Factor representation does appear valid.
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Figure A1 
Ranked ADF Statistics for Transitory Components from Levels Estimation
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Figure A2
Ranked ADF Statistics for Transitory Components from Estimation in Differences
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Figure A3
Alternative V Factor Estimates
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Figure A4. Impact on estimated V-Factors of Excluding Series from Panel
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Transitory Components from estimation in…
Differences

1 Factor 2 Factors 1 Factor
Im et al  Panel Unit Root Test (p -values) 1.000 0.000 0.000 0.000
Proportion of individual ADF tests below 
mean under unit root null 53% 75% 97% 73%

LevelsUnderlying 
series

Table A1. Unit Root Tests



Table G1. Estimating common breakpoints by principal components: some simulation results

s.d. bias
% correct +or- 
1 year s.d. bias

% correct +or- 
1 year

1970 207 1987 1 2.7 -1.0 60% 5.7 -1.0 32%
1960 139 1987 1 2.2 0.1 74% 8.0 1.6 24%
1970 207 1987 0 1.4 -0.9 72% 2.2 -1.2 64%
1970 207 1979 1 5.3 -4.3 30% 6.8 -4.3 26%
1960 139 1979 1 3.5 -1.9 55% 6.5 -1.2 33%
1970 207 random 1 2.8 -0.8 64% 6.3 -0.2 32%
1960 139 random 1 2.5 0.4 69% 8.3 2.0 34%

Table G2 Systematic properties of estimated breakpoints when the true breakpoint is a random variable

Levels Approach Differences Approach

Start year N
break 
point

stationary 
factors? 
("1"=yes)

Correlation with true breakpoint
Slope coefficient on true breakpoint

Levels Approach Differences Approach
0.716611341

0.8528597
0.289595116
0.166217551
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