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 Determinants of the implied volatility function

on the Italian Stock Market

Abstract

This paper describes the implied volatility function computed from options on the Italian stock

market index between 1995 and 1998 and tries to find out potential explanatory variables. We

find that the typical smirk observed for S&P500 stock index characterizes also Mib30 stock

index. When potential determinants are investigated by a linear Granger Causality test, the

important role played by option’s time to expiration, transacted volumes and historical volatility

is detected. A possible proxy of portfolio insurance activity does poorly in explaining the

observed pattern. Further analysis shows that the dynamic interrelation between the implied

volatility function and some determinants could be, to a certain extent, non-linear.

JEL classification: G10; G12 ; G13.
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1. Introduction

Since October 1987 stock market crash, it is well known that implied volatilities computed from

options on stock market indices using Black and Scholes (1973) formula vary across strike

prices and maturities. In particular, on the US stock market, a decreasing profile of implied

volatility with respect to moneyness has been invariably observed1; this is the so-called

“volatility smile” or “smirk”, owing to asymmetric shape. As regards European stock markets,

there is evidence of similar patterns, e.g. for the German equity market as illustrated by

Tompkins (1999), but also of fairly symmetric “volatility smiles”, as pointed out by Pena et al.

(1999) for the Spanish index.

Given the assumptions of Black and Scholes model, all the options with the same maturity and

on the same underlying asset should have the same implied volatility, notwithstanding different

strike prices; the presence of a volatility smile determines the roughness of Black and Scholes

formula in the valuation of options with different moneyness.

Financial literature handled this empirical evidence of not constant implied volatility with two

broad classes of methods. The first could be labelled “deterministic volatility methods”; in

general it refers to the use of a pricing model in which the parameter of constant volatility is

replaced by a deterministic volatility function: different examples of this type of models are the

approach of Shimko (1993), the implied binomial tree or lattice approach developed by Derman

and Kani (1994) and Rubinstein (1994), the non-parametric kernel regression approach of Ait-

Sahalia and Lo (1998). The second class of methods could be labelled “two factors models”;

besides the risk of the market price of underlying asset, the valuation models price additional

non-traded sources of risk, such as the volatility of volatility or market price jumps or even

both. One of the first examples belonging to this general class was the stochastic volatility

model of Hull and White (1987); more recent advances are, among others, the stochastic

volatility model of Heston (1993), the random jump model of Bates (1996) and the multifactor

model of Bates (2000).

The relation between the implied volatility smile and some potential explanatory variables is

examined for the Italian options market. This study differs from previous research along two

primary dimensions. First, in order to get a reliable evidence of the smile shape during the

                                                     
1 See among the others Rubinstein (1994), Jackwerth and Rubinstein (1996), Dumas et al. (1998) who
illustrated that the implied volatility of the S&P500 index options decreases monotonically as the strike
price increases with respect to the current level of the underlying asset.
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examined period, I perform an extensive analysis considering different subperiods, different sets

of options and different measures of moneyness. The aim is to establish whether the smile’s

profile is characterized by a negative slope, as in the US market, or whether it is symmetric, like

the smile observed on the Spanish options market.

A second difference relative to previous work is that I try to find out potential determinants of

the shape of the volatility smile; the direct explanation of these determinants has been an

omitted topic in the extant literature. A formal categorization of explanatory variables can help

not only to improve options’ pricing models, but also to enhance the methodologies extracting

probability density function of the underlying from option prices2. I follow the methodological

approach of Pena et al. (1999), who employed a linear Granger causality test to characterize the

relation between the parameters of the interpolated volatility function and some explanatory

variables; however this study differs substantially in the specific choice of the potential

determinants and in the inference drawn from the findings. Moreover the analysis is extended

through a non-linear Granger causality test.

The empirical results show that on the Italian options market a persistent asymmetric implied

volatility function is observed, similar to the US evidence. This phenomena is well

approximated by a simple quadratic function of moneyness, with a negative linear term and a

small degree of convexity. When I try to relate the smile shape to potential determinants, I find

that a prominent role is played by time to expiration, liquidity of the option market and

historical volatility. A non-linear effect on the implied volatility function is present for all the

explanatory variables employed in this analysis.

The paper is organized as follows. Section 2 discusses briefly the features of the Italian options

market, describes data and explanatory variables employed in the analysis and provide

descriptive statistics for these series. The revealed volatility smile is illustrated in Section 3 and

an interpreting model is derived. Section 4 explains the theoretical framework of the linear and

non-linear Granger causality tests and presents the empirical results for potential determinants.

Finally Section 5 offers a brief summary and provides conclusions and suggested areas for

further research.

                                                     
2 For a comprehensive survey of the literature about probability density function implied by option prices,
see Jackwerth (1999).
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2. Data and sampling procedure

This empirical analysis focuses on Mibo30 stock index options and on some potential

explanatory variables extrapolated either from the same market or from the market for the

underlying asset.

2.1 Italian Mibo30 Index options

Mibo30 are options written on the Italian stock market index Mib30, which comprises the 30

most liquid and capitalized stocks; they were introduced on the Italian Derivatives Market

(IDEM) on the 15th of November 1995. The volume traded on Mibo30 options represented 46%

of the volume traded on all Italian equities in 1996, 72% in 1997 and 63% in 1998; the Mibo30

number of contracts relative to the French and Spanish stock index options was respectively

24% and 136% in 1997.

Mibo30 options are european style options, which means that exercise is possible only at

maturity. The market price is stated in index points, each one worth 2.5 euro (called contract

multiplier). The contract dimension (notional value) is determined by the product between the

multiplier and the strike price (expressed in index points).

Mibo30 options contracts have supplementary expiration dates with respect to the correspondent

Fib30 future contract: besides quarterly maturities, there are also monthly maturities. The option

contract expires the third Friday of the expiration month  at 9.30 a.m. For each maturity, nine

different strike prices are quoted: four out of the money, four in the money and one at the

money. The lowest price interval between strike prices is fixed at 500 index-points.

The closing prices are determined daily by the Clearing House (Cassa di Compensazione e

Garanzia). The settlement price corresponds to the value of Mib30 index calculated on

expiration date’s opening prices of the 30 stocks composing the index. The contract settlement

is carried out by cash as the difference between option’s strike price and Mib30 settlement price,

taking into account the number of contracts, the multiplier value and by means of the Clearing

House.

2.2 Sampling procedure

The dataset is composed by the closing prices of call and put options on the Mib30 Index traded

daily on IDEM during the period November 1995-March 19983.

                                                     
3 I gratefully acknowledge the Italian Stock Market “Borsa Italiana SpA” for making available the
dataset.
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In order to consider only liquid prices, which is an extremely important issue when high

frequency data are not available, the daily set of observations is filtered according to four

criteria.

First, the closing prices of options with no transactions during the trading day are taken out of

sample. Second, the dataset is filtered to include only calls and puts with the same expiration

date of the corresponding stock index future. Hence I consider only the March, June, September

and December maturity; in the dataset the average monthly transaction volume for options with

quarterly expiration dates turns out to be about 12% higher than the average transaction volume

on options with monthly maturities.

The third criteria is to exclude options with less than 5 and more than 90 trading days to

expiration, which may induce liquidity-related biases. The shorter term options have relatively

small time premiums, hence the estimation of volatility is extremely sensitive to any possible

measurement error, particularly if options are not at the money, as Hentschel (2000) shows;

other liquidity biases can arise for example because of fund manager’s positions rolling over.

The longer term options, on the other hand, are simply less traded4.

Finally, arbitrage exclusion criteria are employed in order to avoid errors or microstructure

effects such as non synchronous prices between options and the underlying5.

This filtering procedure reduces the data from 20146, corresponding to 600 trading sessions, to

7963 observations (3600 for call and 4363 for put options), with an average of 13 liquid prices

per day. Moreover in the most relevant part of this study only out of the money put and call

options are going to be employed: thus the more involved and active part of the market is

considered (e.g. the portfolio insurance activity or the sale of covered call by fund managers).

For instance in this dataset the average daily number of contracts on the out of the money

options is nearly twice the volume on the in the money options. In this way the dataset is

reduced to 4818 observations, with an average of 8 liquid prices per day.

Even if the underlying of the Mibo30 options is the Mib30 stock cash index, in this analysis I

consider the prices of the corresponding future Fib30 and the Black (1976) version of the option

                                                     
4 Similar exclusionary criteria are applied among others by Bakshi et. al (1997) or by Dumas et al. (1998).
5 The value of a European call option like the Mibo30 considered in this analysis should respect the
following applied boundary and strike price conditions:

F > C ≥ max (0, (F - K)R-t ); C(K1)>C(K2) where K1<K2 ; (K2-K1)R
-t ≥ C(K1)-C(K2)>0 .

where C is the call price, K is the strike price, F is the forward price and R is a capitalization factor. I
apply the same arbitrage exclusionary criteria to put options.
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pricing formula6. This approach is far more simple, because the estimation of the dividend yield

which is compounded in the price of the future contract can be avoided. Moreover during the

period under analysis (Nov. 1995 – Mar. 1998) the settlement price of Mib30 stock index was

non synchronous with respect to the derivatives market: in fact the closing price of Mib30 index

was fixed at 5.00 p.m. while IDEM closed at 5.30 p.m.. For this reason considering a future

price instead of an index price as underlying eliminates a large measurement error typically

coming from using closing prices for the options and index that are measured half an hour apart

(Hentschel, 2000).

From each observed option closing price Cit I compute implied volatility σit by numerically

solving the Black (1976) formula:
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where, as usual, K is the strike price, Ft is the future price at time t, T is option’s expiration date,

r is the risk free interest rate and N represents the normal cumulative density function.

To proxy the risk free interest rate I use the one-month interbank interest rate for options with

residual time to maturity between 5 and 45 trading days and the two month interbank interest

rate for options with residual time to maturity between 45 and 90 trading days.

Options’ moneyness is computed with three alternative methodologies. First, I take the ratio of

the strike price to the underlying future price7, following the frequent market convention of

quoting (and hedging) the options in term of the future rather than the cash index. This method

is straightforward, but it doesn’t consider that moneyness should be evaluated considering also

the volatility of underlying asset and the option’s time to maturity. For this reason the second

approach to moneyness takes into account explicitly these variables: the natural logarithm of the

                                                     
6 At the maturity of the future, the future price equals the asset’s spot price. Thus a European option on
the asset has the same value as a European option on the future contract with the same maturity. As a
result the Black and Scholes formula can be rewritten as shown by Black (1976) and afterwards in this
section.
7 Jackwerth and Rubinstein (1996) used the same approach.
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ratio of the strike price on the underlying future price is divided by the product of at the money

implied volatility and the square root of the time to maturity8:
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To compute at the money implied volatility I use the average of implied volatility of a call and a

put option with a strike price K* as close as possible to index level, such that:

1minarg* −= KSK t
K

The third approach to compute moneyness is to use directly the options’ Delta. This measure

considers in fact both time to maturity and volatility and at the same time is coherent with the

Black and Scholes model. To avoid dependencies between the measure of moneyness and the

implied volatility of options with different strike prices, at the money implied volatility is

inserted in the Delta’s formula for each option as the volatility input.

It is convenient to normalize option’s Delta between zero and one in order to represent in the

same way either call and put options; this can be achieved taking the absolute value of put

option’s Delta and the complement to one of call option’s Delta, so as to obtain normalized

values that increase with the strike.

In the reminder of this study I employ mainly this normalized Delta as the measure of

moneyness, even if the robustness of the results is always checked also with the other two

measures of moneyness.

2.3 Potential determinants definition

I look for the potential determinants of the volatility smile’ profile among three categories of

variables. First, the specific features of the options market is illustrated, in order to obtain a

reasonable estimate of general liquidity and potential links between smile effect and implied

volatility term structure; hence I aim to explain options’ mispricings with the existence of

market frictions. Second, the underlying asset dynamic is represented, in order to detect likely

dependencies between the implied volatility function and relevant characteristics of the

                                                     
8 Similar methodologies to compute moneyness are used in Natenberg (1994), Dumas et. al (1998),
Tompkins (1999).
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underlying asset9; options’ mispricings are explained by an investor assessments of the

underlying stochastic process which is different from Black and Scholes hypothesis. Finally, I

try to describe investors behavior, in order to reflect market practises which could have an

impact on the implied volatility function as a consequence of relative trading activity in calls

versus puts of all strike prices; thus, as argued by option market practitioners, heavy demand for

out of the money put options drives up prices.

In the first category of options’ market specific variables the option’s residual time to expiration

is employed, calculated as the ratio between the number of working days to the expiration date

and the conventional working days in one year (252):

252
date tradingdate expiration −

=tTEXP

Clearly I am trying to take into account the potential effect of the time horizon on the implied

risk neutral density function.

The volume of transactions on options is also used, expressed as the simple number of traded

contracts and either as number of traded options weighted by the value of the specific option’s

contract10:
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where ni is the number of contracts traded on i-option, Ki is the i-option strike price, c is a

constant scaling factor and m is the number of different options traded each day of the sample. I

want to proxy the liquidity in the market in the most general way.

The explanatory variables of the second category representing underlying asset’s dynamic are

the market momentum, calculated as the natural logarithm of the ratio between the future price

(Fib30) and a 50-day simple moving average:
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9 I don’t employ any variable related to interest rates owing to the small pricing improvement which is
usually obtained for stock index options when a time varying interest rates is considered. See among
others Bakshi et al. (1997).
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where Ft is the future price at time t. This ratio is positive (negative) in a bullish (bearish)

market11. Even if this measure is something like arbitrary, the aim is to gauge if the trend of the

underlying has any effects on the steepness of the smile profile, given that it is well known that

a leverage effect is present for the general level of volatility (e.g. Schwert (1989)).

A second potential explanatory variable is the volume of market transactions, expressed as the

number of contracts traded each day on the stock index future contract (NFUTt); this is taken as

a measure of the general market activity in the underlying. This variable is correlated with

conditional volatility and can influence the leverage effect (Gallant et. al. (1992)).

The level of historical volatility is also considered, calculated during the previous 20 trading

days as the annualised standard deviation of logarithmic returns on Fib30 settlement prices:

( )[ ] 252,..., 19−= ttt rrHVOL σ

where σ(x,…,y) is the standard deviation of values between x and y  and rt  is the daily

logarithmic return on Fib30 settlement prices. The potential effect of different levels of

volatility on the smile profile would suggest that an obvious pricing improvement is to relax the

assumption of constant volatility.

As a last variable of the second category the volatility of volatility is employed, computed

during the previous 20 trading days like the standard deviation of the historical volatility shown

before:

( )[ ]19,..., −= ttt HVOLHVOLVVOL σ

where σ(x,…,y) is the standard deviation of values between x and y. This variable could be a

good proxy for the vega risk in hedging activity, that may affect the pricing of certain type of

options.

The third category of potential determinants related to investor behaviour comprises one

variable: the number of contracts written on out of the money put options as a percentage of

total reported out of the money call and put transactions, in order to obtain a sort of measure of

the portfolio insurance activity of fund managers12:

                                                                                                                                                           
10 The value of an option’s contract is usually calculated multiplying the strike price by a standard
coefficient, called contract multiplier, in order to convert index point prices in real values. During the
period under analysis (1995-1998) the contract multiplier for Mibo30 options corresponded to 5 euros.
11 Pena et al. (1999) employ the inverse of this ratio with a different time span for the moving average.
12 Grossman and Zhou (1996) show an equilibrium model of risk sharing between portfolio insurers and
other investors that generate also negatively skewed implicit distributions. In Platen and Schweitzer
(1998) the relatively heavy hedging of out of the money put options accentuates volatility/price level
feedbacks and make implicit distribution more negatively skewed.
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where ni is as usual the number of contracts traded on i-option and nputi is the number of

contracts traded on i-put option, where k of the total m out of the money options are puts13.

2.4 Descriptive statistics

Table I presents the main features of the options’ data set. Notice that mean and standard

deviation of at the money implied volatility are both lower than the correspondent moment for

implied volatility.

In Table II the results of correlation analysis between explanatory variables are presented. The

high correlation coefficient between the two measures of transaction volume in the option

market suggests to drop one of them; I decide to keep the variable “number of contracts”. The

magnitude of the other correlation coefficients allows to maintain the other explanatory

variables in the subsequent analysis.

In order to assess the stationarity of the employed variables, which is a crucial point, as we will

see, in the application of the methodology of this paper, the first step is the calculation of the

sample autocorrelation coefficients; as illustrated in Table III, the variables “historical

volatility” and the “momentum” exhibit the most relevant degree of persistence. Given the

importance of this issue, it is clear that a formal testing procedure is required to determine the

order of integration. I conduct augmented Dickey Fuller tests, allowing for the possibility that

the data-generation process contains a constant drift term and additional lagged terms for the

dependent variables. The results, reported in the last column of Table III, suggest that indeed

“historical volatility” and “momentum”14 can be integrated variables.

In order to get deeper understanding of the potential non stationarity of these time series, I

follow the strategy proposed by Dolado et. al (1990) for testing for unit roots in the presence of

possible trends. The procedure leads to the same previous results, that the existence of a unit

root in “momentum” and “historical volatility” can not be rejected15. I conclude that these time

                                                     
13 Bates (2000) shows graphically that the moneyness bias in the post-crash period is strongly related to a
percentage of out of the money call transactions on the total out of the money call and put transactions.
14 The coefficient for the variable “momentum” is very close to the boundary for the rejection of the null
hypothesis; since the true data-generating process is unknown and hence the test can potentially be
misspecified, I do not reject the hypothesis of a unit root for “momentum” variable.
15 Similar results are obtained if the logarithm of historical volatility is employed instead of the original
historical volatility time series.
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series are integrated of order one, since the same tests on the first differences reject definitely

the presence of a unit root.

3. The implied volatility function

In this section the data are analysed in order to get a formal description of the empirical implied

volatility function.

3.1 The pattern in the data

In order to determine the kind of model which could best fit option’s implied volatility with

respect to option’s moneyness, it is useful to present a graphical plot of the data (see Figure 1).

However, owing to the time varying general level of volatility, the picture is not so clear. Hence

the option data is divided into several categories, according to either moneyness or time to

expiration. By moneyness an option contract can be classified as: deep out of (in) the money put

(call), out of (in) the money put (call), at the money put (call), in (out of) the money put (call),

deep in (out of) the money put (call); the boundaries of the categories are chosen in order to

have the same number of observations in each class16. By the time to expiration options are

grouped in a short term category (<50 days) and medium term category (50-90 days). The

proposed moneyness and maturity classification generates 12 categories; I equally weigh the

implied volatility of each option in a given category to produce an average implied volatility per

class. The results are summarized in Table IV and plotted in Figure 2.

The average implied volatility function presents the characteristic asymmetric profile (smirk):

regardless the time to expiration, the Black’s implied volatility exhibits a strong decreasing

pattern as the put option goes from deep out of the money, to at the money and then deep in the

money or as the call goes from deep in the money, to at the money and then deep out of the

money. Furthermore the different level of Black’s implied volatility between short and medium

term options suggests the presence of a term structure of implied volatility.

To avoid possible misspecifications due to illiquid prices or unexploited arbitrage opportunities,

the same graphical analysis is performed using only out of the money call and put options,

which are traded more frequently and are not suitable for some arbitrage strategies. The results

are fairly the same: the smirk presents only a smoother profile (see Table V and Figure 3). I also

                                                     
16 This choice depends on the descriptive purpose of this section; hence the focus is not on the precise
meaning of moneyness, for which I should set typical moneyness intervals, but rather on a reliable
representation of implied volatility in each specified category.
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verify the persistency of this pattern throughout the period considered in this analysis. The

breaking up in three sub-periods of about nine months17 shows that the implied volatility

function is always characterized by an asymmetric smile, with a smoother profile in the latest

period (see figure 4). Looking at the differences in y-axis values, the plot provides also an

empirical evidence of the time varying general level of implied volatility.

These findings of clear moneyness-related and maturity related biases are consistent with those

in the existing literature; the evidence of a steeper smile for short term options reported in the

literature depends on a measure of moneyness which doesn’t take into account option’s time to

expiration (e.g. the ratio between the strike price and the future price), as pointed out also in

Dumas et. al (1998). Actually almost the same pattern for the implied volatility function  is

obtained using the other typical measures of options’ moneyness instead of options’ Delta,

except for a steeper smile for short term options when moneyness measure is time

independent18.

3.2 Model’s estimation

The shape of implied volatility function suggests to fit the data with the typical linear and

quadratic model used previously in the literature (see Shimko (1993) or Dumas et al. (1998))19:

Model 1: εββ ++= XY 10

Model 2: εβββ +++= 2
210 XXY

where Y, the dependent variable, represents the implied volatility and X the moneyness of the

options. The simplicity of the two models is determined by the endeavour to avoid

overparametrization in order to gain better estimates’ stability over time; moreover some other

techniques, such as kernel regression (Ait-Sahalia (1998)), are not suitable in this study, because

in that case the model is estimated only once on the whole dataset.

Specifically the time to maturity is not used in the models as one of the independent variables,

owing to the lack of explanatory power and to the potential source of overfitting showed in the

literature (e.g. Dumas et al. (1998)); anyway time to maturity is considered in the reminder of

this analysis as one of the potential determinants of the specific profile of the implied volatility

                                                     
17 The first sub-period is between 15.11.1995 and 21.08.1996, the second sub-period is between
22.08.1996 and 28.05.1997, the third is between 29.05.1997 and 03.03.1998.
18 To save space I do not insert the alternative plots and tables in this paper.
19 For the important analogies between the deterministic volatility function that I will use in this approach
and the implied binomial tree approach of Rubinstein (1994) or Derman and Kani (1994), see again
Dumas et al. (1998).
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function. Moreover I decide to give the same weight to each observation, regardless the

moneyness, as the strategy to assign less weight to the deep out of the money options owing to

the higher volatility has not proven to be satisfactory ( see Jackwerth and Rubinstein (1996)).

However these models can hardly be estimated on the given dataset, because the general level of

volatility is time-varying, as the plot of figure 1 easily shows20.

There are two possible procedures to neutralize the non-stationarity of volatility. First, the

implied volatility can be standardized with respect to the daily level of at the money volatility,

like in Tompkins (1999); the ratio between the actual level of implied volatility and at the

money volatility of the same trading day turns out to be a stationary time series. However using

this approach can lose, in a further analysis of the model, the potential effect of the level of

volatility on the shape of the implied volatility function.

The second possible approach, that actually is employed in this study, is to fit the models

separately on every trading day with sufficient observations; I implicitly assume that implied

volatility is stationary during the day. Then, in order to obtain representative models’

parameters for the whole period, the average of the daily estimates is computed. I don’t need

any at the money implied volatility estimate and information about the general level of volatility

is retained.

Hence the models can slightly be rearranged to consider this approach:

Model 1: τττ εββ ,,10, ttt XY ++= ( ] [ ]90,5,,0 ∈∀∈∀ τTt

Model 2: ττττ εβββ ,
2
,2,10, tttt XXY +++= ( ] [ ]90,5,,0 ∈∀∈∀ τTt

where Y represents implied volatility and X the moneyness expressed as the normalized Delta

measure21, while t denotes trading days and τ options’ time to maturity. A single model is

estimated for each trading day considering options with the same time to maturity; typically two

models are estimated for each trading day.

The results obtained by OLS fitting procedure are shown in Table VI. The reported parameters’

estimates are averages for the whole period and so it is for the adjusted R2. The t-statistics on

which the p-values are computed use the average value of the parameter and average standard

error, instead of averaging the t-values of each model22.

                                                     
20 Trying to fit Model 1 on the raw dataset returns an R2 of 0.07.
21 The results are similar when different measures of moneyness are employed.
22 This approach to hypothesis testing in presence of aggregation problems is used also in the literature on
“event-study analysis” when cumulative abnormal return observations are evaluated. For a
comprehensive reference see Campbell, Lo and MacKinlay (1997 p. 160-163).
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The differences between Model 1 and Model 2 in the number of OLS estimations and in the

average number of observations used in each inference are explained obviously by the higher

observations requirement of Model 2 with respect to Model 1. The economic interpretation of

the values obtained for the parameters is straightforward: 0β  represents a general level of

volatility which localizes the implied volatility function, 1β  characterizes the negative profile

which is responsible for the asymmetry in the risk neutral probability density function and 2β

provides, in Model 2, a certain degree of curvature in the implied volatility function. Hence the

average risk neutral PDF on the Italian stock market is fat tailed and negatively skewed.

From the analysis of the p-values reported in Table VI, all the estimated parameters but 2β  can

be considered significant. This can cast some doubts on the opportunity to use Model 2 in the

reminder of the analysis, even though the adjusted R2 exhibits a substantial difference. For this

reason a Lagrange Multiplier (LM) statistic is performed to test whether the coefficient

associated with the quadratic term is statistically different from zero; the restricted model turns

out to be Model 1 and the LM test is asymptotically distributed as a chi-squared with one degree

of freedom. The value obtained for the LM statistic is 528.91 (p-value 0.0000); this implies that

the null hypothesis of 2β  equal to zero is rejected and hence Model 2 is employed in the

subsequent part of this study.

4. Identifying the potential determinants

In the previous section it was shown that the average implied volatility function is fitted rather

well by a quadratic model with a negative coefficient of asymmetry.

In order to identify which explanatory variables can potentially determine the observed profile

of the implied volatility smile, a linear and non-linear Granger Causality test is performed

between the estimated parameters of Model 2 and the potential determinants described in

Section 2. I will try to find a relation between the degree of asymmetry (β1), the degree of

curvature (β2) and seven explanatory variables. In some sense the contract specific variables

should help to detect cross sectional pricing biases, whereas the other variables serve to indicate

whether the smile profile over time, which means the Black and Scholes pricing error, is related

to the dynamically changing market conditions.
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4.1 Linear Granger Causality

In this paragraph I discuss the definition of Granger causality and the basic approach used to

test for its presence. Because this approach is well known, only a brief discussion is offered

here.

As originally specified, the general formalization of Granger (1969) causality for the case of

two scalar valued, stationary time series { Xt } and { Yt } is defined as follows. Let ( )1−tt YXF

be the conditional probability distribution of Xt given the bivariate information set It-1 of an lx-

length lagged vector of Xt , say ( )11
1 ,...,, −+−−

−
− ≡ tlxtlxt
t

lxt XXXX , and an ly-length lagged vector of

Yt , say ( )11
1 ,...,, −+−−

−
− ≡ tlytlyt
t

lyt YYYY . Given lags lx and ly , the time series { Yt } does not strictly

Granger cause { Xt } if:

( ) ( )1
11

−
−−− −= t

lyttttt YIXFIXF t = 1,2,…. (1)

If the equality in equation (1) does not hold, then knowledge of past Y values helps to predict

current and future X values, and Y is said to strictly Granger cause X. Similarly, a lack of

instantaneous Granger causality form Y to X occurs if:

( ) ( )ttttt YIXFIXF += −− 11 (2)

where the bivariate information set is modified to include the current value of Y. If the equality

in equation (2) does not hold, then Y is said to instantaneously Granger cause X.

Strict Granger causality relates to the past of one time series influencing the present and future

of another time series, whereas instantaneous causality refers to the present of one time series

influencing the present of another time series23.

The well-known test for Granger causality involves the estimation of a linear reduced form

vector autoregression (VAR):

tktitit

tktitit

uELBLBE

uELBLB

,222212

,112111

)()(

)()(

+++=

+++=

βα

βαβ
(3)

for t=1,2,…   i=1,2   and k=1,…,7

where βit is alternatively the coefficient of asymmetry or the degree of curvature, Ekt is a single

explanatory variable, B11(L), B12(L), B21(L) and B22(L) are one sided lag polynomials in the lag

                                                     
23 See Geweke, Meese and Dent (1983), Granger and Newbold (1986) and Hendry and Mizon (1999) for
a discussion of Granger causality testing procedures and issues relative to omitted variables bias,
measurement errors and aggregation bias.
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operator L. The regression errors {u1,t} and {u2,t} are assumed to be mutually independent and

individually i.i.d. with zero mean and constant variance.

To test for strict Granger causality from Y to X a standard joint test (F- or χ2 – test) of exclusion

restriction is used to determine whether lagged Y has significant linear predictive power for

current X. The null hypothesis that Y does not strictly Granger cause X is rejected if the

coefficients on the elements in B12(L), i.e. B12,i (i=1,..,m) are jointly significantly different from

zero. Feedback (or bi-directional) causality exists if Granger causality runs in both directions, in

which case the coefficients on the elements in both B12(L), B21(L)  are jointly different from

zero.

Among the variety of causality tests that have been proposed, the simplest and straightforward

approach uses an autoregressive specification24. To implement this test, I assume a particular lag

length L and estimate by OLS :

tLktLktktLitLititit uEcEcEcbbb +++++++++= −−−−−− ...... 221122111 βββαβ (4)

tLitLititit eddd +++++= −−− βββαβ ...22112 (5)

I compute the sum of squared residuals from (4) and (5),

∑
=

=
T

t
tuRSS

1

2
1 ˆ

∑
=

=
T

t
teRSS

1

2
0 ˆ

if

( )
1

10
1 RSS

RSSRSST
S

−
=

is greater than the 5% critical value for a χ2(L) variable, then the null hypothesis that E does not

Granger-cause β  is rejected; that is, if S1 is sufficiently large, I conclude that E does Granger-

cause β.

4.2 Nonlinear Granger Causality

Baek and Brock (1992) proposed a nonparametric statistical method for detecting nonlinear

causal relations between two time series. This method was modified by Hiemstra and Jones

(1994) to allow each series to display weak temporal dependence. To define nonlinear Granger

                                                     
24 Based on Monte Carlo simulations, Geweke, Meese and Dent (1983) suggest that the causality test I am
going to use may well be the best.
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causality, assume there are two strictly stationary and weakly dependent scalar time series {Wt }

and {Vt }. As in the previous paragraph, define the m-length lead vector of Wt by Wt
m , and the

Lw-length and Lv-length lag vectors of Wt and Vt , respectively, by ( )11,...,, −++≡ mttt
m

t WWWW

( )11,...,, −+−−− ≡ tlwtlwt
lw

lwt WWWW  and ( )11,...,, −+−−− ≡ tlvtlvt
lv

lvt VVVV .

The definition of nonlinear Granger noncausality is given by Eq. (6):

( )
( )eWWeWW

eVVeWWeWW

Lw
Lws

Lw
Lwt

m
s

m
t

Lv
Lvs

Lv
Lvt

Lw
Lws

Lw
Lwt

m
s

m
t

<−<−=

<−<−<−

−−

−−−−

Pr

,Pr
(6)

where Pr{.} denotes probability and    is the maximum norm. If Eq. (6) holds, for given

values of m, Lw, and Lv and for e, then {Vt} does not strictly Granger cause {Wt}. This

definition of nonlinear Granger causality is based on two conditional probabilities. The

probability on the left hand side of Eq. (6) can be interpreted as the conditional probability that

any two arbitrary m-length lead vectors of {Wt} are within a metric e of each other, given that

the corresponding Lw-length lag vectors of {Wt} and Lv-length lag vectors of {Vt} are within a

distance e of each other. The probability on the right hand side of Eq. (6) can be interpreted in a

similar way: the conditional probability that any two arbitrary m-length lead vectors of {Wt} are

within a metric e of each other, given that the corresponding Lw-length lag vectors of {Wt} are

within a distance e of each other. The null hypothesis is that {Vt} does not nonlinearly Granger

cause {Wt}. Under the null hypothesis, and for given values of m, Lw and Lv ≥ 1and e  >0, it can

be shown that the statistic:

( )
( )

( )
( ) ( )( )eLyLxmaN

neLwC
neLwmC

neLvLwC
neLvLwmC

n ,,,,0    ~   
,,4

,,3
,,,2

,,,1 2σ






 +
−

+
      (7)

where C1(m+Lw, Lv, e, n), C2(Lw, Lv, e, n), C3(m+Lw, e, n), and C4(Lw, e, n) are correlation-

integral estimators of the point probabilities corresponding to the left hand side and right hand

side of Eq. (6)25. This test has very good power properties against a variety of nonlinear Granger

causal and noncausal relations, and its asymptotic distribution is the same if the test is applied to

the estimated residuals from a vector autoregressive (VAR) model (Hiemstra and Jones (1994)).

                                                     
25 For a more detailed discussion of correlation integral estimators and the derivation of the estimator for
the variance σ2 (m,Lw,Lv,e) see Hiemstra and Jones (1994).
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4.3 Linear Granger test results

Since hypothesis tests are sensitive to the truncation of the lag polynomials on the dependent

and independent variable, lag lengths must be chosen carefully26. In order to determine the

optimal lag, two of the typical information criteria: Akaike Information Criteria and Schwarz

Information Criteria are employed that share the common aim to trade off the bias associated

with a parsimonious parametrization against the inefficiency associated with

overparametrization. In the few cases in which the suggested optimal lag is not the same, I

follow the Schwarz result that seems to be more parsimonious and stable.

A second issue is related to the non stationary of the variables employed in this analysis; in

Section 2.4 it was shown that the variables “momentum” and “historical volatility” are

integrated of order one ( I(1) ), so that first differences are individually stationary and hence

suitable for modelling in a Vector AutoRegression framework. However Engle and Granger

(1987) show that if two nonstationary variables are cointegrated, a VAR in the first differences

is misspecified. For two series of prices to be cointegrated, each one must be I(1) and there

exists a linear combination which is stationary. As in the employed model one of the dependent

variables is always a parameter of the implied volatility function, β1 or β2 , first of all the order

of integration of these series of parameters is determined. Applying the same augmented Dickey

Fuller test of Section 2.4, I find that each series is I(0) or, in other words, is stationary. This

means that the presence of cointegration is always rejected and the VAR model in the

differences is correctly specified.

Table VII reports the results of the linear Granger causality tests between the asymmetry

parameter β1 and the explanatory variables and between the curvature parameter β2 and the

explanatory variables27. Beside the optimal lag determined by the usual information criteria, the

value of chi-squared statistic and the correspondent p-value is indicated.

The first evidence is the prominent role played by the time to expiration variable. This is

consistent with findings in the literature about the presence of a term structure of implied

volatility and hence confirms that Black and Scholes pricing errors are different for options with

different expiration dates. This effect is apparent even if Delta has been employed as a measure

                                                     
26 For a discussion and statistical comparison of alternative techniques to set lag lengths while conducting
causality tests, see Thornton and Batten (1985).
27 I do not report in the tables the results of linear causality between the intercept of the model β0 and the
explanatory variables; in fact an economic interpretation of β0 as a proxy for the general level of implied
volatility can be misleading and is not particularly useful for the implications of this paper. Only for the
sake of completeness, I found that each of the employed potential determinants significantly causes β0,
except momentum, volatility of volatility and the percentage of out of the money put options on the total
of transacted options.
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of moneyness, neutralizing in this way a typical moneyness misspecification. The effect of

option’s time to expiration is evident both on the asymmetry and on the curvature parameter,

hence influencing both skewness and kurtosis of the implied risk neutral PDF.

A second evidence can be inferred by the results obtained for the variable “number of option

contracts”; a liquidity story seems to apply also in the relative mispricing of Black and Scholes

model with respect to moneyness. This result is even more significant than previous findings

relative to the bid-ask spread (e.g. Pena et. al (1999)); in fact this measure is not related directly

with moneyness and hence is not subject to the chance of being significant simply because it is

picking up part of the moneyness effect28. Both time to expiration and number of contracts show

significant feedback effect from the correspondent smile coefficient: hence bi-directional

Granger causality is ascertained.

The historical volatility of the underlying is found to be significant in determining the

asymmetry parameter β1; this evidence provides further matter for the adoption of pricing model

with stochastic volatility and of models estimated exploiting jointly the dynamics of options

prices and underlying asset (e.g. Pan, 2000).

The fact that the variable VPUT, which is the ratio between out of the money put options on

total transacted options, does not Granger cause the profile of the smile could be consistent with

the problems in finding reliable proxies of the portfolio insurance activity of fund managers; in

fact this activity is usually carried out over the counter, owing to big amounts involved and

needs of longer maturities. This could also be consistent with a limited portfolio insurance

activity carried out by Italian fund managers during the period under analysis.

The other potential explanatory variables are not found to significantly cause the asymmetry and

curvature of the volatility smile.

4.4 Modified Baek and Brock test results

In this paper the modified Baek and Brock test is applied on the estimated residuals from Eq. (3)

(i.e. {u1,t} and {u2,t}) and not on the original series. The estimated residuals do not contain any

linear causality structure since they are filtered series obtained from the VARs.

The next step, before applying the modified Baek and Brock test, is to establish the value for the

lead length m, the lag lengths Lw and Lv and the scale parameter e. Unlike linear causality

                                                     
28 Bakshi et al. (1997) show that in a regression of percentage pricing error on some explanatory
variables, the coefficient for the bid-ask spread is of high magnitude for Black e Scholes model and of
lower magnitude for a simple stochastic volatility models; a possible explanation is that the bid-ask
spread is actually picking up part of the moneyness effect.
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testing, there is no literature on the appropriate way to specify these values optimally. On the

basis of the Monte Carlo tests cited in Hiemstra and Jones (1994), I set for all cases, m=1 using

common lag lengths of 1 to 7 lags. Moreover, for all cases, the test is applied to standardized

series, using the scale parameter e =1.5σ , where σ =1 denotes the standard deviation of the

standardized time series; in conducting the test similar results are obtained using scale

parameter values of 1.0σ and 0.5σ.

The results from nonlinear Granger causality testing between the parameter β1 and the seven

explanatory variables are reported in Table VIII. A significant nonlinear causality relation is

found for each variable; these results are robust to changes in the employed lag. Moreover all

the explanatory variables seem also to nonlinearly Granger cause the curvature parameter β2 ,

even if this evidence is slightly less significant. The nonlinear inverse causality is rejected for

both β1 and β2 when the explanatory variable is the time to expiration, the historical volatility or

the momentum.

The straightforward interpretation of these results is that the dynamic relation between the

implied volatility function and variables related to the underlying, to investor behaviour or to

the options market itself is to some extent nonlinear. This finding may suggest that future

research should consider nonlinear theoretical mechanism when developing or assessing models

of options’ pricing or joint dynamics between true and risk neutral processes.

5. Conclusions

This study analyses the potential determinants of the volatility smile, i.e. the well known pattern

of implied volatilities with respect to moneyness. The employed database is comprised by daily

closing prices of call and put options on Mib30 Italian stock index from November 1995 to

March 1998. I find that the Italian stock market tends to show a rather straight decreasing

profile consistently throughout the sample period, similarly to the US market; this pattern is

well interpreted by a simple quadratic model of implied volatility in moneyness.

Linear and nonlinear Granger causality test are performed in order to find potential explanatory

variables of the observed pattern of implied volatilities. The results show a linear causal relation

of the time to expiration, the number of transacted option contracts and historical volatility on

the asymmetry of the smile profile; this evidence confirms both the importance of the term

structure of implied volatility on Black and Scholes mispricings, the role of market liquidity and

the requirement of stochastic volatility in any option pricing model. The findings of the
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nonlinear Granger causality tests suggest that for the other explanatory variables the effect on

the implied volatility function could be nonlinear.

Although the linear and nonlinear approach of causality testing presented in this paper can

detect causal dependence with high power, it provides no guidance regarding the source of this

dependence. Such guidance should be left to theory, which may propose specific models.

However the results of this paper suggest that these models ought to deal with at least time to

expiration and stochastic volatility. As this doesn’t seem to be sufficient to explain Black and

Scholes biases, as Bakshi et al. (1997) and Bates (2000) show, a promising way to take in to

account some of the other dependencies found in the present study could be to analyse jointly

the dynamics of the true and risk neutral process. In particular the introduction of risk premiums

(see Pan, 2000) can explain some puzzling evidence.
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Figures

Figure 1: Plot of implied volatilities of filtered data.



26

Figure 2: Average implied volatilities for classes of moneyness-time to expiration.

In order to have the same number of observations in each of the 5 moneyness’ classes I

determine the following intervals: 0-0.092;  0.092-0.264;  0.264-0.438;  0.438-0.623;

0.623-1.
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Figure 3: Average implied volatilities of out of the money options.

Also in this case, in order to have the same number of observations in each of the 5

moneyness’ classes, I have determined the following intervals:  0-0.061;  0.061-0.206;

0.206-0.405;  0.405-0.627;  0.627-1.
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Figure 4: Implied volatility functions of out of the money options in three sub-periods.

The intervals of moneyness’ classes are the following: for the first sub-period 0-0.072;

0.072-0.21;  0.21-0.414;  0.414-0.624;  0.624-1. For the second sub-period 0-0.075;  0.075-

0.22;  0.22-0.438;  0.438-0.669;  0.669-1. For the third sub-period 0-0.046;  0.046-0.19;

0.19-0.379;  0.379-0.607;  0.607-1.

The first sub-period is between 15.11.1995 and 21.08.1996, the second sub-period is

between 22.08.1996 and 28.05.1997, the third is between 29.05.1997 and 03.03.1998.
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Tables

Table I

Summary Statistics for Mib30 Index Options Data

Percentiles

Variable Mean Std. D Min. 5% 10% 50% 90% 95% Max

Implied σ (%) 24.20 5.59 10.03 16.62 17.70 23.70 31.03 33.89 49.54

Implied ATM σ 23.65 4.53 14.77 17.30 18.52 22.78 29.76 31.42 41.85

τ (trading days) 40.92 21.24 5.00 10.00 14.00 39.00 71.00 80.00 90.00

K (index points) 19049.84 4401.11 12500 13500 14000 18500 25000 27500 31500

F (index points) 18304.03 4181.79 13484 14028 14234 16268 24122 27091 29913

r (%) 8.11 1.36 6.13 6.25 6.69 7.56 10.13 10.56 10.81

Summary statistics for the filtered sample of traded Mibo30 daily call and put option prices on the Mib30

index in the period November 15, 1995 to March 3, 1998 (7.963 observations). “Implied σ ” denotes the

implied volatility of the option, and “Implied ATM σ ” denotes the implied volatility of at the money

options. τ denotes the options time to expiration, r the riskless rate, K the options strike price and F the

Fib30 stock index future value. “Std. D.” denotes the sample standard deviation of the variable.
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Table II

Correlation coefficients between explanatory variables

TEXP NOPT VOPT MOM NFUT HVOL VVOL VPUT

TEXP 1.0000 -0.5871 -0.6219 0.0176 0.0875 0.1764 -0.1118 0.0423

NOPT 1.00 0.9488 0.0883 0.2721 0.0566 0.0409 0.0284

VOPT 1.00 0.0382 0.2484 -0.0541 0.0490 0.0106

MOM 1.00 0.3667 0.0800 -0.0734 0.2230

NFUT 1.00 0.2405 0.0241 0.1808

HVOL 1.00 0.1757 -0.0114

VVOL 1.00 0.0384

VPUT 1.00

Correlation coefficients between the explanatory variables in the same period of options’ observations

(November 15, 1995 to March 3, 1998). These variables are labelled and defined as in Section 2.3.
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Table III

Descriptive statistics of explanatory variables

Mean Std. Dev. ρ (1) ρ (5) ρ (10) ADF

TEXP 41.9415 20.7454 0.9219 0.6358 0.3666 -4.5234*

NOPT 823.3981 1013.5480 0.6523 0.4942 0.2295 -7.3852*

MOM 0.0346 0.0566 0.9558 0.7758 0.5393 -3.5118*

NFUT 14217.93 5822.566 0.6738 0.3944 0.3454 -7.8913*

HVOL 0.2099 0.0616 0.9664 0.8070 0.6019 -3.3988

VVOL 0.0279 0.0175 0.9396 0.5632 0.1925 -4.3541*

VPUT 0.5517 0.2037 0.1701 0.1553 0.1443 -11.9977*

Descriptive statistics for the explanatory variables in the same period of options’ observations (November

15, 1995 to March 3, 1998). “Mean” denotes the sample mean of the variable, “Std. Dev.” denotes the

sample standard deviation of the variable and “ρ (k)” denotes the sample autocorrelation coefficient at lag

k of the variable. “ADF” denotes the value for the augmented Dickey Fuller test; the star represents the

cases in which the null hypothesis of a unit root is rejected at the 0.99 confidence level (the empirical

cumulative distribution for this test is reported in Fuller (1976)).
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Table IV

Implied volatility per classes of moneyness/time to expiration

All options Deep OTM put

Deep ITM call

OTM put

ITM call

ATM put

ATM call

ITM put

OTM call

Deep ITM put

Deep OTM call
< 50 days 0.2801 0.2556 0.2443 0.2371 0.2330

50 – 90 days 0.2532 0.2338 0.2293 0.2199 0.2101

I represent an average implied volatility for each category obtained by equally weighting each

observation. The moneyness intervals, chosen to have the same number of observations in each class, are

the following (expressed as a normalized Delta): 0-0.092;  0.092-0.264;  0.264-0.438;  0.438-0.623;

0.623-1.
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Table V

Implied volatility per classes of moneyness/time to expiration

OTM options Deep OTM

put

OTM put ATM put OTM call Deep OTM

call
< 50 days 0.2802 0.2601 0.2502 0.2373 0.2272

50 – 90 days 0.2561 0.2373 0.2325 0.2214 0.2140

I represent an average implied volatility for each category obtained by equally weighting each

observation, but considering only out of the money options. The moneyness intervals, chosen to have the

same number of observations in each class, are the following (expressed as a normalized Delta): 0-0.061;

0.061-0.206; 0.206-0.405;  0.405-0.627;  0.627-1. Notice that the process of normalization allows to have

on the same axis both out of the money call and put options, with the moneyness increasing with the

strike price.
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Table VI

Model estimation statistics

N. of

estimated

OLS models

Average

obs.
0β

(p-value)

1β

(p-value)

2β

(p-value)

Adj. 2R

Model 1 592 8.1166 0.2524 -0.0646 = = = = 0.6452

(0.0000) (0.0049)

Model 2 530 8.5981 0.2628 -0.1373 0.1031 0.7866

(0.0000) (0.0672) (0.1908)

The “N. of estimated OLS models” refers to the number of implied volatility function estimated each day

for options with the same expiration. “Average obs.” denotes the average number of observations

available in each implied volatility smile estimation. The numbers in parentheses are the p-values of the

correspondent average β coefficients for the t-statistics. The adjusted R2 accounts for the degree of

freedoms and is computed as an average of the adjusted R2 coefficient in each model.
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Table VII

Linear Granger Causality test results

Direction of

causality

L χ2 p-value Direction of

causality

L χ2 p-value

TEXP → β1  * 2 29.0657 0.0000 β1 → TEXP  * 2 9.7870 0.0075

NOPT → β1 * 3 33.4650 0.0000 β1 → NOPT * 3 10.5256 0.0146

MOM  → β1 2 2.0840 0.3527 β1 → MOM 2 3.5304 0.1712

NFUT → β1 2 1.6038 0.4485 β1 → NFUT * 2 7.2693 0.0264

HVOL → β1 * 2 10.5588 0.0051 β1 → HVOL 2 4.5384 0.1034

VVOL → β1 3 3.3246 0.3442 β1 → VVOL * 3 20.4356 0.0001

VPUT → β1 2 1.8296 0.4006 β1 → VPUT 2 2.3766 0.3047

TEXP → β2  * 2 18.9259 0.0001 β2 → TEXP  * 2 7.8936 0.0193

NOPT → β2 * 3 30.0152 0.0000 β2 → NOPT * 3 10.0087 0.0185

MOM → β2 2 4.6966 0.0955 β2 → MOM 2 4.8328 0.0892

NFUT → β2 3 0.3770 0.9450 β2 → NFUT * 3 10.771 0.0130

HVOL → β2 2 5.5399 0.0627 β2 → HVOL 2 2.9807 0.2253

VVOL → β2 3 4.7240 0.1932 β2 → VVOL* 3 13.9190 0.0030

VPUT → β2 2 1.3157 0.5180 β2 → VPUT 2 2.3236 0.3129

This table reports the results of the linear Granger causality tests. The left panel presents the

findings for the main direction of causality and the right panel for the feedback effects. L

denotes the optimal lag determined with Schwarz and Akaike Information Criteria. The p-value

is computed in a chi-squared distribution with L degrees of freedom.



36

Table VIII

Nonlinear Granger Causality test results

Lw=Lv TEXP →

β1

NOPT →

β1

MOM  →

β1

NFUT →

β1

HVOL →

β1

VVOL →

β1

VPUT →

β1

1 4.3138

0.0644

5.6042

0.0993

4.7188

0.0703

4.5922

0.0700

4.2309

0.0580

5.1310

0.0807

4.3092

0.0602

2 4.3945

0.0638

5.5990

0.1004

4.4189

0.0639

3.9949

0.0668

4.3752

0.0546

5.0960

0.0793

3.9703

0.0546

3 4.0310

0.0614

5.2674

0.1013

4.0472

0.0556

4.1504

0.0663

3.2438

0.0411

4.5165

0.0738

3.7739

0.0540

4 3.9265

0.0568

4.8696

0.0914

4.5197

0.0599

4.6077

0.0675

3.8990

0.0487

4.7228

0.0761

3.4498

0.0509

5 3.9394

0.0594

4.6461

0.0907

3.6777

0.0514

4.4424

0.0672

4.2914

0.0617

4.6885

0.0827

3.5941

0.0533

6 3.7564

0.0558

4.9600

0.1009

3.1812

0.0431

4.2123

0.0640

3.2708

0.0457

4.3171

0.0744

3.8782

0.0596

7 3.8601

0.0586

4.8334

0.0966

3.2834

0.0450

4.0772

0.0617

3.1713

0.0427

4.5477

0.0764

3.9485

0.0601

This table reports the results of the modified Baek and Brock non linear Granger causality test

applied to the VAR residuals correspondent to the relation between the asymmetry parameter β1

and the seven explanatory variables. Lw=Lv denotes the number of lags on the residual series

used in the test. In all cases the test are applied to unconditionally standardized series, m is set to

one and the scale parameter e is set to 1.5. The values reported in each cell denote respectively

the standardized test statistic of equation (7) and the difference between the two conditional

probabilities in equation (6). Under the null hypothesis of nonlinear Granger noncausality, the

test statistic is asymptotically distributed N(0,1).


