


Final Draft July 2000

THE STRUCTURE OF PROBLEM-SOLVING KNOWLEDGE AND THE STRUCTURE

OF ORGANISATIONS

Luigi Marengo*

Giovanni Dosi**

                                                                 Paolo Legrenzi***

    Corrado Pasquali****

* University of Trento, Italy, lmarengo@gelso.unitn.it
** St. Anna School of Advanced Studies, Pisa, Italy, gdosi@sssup.it
*** State University of Milan, Italy

**** University of Trento, Italy, corrado@black.gelso.unitn.it

We want to thank Marco Valente for very valuable discussions and help in running the simulations. The participants
in the SCANCOR conference "The Roots and Branches of Organizational Economics", Stanford University, September
1999, and in particular Jim March and Roy Radner, and two anonymous referees have offered insightful comments. The
usual disclaimer applies.

We gratefully acknowledge financial support by the Dynacom Project (European Union, TSER, DGXII) and by the
Italian Ministry of University and Scientific and Technological Research (research project “Bounded Rationality and
Learning in the Experimental Approach”).



2

1. Introduction

This work is meant to contribute to the analysis of organisations as repositories of problem-solving

knowledge and of the ways the latter co-evolves with governance arrangements. These themes find

their roots in at least four complementary streams of literature, namely, first, the studies – of

"Simonian" ascendancy – of problem-solving activities, and of the structure of knowledge they

entail (cf. Simon, 1981); second, diverse investigations on comparative performance of diverse

organisational architectures and related patterns of distribution of information and division of labour

(cf. Radner, 1992 and Aoki, 1988); third, evolutionary theories of the firm, in particular with their

emphasis on the knowledge content of organisational routines (Nelson and Winter, 1982, Cohen et

al., 1996); fourth, and largely overlapping, competence-based views of the firm (Winter, 1988, Dosi,

Nelson and Winter, 2000).

Broadly in tune both with analyses of organisations, mainly inspired by Herbert Simon, as sort of

imperfect problem-solving arrangements as well as a good deal of evolutionary theories of the firm,

we censor in a first approximation any explicit incentive compatibility issue among organisational

members. Rather, we focus upon the ways different patterns of division of labour shape and

constrain search processes in high dimensional problem spaces. Examples of such search processes

are all those problems requiring the coordination of a large number of interdependent "elements"

whose functional relationships are, to a good degree, opaque to the organisational members

themselves1.

Here by "elements" we mean elementary physical acts – such as moving one piece of iron from

one place to another – and elementary cognitive acts – such as applying inference rules. Relatedly,

problem-solving can be straightforwardly understood as combination of elementary acts leading to a

feasible outcome (e.g. the design and production of an engine, the discovery and testing of a

chemical compound, etc.).

In this perspective, we present a quite general formal framework enabling the exploration of the

problem-solving properties of diverse patterns of division of labour and routine-clustering practices,

ranging over a continuum that notionally spans from totally decentralised market-like mechanisms

to fully decentralised coordination processes. Not surprisingly, the complexity of the problem-

solving tasks bears upon the performance outcomes of different organisational arrangements. In a

broad and somewhat impressionistic definition, which we shall refine below, by “complex

problems” we denote high dimensional problems whose solution requires the coordination of

interdependent components whose functional relations are only partly understood. Designing a

                                                          
1 By that censorship of the double nature of organisations as both problem-solvers and mechanisms of governance of
potentially conflicting interests we clearly fall short of the "grand research program" sketched in Coriat and Dosi (1998)
whereby evolutionary and competence-based theories of the firm begin to take on board incentive alignment issues. In
the present "first approximation", however, we feel well justified by the still rudimentary state of knowledge-centred
investigations of organisational arrangements, especially when compared with nearly pathological theoretical
refinements on hyper-rational incentive compatible schemes that no one will ever observe on earth.
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complex artefact, establishing a sequence of moves in a game or designing a multi-agent

organisational structure are all instances of "complex problems''.

Consider the case of designing an aircraft. This will require the coordination of a large number of

different elements such as engine type and power, wing size and shape, materials used, etc. whose

interactions have to be tested through simulations, prototype building and maybe some other forms

of trial and error processes. At the end, an “effective” solution to the problem (i.e. a properly flying

aircraft) will be one in which a large set of traits and characteristics have been coordinated in ways

which turn out to be compatible with each other. Note that, for instance, adding a more powerful

engine might imply a decreasing overall performance if other components (wings, etc.) are not

properly adjusted and tuned with that change. Playing chess is not too different a case: a winning

solution is a long sequence of moves each of which is chosen out of a set of possibilities large

enough to make an extensive search unfeasible for any boundedly rational agent. Even in this case,

the key point is the opaqueness of the relations among such moves in the sequence (a notionally

optimal strategy might involve, for instance, castling at a given time of the game but the same

castling, as a part of some sub-optimal, but otherwise effective, strategy, could turn out to be a

losing move...).

Organisations such as business firms generally face a similar class of problems. Indeed, they can

be represented as complex multi-dimensional bundles of routines, decision rules, procedures,

incentive schemes whose interplay can be hardly assumed to be perfectly known also to those who

manage the very same organisation (witness all the problems, unforeseen consequences and

unexpected feed-backs emerging whenever managers try to promote organisational changes: cf.

March and Simon (1993) for a classic treatment of the subject). So, for example, introducing some

routines, practices, or incentive schemes which have proven superior in another organisational

context, could prove harmful in a context where other elements are not appropriately tuned (more

on this issue, from different angles, in the chapters by Fujimoto, Coriat and Levinthal in Dosi,

Nelson and Winter (2000)).

The main underlying issue is that functional relations among components (e.g. elementary

cognitive and practical acts) are only partly understood while the contribution of each of the

component to the overall solution depends, to various degrees, on the state assumed by other

components: hence the need to explore a large combinatorial space of components possibly by a

trial and error process. At the same time, these very characteristics of problem-solving search tend

to jeopardise a fruitful use of global information - i.e. information which derives from some global

performance measurement – for "good" adjustments at a local level.

The problem here is the one of whether and under what conditions it is possible to achieve

optimal or nearly optimal solutions through small local and incremental adjustments. This problem

has long interested especially computer scientists (all search algorithms face this kind of problems)

and biologists (the very small rates of mutation observed in the biological realm can justify models

of evolution whereby only one gene at a time gets mutated). Biologists in particular have produced

some easy and highly suggestive models (see in particular Kauffman's "NK model" of fitness
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landscapes, cf. Kauffman (1993)) which show that if the entities subject to evolutionary selection

pressure are somewhat "complex" entities, i.e. made up of many non-linearly interacting

components, then local incremental search combined with selection generally to highly sub-optimal

and path-dependent evolutionary paths. These biological models seem to have many relevant

implications also when the "complex" entities under scrutiny are social organisations such as

business firm (cf. Levinthal (1997)).

This paper can be considered as a generalisation of Kauffman's argument as it presents a model

which determines the extent to which a problem space can be decomposed into smaller sub-

problems which can be solved independently or quasi independently without affecting (or affecting

only within given limits) the possibility of finding optimal or at least good solutions.

In the following, we shall first introduce some technical notions on problem-solving and

organisations as problem-solving arrangements (section 2). Section 3 presents our basic model and

discusses a few of its generic properties, while section 4 provides some examples of different

decomposition schemes and related solution patterns. Finally, in section 5 we draw the main

conclusions and outline some possible directions for further research.

2. On the nature of organisational problem-solving: some introductory notes

In problems whose solution involves the exploration of high dimensional spaces, agents endowed

with limited computational capabilities and with a limited knowledge of the interdependencies can

explore only a subset, possibly very small, of solutions. Even if we assume that the selection

mechanism which selects among alternative solution works perfectly (i.e. without delays, inertia,

errors or "transaction costs" as economists would say), the outcome of selection is bound by the set

of solutions which are produced by the generative mechanism. It may well be the case that optimal

or even “good” solutions will never be generated at all and thus that they will never be selected by

any selection mechanism whatsoever.

The problem here is that strong interdependencies create a large set of local optima in the search

space. Marginal contributions rapidly switch from positive to negative values, depending on which

value is assumed by other components. As a consequence, the presence of strong interdependencies

prevents the possibility of reaching optimal solutions by simply adopting an optimal value for each

of the components a problem is made of. It is thus possible that, given a n-dimensional problem

whose current state is a1, …, an and whose optimal solution is a*1, …, a*n  some or even all of the

solutions of the form a1, … a*i,… an have a worse performance than the currently adopted one. Also

note that if each of the ai's was traded on a competitive market with prices reflecting their revealed

productivity, notionally superior resources a*i would never be hired as their marginal productivity is

negative. As a consequence - that we will largely expand upon in the following sections - it might

well be the case that the optimal solution will never be generated and thus never selected.
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The issue of interdependencies and of how they shape search processes in a space of solutions is

also faced in Kauffman’s NK model of selection dynamics in biological domains with

heterogeneous interdependent traits.

NK models the evolution of systems composed of a number of elements which locally and

interdependently contribute to the global features of the system they collectively constitute. The

model was originally intended to capture the evolutionary dynamics of organisms (i.e. systems) as

described by sets of genes (i.e. elements). The formal structure of the model and the idea behind it,

are however general enough to allow its application to realms and domains different from molecular

biology (cf. Levinthal (1997), Westhoff et al. (1996)).

In NK’s terminology, a system is described by a string composed of different loci each referring

to one of the elements that compose the system. In the aforementioned aircraft example, for

instance, we might well imagine the aircraft represented by a string in which each locus refers to

one of the aircraft elements (i.e. wings, engine, body…).

The whole thing can be shortly explained by referring to the N and the K in the name of the

model.

The N in the name NK refers to the number of elements or loci one is considering, that is: to the

dimension of the problem at hand. Each element can assume one out of a set of different states

(called alleles in biology). That is: each element can be assigned a value representing, for instance, a

specific feature being present or not or, which specific shape or feature one chooses for a given

element. The number of possible strings (i.e. of different configurations a system can be in) is called

the possibility space of a system.

The K, on the other hand, refers to the number of interdependencies between different elements.

These are usually called epistatic correlations and they do describe the inner structure of the system

in terms of the number of elements that each locus is interdependent with. In particular, K describes

how the contribution of each element to the system is dependent not only on its own value, but on

other elements’ values as well. A system whose K value is 2, for instance, is a system in which each

element contribution is dependent on the values assumed by two other elements. The two limit cases

are that of K being equal to 0 (i.e. each element contribution is solely dependent on its own state and

there are no interdependencies in the system) and that of K being equal to N-1 (i.e. each element

contribution is dependent on the state assumed by every other element in the system).

We can then easily imagine that each state assumed by a system (i.e. each assignment of values

to its elements) is assigned a measure of, say, effectiveness with respect to a given task; let us call

this a fitness measure. Now, the distribution of fitness values of all possible states is called a fitness

landscape. A fitness landscape is thus a way of mapping a system’ states onto their relative fitness

values and it constitutes a representation of a possibility space along with the fitness values of each

possible string in it.

The point we’ll be interested in is the exploration of  a fitness landscape, that is: the search for

better (i.e. fitter) configurations in the space of all possible configurations.
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Given that a system’s actual configuration is a string in which every locus has been assigned a

value, the way to explore a landscape and to test the fitness values of other configurations

corresponds to changing some elements’ values thus moving from one configuration to a new one

and, consequently, from one point of the landscape to a new (and possibly higher) one.

The value assumed by K is a key point with respect to the shape of a fitness landscape and,

consequently, to its exploration. Indeed, being K=0 the contribution of each element to overall

fitness will be independent from every other element and, consequently, a change in a single

element’s value will leave unchanged the contribution of all the other N-1 elements. It then follows

that the whole landscape will look very “smooth” and configurations that are similar with respect to

values assumed by their elements will also have similar fitness values. The highly correlated

structure of the fitness landscape can be effectively exploited by local and incremental search

processes. On the contrary, as K increases the landscape will be increasingly rugged and points that

are close in the landscape will no longer have similar fitness values.

What is most relevant to our point is the fact that the more a landscape is rugged the less (locally)

informative is its exploration and the less is the degree of “correlatedness” of different

configurations.

However, Kauffman's approach to the exploration of a fitness landscape does not necessarily fits

well with the realm of social evolution. The main reason for this inadequacy is that social actors

might well explore a fitness landscape by the application of a far richer class of algorithms than one-

bit mutational ones studied by Kauffman and grounded on the laws of genetics. Actually, a social

agent (be it an individual or an organisation) can possibly adopt many kinds of problem solving

strategy and search algorithms of virtually any cardinality. The very notion of locality and

neighbourhood search is not clearly defined in social realms but is itself a product of how

individuals and organisations represent the problems they try to solve.

The relevance of this point will be made evident by the following considerations. The notion of

fitness landscape is indeed centred upon two ideas: a function that assigns a fitness value to each

element of the space of configurations and a metric defined in that space which reflects a measure of

distance between two different configurations. Once an algorithm is defined that transforms a

configuration into another one, the notion of distance between two configurations is defined as the

minimum number of applications of the algorithm needed in order to transform a configuration into

the other. In this way the set of neighbours of a configuration is defined in terms of what can be

reached from it. In the case of mutational algorithms of cardinality one, the set of neighbours of a

configuration is defined as the set of configurations that are a single step away from it2. It is then

evident that a change in the search algorithm will result in a change in the geometry of the

landscape: a landscape might be extremely rugged when defined on one-bit mutations but very

smooth when defined on mutations of higher cardinality.

                                                          
2 “Single step” is a naive formulation of the notion of unitary Hamming distance. Hamming distance denotes the number
of loci at which corresponding bits take on different values.
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We have thus considered possible ways of exploring a fitness landscape other and more general

than single-bit mutations. In particular, following Simon (1981), our focus is on those problem

solving strategies which decompose a large problem into a set of smaller sub-problems that can be

treated independently, by promoting what might be called a division of problem solving labour.

Imagine, for instance, a N-dimensional problem: i.e. a problem which is composed of N different

bits or traits.  A one-bit mutational algorithm correspond to a maximally decentralized

decomposition in which each of the N bits will be given a value independently of all the other N-1

bits. In this sense the whole problem will be decomposed into the smallest possible sub-problems.

This search strategy is a potentially very quick one as it will require at most nN steps, given that

each of the N components can be in one out of n possible states. Unfortunately, as already hinted

and as showed by Kauffman, the existence of interdependencies among components will prevent the

system to reach the global optimum (i.e. the optimal solution) but only the local optimum whose

basin of attraction contains the initial configuration of the problem. On the other hand, the same

problem could be left totally undecomposed and a search algorithm might be adopted which

explores all the N dimensions of the problem. This strategy corresponds to mutating up to all the N

components of the problem and it leads with certainty to the global optimum by examining all the

nN possible configurations. In between there are all the other possible decomposition of the

problem, each corresponding to a different division of labour.

According to this view, the division of problem solving labour to a large extent determines which

solutions will be possible to generate and then select. As we have suggested, decompositions are

necessary in order to reduce the dimension of the search space, but, at the very same time, they also

constrain search processes to a specific sub-space of possible solutions thus making it possible for

optimal solutions not to be ever generated and for systems to be locked into sub-optimal solutions.

We thus believe that our arguments cast some serious doubts on any view of markets relying on a

“optimality-through-selection” assumption or on any view which assumes market forces as capable

of substituting individual rationality with evolutionary optimisation. At the same time, our route to

the analysis of organisational forms, is in some important respects the symmetric opposite to the one

explored by a good deal of contemporary accounts of agency problems, focussing, as they do, on the

identification of efficient incentive mechanisms for coordination on the implicit but momentous

assumption that optimal problem solving governance structures and optimal search heuristics are

naturally in place from the outset.

Of course, only a planner who has perfect knowledge of all the interdependencies, a Laplacian

God for instance, could implement a perfect set of signals and incentives mechanisms. Limiting

ourselves to more earthly and Simonian rather than Laplacian situations, we investigate the case of

boundedly rational and computationally limited problem solvers who are forced to decompose

problems which are not fully decomposable by separating only the more “fitness-relevant”

interdependencies, while other still persist across subproblems. By separating interdependent

elements into different sub-problems, a problem whose complexity is far beyond available

computational resources is reduced to smaller subproblems which can be handled, ruling away in
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any case the possibility of reaching with certainty the optimal solution. According to this softening

of the requirements on decompositions' grain, we will show how “near-decompositions” can be

constructed which, when considered as satisficing rather than optimal structures, can significantly

improve search times and attain a higher degree of decentralization at the expenses of optimality of

the solutions. In order to study some evolutionary properties of populations of agents endowed with

different decompositions of the same problem, we also run a class of simulations, whose results will

be presented and discussed in section 4.

Our last point is concerned with representational issues related with problem solving. Up to now,

we have only considered that a problem representation is exogenously given to agents. Actually,

amore cognition-oriented perspective might be adopted that amounts to considering how agents

trying to solving a problem can derive much of their possibilities of success from the adoption of

different and subjective perceptions of the very same problem. A reasonable hypothesis is that

agents' search might well take place not on the “objective” landscape, but in a space constructed as a

subjective representation of it. In this sense, changing representations might turn out to be an even

more powerful problem solving strategy than decomposition.

According to this more cognitive-oriented view, we imagine agents' representations of a problem

to be actually grounded on the objective landscape but, notwithstanding that, to be a simplified

version of it (possibly of lower dimensionality). As noted by Gavetti and Levinthal (2000),

cognitive representations tend to be simplified caricatures of the actual landscape as a result of their

lower (perceived) dimensionality which, in turn, also results in a reduction of its apparent

(perceived) degree of connectivity. In particular, we show that both acting on the encoding of a

problem and on the ordering relation on solutions, every problem can be transformed in one of

minimal complexity.

One of the fundamental aspects of problem solving procedures concerns representations of the

problems itself. As a couple of us argued in more detail elsewhere (Dosi, Marengo and Fagiolo

(2000)) – well in tune with a vast literature from cognitive science – a crucial step concerns the very

processes through which individual agents and structured collectives of them i.e. organisations

interpret the environment wherein they operate by means of inevitably imperfect and possibly fuzzy

cognitive categories, causal links amongst environmental variables, conjectures on action/payoff

relations, etc..

In the language of the analysis below, all this is captured through subjective decompositions and

thus also subjective landscapes of problem solving search which might only bear vague similarities

(if at all) with the “true” structure of the problem – as a God-like observer would be able to see it.

Indeed section 3 that follows largely takes the latter God-like perspective in order to identify some

general characteristics of problem solving, in terms of e.g. task decomposability, dimensionality of

search spaces, attainability of optimal solutions, properties of search landscape, speed of

convergence. In section 4 we begin to progressively “come down to earth” and account for

systematic gaps between subjective and “true” (God-like) representations of the search landscapes.
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An important intermediate step of the analysis focuses upon problem-solving set-ups

characterised by cognitively bounded representations which nonetheless maintain some

isomorphism with the “objective” search landscape. Broadly in line with Gavetti and Levinthal

(2000), we begin by assuming agents’ representations of a problem to be grounded on the “true”

landscape, although as a simplified version of it, of lower dimensionality, entailing also a reduction

of its perceived degree of connectivity amongst subproblems/elementary tasks.

The subsequent and even more difficult analytical challenge ought to push much further the

exploration of systematic gaps between actual representations/search landscapes for both

individuals and organisations, on the one hand, and this God-like nature. Some conjectures are put

forward in section 5. Remarkably, our model shows that, with striking generality, operating on both

the encoding of a problem and on the ordering relation on solutions, every problem can be

transformed into one of minimal complexity. In a profound sense, the degrees of complexity of any

problem are in the minds of the beholders. All that however implies stringent demands for the

theorist in its descriptive mode to be disciplined by empirical evidence on the nature of cognitive

structures, learning processes, patterns of organisational coordination etc.

3. The Basic Model: Problem Representation, Decomposition and Coordination

3.1 Basic definitions.

Let us assume that the solution of any given problem requires the coordination of N atomic

elements, which we call generically components, each of which can assume a number of alternative

states. For simplicity, we assume that each element can assume only two states, labelled 0 and 1.

Note that all the procedures and results presented below can be very easily extended to the case of

any finite number of states and also, with some complications, of numerable alternative states.

Introducing some notation, we characterise a problem by the following elements:

The set of components: S={s1,s2,.....,sN}, where si∈{0,1}

A configuration or possible solution to the problem is a string xi =s1s2.....sN

The set of possible configurations: X={x1,x2,.....,xp} where p=2N

An ordering ≥ over the set of possible configurations3: we write xi≥xj whenever xi is (weakly)

preferred to xj. For simplicity we assume that ≥ is anti-symmetric, i.e. that x≥y and y≥x implies x=y

(this assumption will be dropped later on.)

Thus, a problem is defined by the couple (X, ≥).

As the size of the set of configurations is exponential in the number of components, whenever

the latter is relatively large, the state space of the search problem becomes too vast to be
                                                          
3 Of course such an ordering could be substituted, where applicable, by a real-valued fitness function F:X→ℜ.
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extensively searched by agents with bounded computational capabilities. One way of reducing its

size it to decompose it into sub-spaces:

Let I={1,2,3,.......,N} be the set of indexes, and let a block d ⊆ I be a non-empty subset of it, and

let |d| be the size of the block d, (i.e. its cardinality).

In what follows, we shall confine ourselves to a particular class of search algorithms. Given that

a search algorithm is a map which transforms a state into another according to some preliminary

encoding (i.e. S: L à   L), we shall consider algorithms which are:

a) climbing: (i.e. they move from a state to another if and only if this has a higher evaluation):

S(x) = x* iff x* ≥ x

S(x) = x otherwise.

b) mutational: (i.e. they can be characterised in terms of sets of bits they can mutate). So, given

our index set I = {1, 2,..., N}, every such algorithm can be characterised by the subset of such

positions it can mutate, that is: d ∈ {2I \∅}. According to this view, the size |d| of an algorithm can

be imagined to be the number of bits it can mutate (i.e. the cardinality of its defining subset of

indexes.)

We define a decomposition scheme (or simply decomposition) of the set X as a set of blocks:

D={d1,d2,....,dk}   such that  d Ii
i

k

=
=

1
U

A decomposition scheme is therefore a decomposition of the N dimensional space of

configurations into sub-spaces of smaller dimension, whose union returns the entire problem (but

they do not necessarily form a partition of it).

Given a configuration xj and a block dk, we call block-configuration xj(dk) the substring of

length |dk| containing the components of configuration xj belonging to block dk :

kikkkkj dksssdx
kd

∈=   allfor     ....)(
||21

We also use the notation xj(d-k) to indicate the substring of length N-|dk| containing the

components of configuration xj not belonging to block dk :

kikkkkj dksssdx
kdN

∉=
−−   allfor     ....)(

||21

We can thus indicate the configuration xj also by using the notation xj(dk)xj(d-k)

We define the size of a decomposition scheme as the size of its largest defining block:

sz(D) = max {|d1|,|d2|,....,|dk|}

A decomposition scheme and its size are important indicators of the complexity of the algorithm

which is being employed to solve a problem:

1) a problem decomposed according to the scheme D={{1},{2},{3},.....,{N}} has been reduced

to the union of sub-problems of minimum complexity, while a problem which has not been

decomposed, i.e. whose decomposition scheme is D={{1,2,3,....., N}}, is a problem of maximum

complexity because it can only be searched extensively (i.e. intuitively, there is no local feedback

for search);
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2) a problem which has been decomposed according to the scheme D={{1},{2},{3},.....,{N}} is

being solved in linear time (in N steps), while a problem which has not been decomposed can only

be solved in exponential time (in 2N steps);

3) on the other hand, a problem which has not been decomposed can always been solved

optimally (though in exponential time) while, as it will be shown below, a problem which has been

decomposed according to the scheme D={{1},{2},{3},.....,{N}} - or for that matter according to any

scheme whose size is smaller than N – can be solved optimally only under some special path-

dependent conditions (which, as we will show, become more and more restrictive as the size of the

decomposition scheme decreases).

Thus there is a trade-off between complexity and optimality for which we will provide a precise

measure in the following.

For sake of theoretical simplicity, assume that coordination among blocks in a decomposition

scheme takes place through decentralised market-like selection mechanisms which select at no cost

and without any friction over alternative block-configurations.

In particular, assume that the current configuration is xj and take block dk with its current block-

configuration xj(dk). Consider now a new block-configuration xh(dk)≠xj(dk), if:

xh(dk)xj(d-k)≥ xj(dk)xj(d-k)

then xh(dk) is selected and the new configuration xh(dk)xj(d-k) is retained in the place of

xj, otherwise xh(dk)xj(d-k) is discarded and xj is retained.

It might help to think in terms of a given structure of division of labour (the decomposition

scheme), with firms or workers specialised in the various segments of the production process (a

single block) and competing in a market which selects those firms or workers whose characteristics

give the highest contribution to the overall production process.

On the other hand the coordination of components held together in a block has an implicit cost,

in terms of search speed growing exponentially, with the size of the block.

We can now analyse the properties of decomposition schemes in terms of their capacities to

generate and select better configurations.

3.2 Selection and search paths.

A decomposition scheme is a sort of template which determines how new configurations are

generated and tested. In large search spaces in which only a very small subset of all possible

configurations can be tested, the procedure employed to generate such new configurations plays a

key role in defining the set of attainable final configurations.

We will assume that boundedly rational agents can only search locally in directions which are

given by the decomposition scheme: new configurations are generated and tested in the

neighbourhood of the given one, where neighbours are new configurations obtained by changing

some (possibly all) components within a given block.
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Given a decomposition scheme D={d1,d2,…. ,di,...,dk}, we define, following Marengo (1999):

A configuration xi=s1s2.....sN is a (preferred-) neighbour of configuration xj=z1z2.....zN for a

block dh∈D iff:

1) xi≥xj and

2) sv=zv if v∉dh

i.e. the two configurations can differ only by components which belong to the block dk.

According to the definition, a neighbour can be reached from a given configuration through the

operation of a single elementary environment (i.e. a single “market”).

We call Hi(x, di) the set of neighbours of a configuration x for block di.

The4 best neighbour5 Bi(x, di) of a configuration x for block di is the most preferred

configuration in the set of neighbours:

Bi(x, di) = y∈Hi(x, di) such that y≥z for every z∈Hi(x, di)

A configuration x is a local optimum for block dk if Hi(x, dh)=∅

By extension from single blocks to entire decomposition schemes, one can give the following

definitions:

U
k

i
ii dxHDxH

1

),(),(
=

=  is the set of neighbours of configuration x for decomposition scheme D

A configuration x is a local optimum for the decomposition scheme D if H(x,D) =∅

A (search-) path P(xδ,D) from a configuration xδ and for a decomposition scheme D is a

sequence, starting from xδ, of neighbours:

P(xδ,D)=xδ, xδ+1, xδ+2,… where xi∈H(xi-1,D)

A configuration y is reachable from another configuration x and for decomposition D if there

exist a P(x,D) such that y∈P(x,D)

Suppose configuration x0 is a local optimum for decomposition D, we call basin of attraction

Ψ(x0,D) of x0 for decomposition D the set of all configurations from which x0 is reachable:

Ψ(x0,D)={y such that ∃P(y,D) with x0∈ P(y,D)}

                                                          
4 The assumption that ≥ be anti-symmetric guarantees the uniqueness of the best neighbour.
5 A special case is when a block-configuration is always a best neighbour for any starting configuration. This case is
called dominance of a block configuration and is examined by Page (1996).
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A best-neighbour-path Φ(xδ,D) from a configuration xδ and for a decomposition scheme D is a

sequence, starting from xδ, of best neighbours:

Φ(xδ,D)=xδ, xδ+1, xδ+2,… where xi=Bh(xi-1,dh)  for dh∈D

Proposition 1: if x0 is a local optimum for decomposition D and it is reachable from xi, then

there exist a best-neighbour-path leading from xi to x0.

Proof: cf. Appendix.

Proposition 1 states that reachability of local optima can be analysed by referring only to best-

neighbour paths. This greatly reduces the set of paths one has to test in order to check for

reachability. It is worth emphasising however that the result is fundamental for the God like analysis

of the objective problem solving structure but must not be taken as saying much about problem-

solving complexity by any cognitively bounded agent.

The following proposition establishes a rather obvious but important property of decomposition

schemes: as one climbs within the basin of attraction of a local optimum, finer decomposition

schemes can usually be introduced which allow to reach the same local optimum.

Proposition 2: let Ψ(x0,D)= {x0,x1,.....,xδ} be the ordered basin of attraction of local optimum x0,

and define Ψi(x0,D)=Ψ(x0,D)\{xi,xi+1,.....,xδ} for 0<i≤δ. Then if D≠{{1},{2},{3},.....,{N}} there

exist an i such that for Ψi(x0,D) a decomposition D′≠D can be found with sz(D′)<sz(D).

Proof: cf. Appendix

Among all the (possibly many) decomposition schemes of a given problem, one is  obviously

interested in those whereby the global optimum becomes reachable from any starting configuration.

One such decomposition always exist, and is the degenerate decomposition D={{1,2,3,....., N}} for

which of course there exist only one local optimum and it coincides with the global one. But one is

equally interested in smaller decompositions – if they exist – and in particular in those of minimum

size. The latter decompositions represent the maximum extent to which problem-solving can be

subdivided into independent sub-problems coordinated by decentralised selection, with the further

requirement that such selection processes can eventually lead to optimality from any starting

condition. Note that, finer decompositions do not in general (unless the starting configuration is “by

luck” within the basin of attraction of the global optimum) allow decentralised selection processes

to optimise.
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Let us re-arrange the configurations in X by descending order X={x1,x2,.....,xp} where xi≥xj+1.

The algorithm can be described informally6 as follows:

1. start with the finest decomposition D0={{1},{2},{3},.....,{N}}

2. check whether there is a best-neighbour path leading to x1 from xi, for i=2,3,…2N, if

yes STOP

3. if no, build a new decomposition D1 by union of the smallest blocks for which

condition 2 was violated and go back to 2.

3.3 Near-decomposability.

When building a decomposition scheme for a problem in the foregoing “perfect cognition” vein,

one has looked for perfect decomposability, in the sense that one required that all blocks be

optimised in a totally independent way from the others. In this way we are guaranteed to decompose

the problem into perfectly isolated components (in the sense that each of them can be solved

independently). This is indeed very stringent a requirement: even when interdependencies are rather

weak, but diffused across all components, one easily tends to observe problems for which no

decomposition exists. For instance in Kauffman’s NK landscapes, already for small values of K

such as 1 or 2 - that is for highly correlated landscapes -  the algorithm described above finds only

decomposition schemes of size N or just below that value.

Let us soften the requirement of perfect decomposability into one of near-decomposability: one

does not want the problem to be decomposed into completely separated sub-problems, (i.e. sub-

problems which fully contain all interdependencies) but wants sub-problems to contain only the

most “relevant” interdependencies while less relevant ones can persist across sub-problems. In this

way, optimising each sub-problem independently will not necessarily lead to the global optimum,

but to one of the “best” solutions7. In the rigorous meaning defined below,  one may construct sorts

of “near-decompositions” which give a precise measure of the trade-off between decentralisation

and optimality: higher degree of decentralisation together with higher speed of adaptation, vs. the

optimality of the solutions which can be ultimately reached.

Let Xµ={x1,x2,.....,xµ} with 1≤µ≤2N be the set of  the best µ configurations.

We say that Xµ is reachable from a configuration x and for a decomposition D if there exist at

least one y∈Xµ such that y is reachable from x.

We call basin of attraction Ψ(Xµ,D) of Xµ  for decomposition D the set of all configurations

from which Xµ is reachable.

If Ψ(Xµ,D)=X we say that D is a µ-decomposition for the problem.

                                                          
6 The complete algorithm is quite lengthy to describe in exhaustive and precise terms. Its Pascal and C++
implementations are available from the authors upon request.
7 If solutions were not only ordered but a value was attributed to them, we could easily express all the following in terms
of approximations to the global optimum.
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µ-decompositions of minimum size can be found algorithmically with a straightforward

generalisation of the above algorithm which computes minimum size decompositions schemes for

optimal decompositions.

The following proposition gives the most important property of minimum size µ-decompositions,

namely:

Proposition 3: if Dµ is a minimum size µ-decomposition, then sz(Dµ) is monotonically weakly

decreasing in µ.

Proof: cf. Appendix.

The general intuition of this proposition is indeed that higher degrees of decentralisation can be

attained at the price of giving up the search for globally optimal solutions.

3.4 Problem-solving with changing representations.

So far we have supposed that the “structure” of the problem, i.e. the representation of the space

to be searched is exogenously given and cannot be manipulated. But, as already mentioned,

problem-solving does not only involve search in a given space but also – and probably more

important – a re-framing of the problem itself. In this section we put forward a very preliminary

investigation of the properties of problem representations using the toolbox developed in the

previous sections. In particular, we show that changing representations can generally be a more

powerful problem-solving strategy then searching possibilities generated within a given

representation: decentralisation can be increased if more “powerful” representations are built.

One needs some further definitions.

A representation of the problem (X,≥) is a pair (Ξ,ä) where:

Ξ:X→L is an encoding of the problem, which maps configurations into words of a language L;

ä is a preference relation over possible words in such a language.

We assume that L is made of all and only the words (strings) of a fixed length n over a binary

alphabet: L={l; l∈{0,1}n}. We also assume that the encoding Ξ is a one-to-one mapping, i.e.:

1) Ξ(xi)≠ Ξ(xj)     ∀i≠j

2)   ∃l∈L; l=Ξ(xi)     ∀xi∈X

The preference relation ä is a “subjective” one which does not necessarily coincide with the

“objective” one ≥.
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We further assume, moving somewhat closer to a descriptive theory, that agents do not know the

“objective” problem, but only some imperfect representation of it: this is also defining the space

which is being searched with a given decomposition scheme.

Falling short of any exhaustive exploration of the role of representation dynamics (i.e. ultimately

of the dynamics of cognitive categories and of individual and collective knowledge) we highlight

the paramount role of representation dynamics in problem solving search.

As a preliminary to a much deeper investigation which is still to be undertaken, in the following

we just mention three benchmark propositions which together point to the fact that representations

can be very powerful search tools. This hints to a possible line of inquiry which considers the

construction of shared representations as one of the main functions accomplished by an

organisation.

Proposition 4: every problem (X, ≥) admits a representation (Ξ,ä) and a decomposition scheme

D(Ξ,ä) which can solve it.

Proof: cf. Appendix.

Together, the two propositions which follow, claim instead that the complexity of a problem, its

decomposability and the time required to solve it depend on its representation. In fact, by modifying

the encoding (proposition 5) and/or the preference relation (proposition 6) we can transform any

problem into one of minimum complexity. Considering them together, one is led to the important

conclusion that acting on representations tends to be a more powerful problem-solving strategy than

acting on the solution algorithm for a given representation.

Proposition 5: given any problem (X, ≥), it admits an encoding Ξ such that it can be solved

optimally with the decomposition scheme of minimum complexity D={{1},{2},{3},.....,{N}}.

Proof: cf. Appendix.

Proposition 6: given any problem (X, ≥) and any encoding Ξ, there exist a preference relation ä

such that it can be solved optimally with the decomposition scheme of minimum complexity

D={{1},{2},{3},.....,{n}}.

Proof: cf. Appendix.

Given the foregoing general properties of problem structures and problem solving, let us put

to work such a formal machinery and illustrate some applications and refinements.
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4. Problem Decomposition and Attainable Solution Patterns: Some Examples

4.1 Decomposability of a simple coordination problem.

Let us consider a coordination problem involving three binary elements. The set of possible

configurations is given by:

X = {x1 , x2, …, xn} with xi = s1, s2, s3 (where ∀j: sj ∈ {0, 1})

Two different payoffs structures are considered (where, of course, only the ordinal value

matters):

First case

The payoff matrix is given by:

s1=0

s3=0 s3=1

s2=0 2,2 -2,-2

s2=1 -2,-2 3,3

s1=1

s3=0 s3=1

s2=0 1,1 -3,-3

s2=1 -3,-3 4,4

Following the methodology presented above, it can be shown that the problem is not

decomposable. However, if one computes the degree of quasi decomposability of the same problem

according to various “satisficing degrees”, it can be easily shown that an attainable solution emerges

which is accepted that is not the optimal one but allows full decomposability and selects among the

best three Pareto superior solutions (i.e. (4, 4,), (3, 3), (2, 2)) the problem becomes a fully

decomposable one.

Second case
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The payoff matrix is given by:

s1=0

s3=0 s3=1

s2=0 1,1 -2,-2

s2=1 -2,-2 3,3

s1=1

s3=0 s3=1

s2=0 2,2 -3,-3

s2=1 -3,-3 4,4

Indeed the problem can be shown to be decomposable according to the scheme: D={{1},{2,3}}.

The first element’s separability stems from the fact that Nash equilibria for s1=1 are dominant with

respect to the corresponding Nash equilibria for s1=0. This is a sufficient condition for separability,

even if s1=1 is not a dominant strategy.

Also for this case, problem’s decomposability has been computed according to various degrees

of satisficingness. Similarly to the previous case, if we accept that the problem be less that optimally

solved and one of the three best solutions (i.e. (4, 4), (3, 3), 2, 2)) be accepted, then the problem

becomes decomposable (that is: s2 and s3 become separable as well.)

4.2 Competing organisational structures

Of course, the measures of decomposability presented so far ought to be taken as sorts of

theoretical benchmarks which however may not be generally assumed to be known by boundedly

rational agents (actually, finding the minimum size decomposition scheme of a problem is

computationally more complex than solving the problem itself), but we can assume that agents

search adaptively the landscape with conjectural search strategies based on a given hypothesis on

the decomposition of the search space. What are then the evolutionary properties of populations of

agents (organisational structures) which compete on the basis of search strategies based on

conjectural decompositions?

In order to provide some preliminary answers to this questions, we simulated8 a population of

agents, where each agent is characterised by one out of a limited set of decomposition strategies. We
                                                          
8 All simulations have been developed using the simulation platform called “LSD” (Laboratory for Simulation
Development) (Valente, 1998) which provides a programming environment where simulations can be easily run also by
inexperienced computer users. The interested reader can find downloadable code, user’s manuals, more details of these
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let them compete in an environment defined by some simple rules of selection: worst scoring agents

are removed from the population and replaced with “copies” of the best scoring agents. Copies are

new agents that inherit the parent’s decomposition scheme, but explore the landscape starting from

a different – randomly assigned - point.

Agents start from a random point in the landscape and explore it according to their

individual decomposition scheme. Each agent is defined by a given decomposition of the system

into sub-systems and generates new points by choosing randomly one of the sub-systems, and

mutating its bits (possibly all of them) randomly.

For instance, consider an agent who follows the decomposition strategy

D={{1,2,3},{4,5,6,},{7,8,9},{10,11,12}}. Thus, the search space is decomposed into four

subspaces of equal size. In order to generate a new point, the agent chooses randomly one of these 4

sub-spaces,  then some (possibly all) of the bits in the chosen schema are mutated. The fitness value

of the new point is observed: if such a fitness is higher than the one of its current position the agent

moves to it, and the latter becomes the new starting point, otherwise the agent remains where it is.

These steps are iterated. Thus, what differentiates agents is only the way they generate new points to

be tested, i.e. their search strategy, which in turn is determined by their decomposition of the search

space.

Of course there is a huge number of possible decompositions, but in order to restrict such a

number9 we imagine that agents “know” that only some “well-behaved” decompositions are

possible, in particular we imagine that blocks of an admissible decomposition must have all the

same dimension and that they form a partition of the search space. We are thus left with only six

possible decomposition and, correspondingly, six types of agents, named after the dimension of the

sub-problems into which they decompose the problem:

Agent type 1: D={{1},{2},{3},{4},{5},{6},{7},{8},{9}{10},{11},{12}}

Agent type 2: D={{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}

Agent type 3: D={{1,2,3},{4,5,6},{7,8,9},{10,11,12}}

Agent type 4: D={{1,2,3,4},{5,6,7,8},{9,10,11,12}}

Agent type 6: D={{1,2,3,4,5,6},{7,8,9,10,11,12}}

Agent type 12: D={{1,2,3,4,5,6,7,8,9,10,11,12}}

We first checked whether agents whose decomposition perfectly reflects the structure of the

underlying landscape are actually able to find its global optimum irrespectively of the initial

conditions. To test this hypothesis we built five kinds of random landscapes with a given structure,

determined by the following minimum size decomposition schemes:

                                                                                                                                                                                                
and other simulations and programs to run simulations with different parameters and settings at the site:
http://www.business.auc.dk/~mv/Lsd1.1/Intro.html
9 As we want to study the evolutionary properties of optimal decompositions, we have to compare them with some
“reasonable” ones, this is the reason why we restrict so much the number of possible decompositions.
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Landscape type 1: D={{1},{2},{3},{4},{5},{6},{7},{8},{9}{10},{11},{12}}

Landscape type 2: D={{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}

Landscape type 3: D={{1,2,3},{4,5,6},{7,8,9},{10,11,12}}

Landscape type 4: D={{1,2,3,4},{5,6,7,8},{9,10,11,12}}

Landscape type 6: D={{1,2,3,4,5,6},{7,8,9,10,11,12}}

Landscape type 12: D={{1,2,3,4,5,6,7,8,9,10,11,12}}

For each type of landscape we let 180 artificial agents, 30 for each type, evolve without any

selection. Agents are initialized at a random point of the landscape, and then they pursue their

search strategy as described above (i.e. they choose one sub-problem and mutate randomly at least

one bit in it). To avoid the effect of lucky initial conditions (of course any agent can find the global

optimum if it starts “close” enough to it) we periodically “shake” the population: when fitness

values have settled, we reposition all existing agents in randomly chosen points, from which they

have to start again their search.

In figure 1 we report the average fitness values for each class on a landscape of type 4.
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Figure 1: Average Fitness of Classes of Agents – Landscape type 4
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Average fitness values of each class are always non-decreasing (because agents either increase

their fitness or stay put) except the sudden drops they incur every 1000 iterations, when agents are

randomly repositioned. Note that the average fitness of agents of types 1, 2 and 3 quickly stops

growing, because all agents in those classes become locked in local optima (some of them may

actually reach the global optimum if their starting point is close enough to it, but this effect tends to

be cancelled out by the periodic repositioning of agents). All agents in class 4 increase quickly their

fitness and set on the global maximum. Agents in class 6 grow less quickly than agents in the lower

classes; moreover they cannot all reach the global optimum, since some of them are trapped in local

optima. This is because at each mutation they can indeed jump on a wider range, but their

decomposition does not allow to identify with certainty the global maximum. Agents in class 12 use

a purely random search, having the possibility to jump on every point at each mutation. This allows

them to grow slowly but steadily, and in the end all agents in this class may also be able to find the

global maximum. However this strategy is extremely slow, and is clearly outperformed, in speed of

convergence, by the one used by agents of class 4.

Equivalent results have been found for landscapes of types 2, 3, 6 and 12. In all exercises one

observes the same property: strategies using decompositions not including the one corresponding to

the minimum size decomposition scheme are bound to be trapped in local optima. Strategies using

decompositions which include the minimum one but are bigger do always reach the global optimum

but do so slowly. Search strategies corresponding to the minimum decomposition scheme clearly

outperform every other strategy.

However, it is remarkable that correct decomposition strategies might not always prevail when

nested in competitive environments characterised by some form of selection. In fact, while they are

able to always locate the global optimum with certainty, the time required might be so long that they

are actually eliminated by the selection mechanism. In order to test this proposition, we ran a set of

simulations in a set-up very similar to the above one (180 agents, 30 for each strategy initially

located in points of the landscape randomly chosen) however agents are not “re-positioned”.

Moreover, every 10 mutations they are ranked according to their fitness: the 30 worst scoring agents

are eliminated from the population and replaced by copies of 30 agents chosen among the surviving

ones.

Figure 2 shows the average number of copies over 10 different simulation runs on each of the

landscapes considered (the averages are meant to avoid possible influences of particular initial

conditions).
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Figure 2: Average Number of Agents per Class
(average on 10 runs)
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As it might have been expected, for landscapes of types 2, 3, 4 and 6, agents whose

decomposition perfectly reproduce the structure of the landscape tend to dominate the population.

On the contrary, on landscapes of size 12 this does not happen, as agents of type 12, in spite of

being the only ones always able to find the global optimum, are displaced by “simpler” strategies

which tend be locked into local optima, but reach them relatively quickly.

Finally, we have considered a population of agents competing in the exploration of a landscape

whose structure, defined in terms of decomposability, is given but is however “deformed” at regular

time intervals. This means that, even if the structure of the landscape stays basically the same, the

position of peaks can change.

Again, we consider a population of 180 agents evolving according to the same adaptation and

selection rules described above.

Our results show very robustly that as the frequency of landscape’s deformation increases, the

population tends to be dominated by agents whose decomposition degree is smaller. In the limit,

even in the case of totally decomposable landscapes, the population is rapidly dominated by non-

decomposing agents.

4.3 Increasing Returns to Specialization
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We have already emphasized that the formal framework presented here is well suited to capture

some general problem-solving properties of alternative patterns of division of labour. A

straightforward refinement entails the introduction of some form of Smithian increasing returns to

specialization.

In order to do that, let us consider a class of coordination problems whose elements are in the set

S={s1,s2,…,s12} and whose configuration set is X={x1,x2,…,x4096} with, as usual, xi=s1s2….s12

where sj∈{0,1}. Alike the foregoing exercises, we consider a population of 180 agents, evenly

distributed among the same 6 types and evolving according to the same death and birth process. In

addition, we model increasing returns to specialization by assuming that when an agent finds itself

located on a local optimum relative to its decomposition, the value of that optimum itself increases

at a rate q that is inversely proportional to the dimension of the adopted decomposition. It follows

that type 1 agents (i.e. those which tend to decompose more)  are subject to lock in effects on

suboptimal peaks. In other words, as q increases, those agents with a greater attitude towards

decomposition tend to dominate the whole population (no matter the problem’s decomposability

degree.)

Simulations show that as the rate q increases, even for problems characterized by low levels of

decomposability, the population tends to be more and more dominated by agents which employ

search heuristics founded on high levels of decompositions.

With respect to these results, our conjecture is however that the key factor in inducing increasing

returns to specialization is to be explained in terms of the absence of “necessary” limits to the

division and specialization process. In other words, we can imagine a division of labour process as a

tree diagram of unbounded depth in which, say, nodes at level i can be reached only after parents

nodes at level i-1 have been reached. The main point is thus not quite that of improving efficiency in

accomplishing those tasks associated with a single node, but rather that of increasing the depth and

width of the division of labour by progressively sub-dividing tasks. However the methodology

presented here is unable to capture these aspects as it assumes a lower bound to the division of

labour (our constituent components) which cannot be further subdivided.

4.4 Partial Representations and Collective Problem-solving

A different set of preliminary simulations considers instead a population of agents who hold only

a partial representation of the overall problem, in the sense that they control only a limited number

of elements involved.

Let us consider again the usual 12-dimensional problem. That is: S={x1,x2,…,x12},

X={x1,x2,…,x4096} with, as usual, xi=s1s2….s12  where sj∈{0,1}.

We let I={1,2,3..,12} be the index set. Every agent Aj is defined by a subset of the index set Aj⊆I

and it is characterized by a dimension | Aj| (that denotes the agent’s “perspective”, i.e. the (limited)

number of dimensions it controls.)
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The decomposition methodology defined above allows the definition of:

1. the optimal structure (i.e. that which minimizes agents’ dimension) that permits

parallel solution;

2. the optimal structure that permits sequential solution (“simpler” than the previous

one when blocks forming the decomposition are overlapping).

We have thus carried out simulations of random organisations. That is, a configuration is

randomly selected and an agent is then randomly chosen that, restricted to its controlled dimensions,

makes some mutations thus generating a new configuration. Should this new configuration be fitter

than the starting one this is assumed as a new starting configuration. Iterating this kind of procedure,

a problem space can be explored not only in terms of different decomposition strategies but in terms

of different “cognitive” (i.e. relative to complexity and competencies) perspectives as well.

Our preliminary results show that agents characterised by coarser decompositions get bigger

average payoffs, as they have lower probabilities of being locked into local optima, as they have the

possibility of moving through ampler steps.

5. Heuristics and decomposability in individual and collective problem-

solving: some conclusions and directions for further research.

This paper is our first building block of a research project which tries to achieve a better

understanding of organisations as ‘collective, imperfect, inferential machines’ to extend a definition

that one of us used earlier in connection with individual judgements and decisions (Legrenzi,

Girotto and Johnson Laird (1994)).

In this work we have suggested that organisations – through their very structure – implement

collective mechanisms which perform complex inferential tasks by combining simple individual

heuristics. In particular we have shown how the division of labour determines which collective

solutions are generated and tested on the grounds of simple individuals trial-and-error search

heuristics. We may thus interpret our results as a step towards a better understanding of the relations

that bind together the cognitive and the governance roles of organizational routines.

More specifically, in our perspective diverse organizational forms map into diverse a) problem

representations, b) problem decompositions, c) task assignment, d) heuristics for and boundaries to

exploration and learning, e) mechanisms for conflict resolution over interests but also over

alternative cognitive frames and problem interpretations. With respect to these dimensions, one

might think, at one extreme, of an archetype involving complete, hierarchical representations,

precise task assignment, quite tight boundaries to exploration and, if all that works, no need for ex-
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post conflict resolution. The opposite extreme archetype might be somewhat akin a university

departments, with a number of representations at least as high as the number of individuals, fuzzy

decompositions and conflict resolution rules, little task assignments and loose boundaries to

exploration (more on this in Dosi, Hobday and Marengo (2000)). The formal apparatus suggested

above allows indeed a quite general account of the problem-solving properties of different structural

forms and the diverse instantiations they entail of the fundamental tradeoffs between

decentralization, search costs and “quality” of the ensuing solutions.

More speculatively, let us conclude by suggesting some possible deeper isomorphisms in

structures of problem-solving knowledge, inferential mechanisms and learning, which goes well

beyond the acknowledgement that organisations rather than curbing individual decision biases tend

indeed to amplify them (for discussions, cf. March (1994) and Dosi and Lovallo (1995)). Even at a

superficial look one finds strong similarities between concepts used here and elsewhere with

reference to organisational analysis and those used in relation to individual cognition and problem-

solving (cf. Legrenzi and Girotto (1996)). For example, the notions of ‘problem-restructuring’

inherited from gestalt psychology is highly germane to the idea developed above that different

‘decomposition’ of a problem entail different ‘divisions of labour’ in the search space. Or, another

example is the similarity one finds between ‘routine expertise’ in the literature on ‘expert

knowledge’ (Holyoak and Spellman (1993)) and routines without further qualification in

organisational analysis (Nelson and Winter (1982), Cohen et al. (1995)). Needless to say, the

fundamental task is to go beyond sheer analogy and explore, via both formal explorations and

experimental exercises, what insights can be gained for the analysis of organisations as systems of

distributed, but relatively structured, evolving, problem-solving knowledge.

In particular, we submit the conjecture that there is much more than a metaphorical analogy

between problem-decomposition in collective organisations and decompositions and other heuristics

they typically employ in their cognitive endeavours. At a formal level, decompositions are a

particular kind of search heuristics, that is sets of rules for search that limit the space of

configurations to be generated and tested. In these abstract terms, decompositions and heuristics

have the very same function: that of reducing the size of the search space. Actually, we can imagine

an agent who does not explicitly decompose the search space, but who has a very “powerful” (i.e.

effective) heuristic that can reduce, to a significant degree, the space of configurations to be tested,

for instance by drawing powerful inferences from the already tested solutions. The space can be

possibly reduced to one whose magnitude is similar to that of an agent capable of full

decomposition. In other words, a decomposition is, after all, nothing but a particular instance of

heuristic.
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At least equally interestingly, there is a striking similarity between problem-decomposition we

have formalised so far and the experimental evidence from cognitive psychology on the ‘naive’

problem-solving heuristics which individuals typically display10.

Finally note that, as argued at the beginning, on purpose we meant to explore as a first

approximation a conflict-free, incentive-free fiction of organisations, in order to focus precisely on

their knowledge dimension. However, the formal machinery presented here allows fruitful links

with those other neglected dimensions. In particular, as already hinted above particular knowledge

decomposition easily relates with credit assignment decomposition of organisational structures (i.e.,

roughly speaking, who should be blamed or rewarded for what) and by the same token, with issues

of incentives, control and power over tasks assignments..

But, of course, all this is well beyond the foregoing, highly preliminary, work, largely aimed at

presenting some basic building-blocks of a ‘constructive’ theory of organisations as repositories of

knowledge.

                                                          
10 For instance the so-called “conservative focussing” heuristic, which has been shown to be the typical heuristic in
concept formation (cf. Bruner, Goodnow and Austin (1956)), is nothing but a full decomposition of the search space.
Actually, experimental evidence shows that “concepts” which are highly decomposable are “easy” to apprehend by
human subject, while concepts which are not decomposable are much more difficult and usually human subjects fail to
discover them.



28

Appendix – Proofs of Propositions

In this appendix we provide the proofs of the propositions in the text, reported from Marengo

(1999).

Proof of Proposition 1: by hypothesis xi belongs to the basin of attraction Ψ(x0,D) of x0. Let us

order all the configurations in Ψ(x0,D) by descending rank: Ψ(x0,D)= ={x0,x1,.....,xδ} with xi≥xi+1. If

xi=x1 then, by definition, x0 must be a best-neighbour of xi. If xi=x2 then either x0 is a best

neighbour of xi or is not. In the latter case x1 must necessarily be a best-neighbour of xi. And so on

by induction…

Proof of Proposition 2: If i=1 x0 is trivially reachable from x0 itself for all decompositions,

including the finest D={{1},{2},{3},.....,{N}}.

Proof of Proposition 3: if µ=2N then Xµ includes all configurations and it is trivially reachable for

any decomposition, including the finest Dµ={{1},{2},{3},.....,{N}} with sz=1. If µ=1 Xµ includes

only the global optimum, thus the size of the minimum size decomposition is 1≤sz(D1)≤N. We still

have to show that it cannot be sz(Dµ+1)>sz(Dµ): if this was the case Xµ could not be reached from

Xµ+1 for decomposition Dµ, but this contradicts the assumption that Xµ is reachable from any

configuration in X for decomposition Dµ

Proof of Proposition 4: given that we are considering finite problems, this proposition is trivial.

Consider in fact a representation (Ξ,ä) where Ξ is completely free and ä has the only constraint of

preserving the same global maximum of the fitness function. Clearly the decomposition scheme

D={{1,2,3,....., n}} will find such a global maximum in 2n steps.

Proof of Proposition 5: we prove the proposition by constructing an encoding which has such a

property for a generic problem.

Consider a mapping Φ:X→N from the possible solution into the set of non-negative integers such

as:

Φ(x0)=0, Φ(x1)=1,.........., Φ( x n2
)=2n

where x n2
≥….≥x1≥x0

Define now the encoding Ξ*(xi)=bin(Φ(xi)) where bin is a function which maps an integer into

its binary encoding. It is now very easy to verify, because of the properties of binary encoding, that

Ξ* is an encoding which satisfies proposition 2.
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Proof of Proposition 6: we prove also this proposition by construction. Let us call x* the point

corresponding to the global maximum of the fitness function, and let Ξ(x*)=l* be its representation,

with  l l l ln
* * * *.....= 1 2

Any preference relation such that   ni llll ....... *
21 ä ni llll .......21      nill ii ,......,2,1     * =≠∀

satisfies proposition 9.
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