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1 - Introduction 

 Analysis of the size-growth relationship is a commonly used approach to the study of the 

evolution of market structure. In fact, the firm size distribution (FSD) has received considerable 

attention - since the seminal works of Herbert Simon and his co-authors between the late 1950s and 

the 1970s (cf. Simon and Bonini, 1958; and Ijiri and Simon, 1964, 1977) - in most theoretical and 

empirical studies dealing with the overall process of industry dynamics. The empirical evidence 

showed a FSD highly skewed to the right, meaning that the size distribution of firms is lognormal, 

both at the industry level and in the overall economy. This piece of evidence is coherent with the 

so-called Law of Proportionate Effect (or Gibrat’s (1931) Law): as Simon and Bonini (1958) point 

out, if one “…incorporates the law of proportionate effect in the transition matrix of a stochastic 

process, […] then the resulting steady-state distribution of the process will be a highly skewed 

distribution”. 
Recent evidence based on more complete data sets, suggests that Gibrat’s Law is not 

confirmed, either for new-born or established firms (for a survey, cf. Geroski, 1995; Lotti et al., 

1999), since smaller firms grow more than proportionally with respect to larger ones. This finding 

should be consistent with a departure of the FSD from the lognormal distribution.  

In this paper - using quarterly data for 12 cohorts of new manufacturing firms - we account 

for the evolution of the FSD over time in the case of young firms. Moreover, we try to assess the 

empirical implications of different models of industry dynamics. The work is organized as follows. 

Section 2 contains a review of the empirical evidence about Gibrat’s Law and the FSD, as well as 

an overview of some recent models of industry dynamics. Section 3 describes the data and the 

methodology used, whereas Section 4 summarizes the main empirical findings. Finally, Section 5 

contains some concluding remarks. 

 
2 - Theory or Stylized Facts? 

Gibrat’s Law, applied to the analysis of market structure, represents the first attempt to 

explain in stochastic terms the systematically skewed pattern of the size distribution of firms within 

an industry (Sutton, 1997). In effect, the Law cannot be rejected if a) firm growth follows a random 

process and is independent from initial size, and b) the resulting distributions of firms’ size are 

lognormal1. Although, from a theoretical viewpoint, labeled as “unrealistic” since Kalecki’s (1945) 

study on the size distribution of factories in US manufacturing, this result was initially consistent 

with some empirical studies dealing with incumbent, large firms (Hart and Prais, 1956; Simon and 

Bonini, 1958; Hymer and Pashigian, 1962). In recent years, most studies have instead shown that 

these exhibit a different behavior, identifying an overall negative relationship between initial size 

and post-entry rate of growth (cf., among others, Mata, 1994; Hart and Oulton, 1999). However, 

Lotti et al. (2001. (a) e (b)) found that, in the case of new-born firms, the growth rates are 

                                                                 
1 Of course, a FSD skewed to the right implies only that Gibrat’s Law cannot be rejected. However, one cannot a priori 
exclude that the skewness is the result of turbulence, namely of the presence of new-born small firm in the right tail of 
the distribution. 
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negatively correlated with their initial size only during their infancy: Gibrat’s Law fails to hold in 
the years immediately following start-up, when smaller firms have to rush in order to reach a size 

large enough to enhance their likelihood of survival; but in the subsequent years, the patterns of 

growth of entrants do not differ significantly from the landscape of the industry as a whole. 

 One possible way to explain this phenomenon of self-selection, is to consider the firms’ 

learning and evolution processes put forward by Jovanovic (1982), Ericson and Pakes (1995), and 

Audretsch (1995). By following such perspectives, entrants are uncertain about their relative level 

of efficiency, and only once into the market they learn about their possibilities of survival and 

growth. The main advantage of these models is that they allow for a) heterogeneity among firms, b) 

idiosyncratic sources of uncertainty and discrete possible events, c) entry and exit. 

 Boyan Jovanovic’s model of passive learning hypothesizes that firms are initially endowed 

with uncertain, time-invariant characteristics (i.e. efficiency parameters), of which the firm does not 

know the distribution. But, once into the market, the firm learns passively about the true efficiency 
parameter. As a consequence, in every period the firm has to decide its strategy: whether to exit, 

continue with the same size, grow in size, or reduce its productive capacity. One of the 

consequences of this model is that, due to a particular kind of selection process, the most efficient 

firms survive and grow, while the others are bound to shrink or to exit from the market. 

 Like in the passive learning model, Richard Ericson and Ariel Pakes’s model of active 

learning (1995) assumes that all the decisions taken by the firms are meant to maximize the 

expected discounted value of the future net cash, conditional on the current information set. Unlike 

in Jovanovic’s model, a firm knows its own characteristics and its competitors’ ones, along with the 

future distribution of industry structure, conditional on the current structure. Accordingly, this 

model can be usefully employed in explanation of ‘entry mistakes’ (as defined by Cabral, 1997), 

namely the fact that in every period and every industry more firms enter than the market can 

sustain. Within an active learning perspective, such mistakes occur due to lags in observation of 
rivals’ entry decision or just because entry investments take time (Cabral, 1997). In a subsequent 

work, Pakes and Ericson (1998), using two cohorts of firms from Wisconsin, belonging to the retail 

and the manufacturing industries, found that the structure of the former industry is compatible with 

the passive learning model, while that of the latter with their model of active exploration (learning). 

The retail cohort, after eight years seems to have reached the size distribution of the industry as a 

whole, while the manufacturing one, even if showing higher growth rates, after that period is still 

far from the limit distribution. 

 David Audretsch (1995) expanded the passive learning approach put forward by Jovanovic 

(1982) into an evolutionary perspective, allowing for inter-industry differences in the likelihood of 

survival of newborn firms. Accordingly, industry-specific characteristics, such as scale economies 

and the endowment of innovative capabilities, exert a significant impact on entry, exit, and the 

likelihood of survival of newborn firms. For example, in industries characterized by higher 
minimum efficient scale (MES) levels of output, smaller firms face higher costs that are likely to 

push them out of the market within a short period after start-up. Thus, only the most efficient 

among newborn firms will survive and grow, whereas the other are pushed out of the market (cf. 
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Audretsch et al., 1999). In this case, the presence of more potential entrants than firms with a 
significant likelihood to survive in the long run can bring about a shakeout (cf. Klepper and Miller, 

1995). In turn, a shakeout occurring at a certain point in the industry’s history is likely to affect the 

long-run size distribution of firms within the same industry, depending on “how the opportunities 

vacated by exited firms are reallocated among surviving firms” (Sutton, 1998, p. 260; cf. also 

Klepper and Graddy, 1990). Conversely, in industries with a lower MES level of output the 

likelihood of survival will be independent of the firms’ ability to grow (cf. Amaral et al., 1977; 

Brock, 1999). 

 With this theoretical and empirical background in mind, we look at the evolution of 12 

cohorts of newborn firms in selected industries, in order to analyze the process of convergence of 

the firm size distribution, in terms of number of employees, with respect to the overall industry 

landscape. The aim of this analysis is to show i) whether the findings by Herbert Simon and his co-

authors concerning the Skewness to the right of the FSD are confirmed also in the case of newborn, 
small firms and ii) whether the FSD resulting from application of the Kernel density estimator is 

consistent with models of industry dynamics - such as those surveyed above - which identify in the 

learning processes occurring at the firm level, and in the level of sunk costs that characterizes each 

industry, some possible theoretical explanations for these facts. 

 

3 - Data and Methodology  

We use a data set from the Italian National Institute for Social Security (INPS), dealing with 

12 cohorts of new manufacturing firms (with at least one paid employee) born in each month of 

1987, and their follow up until December 1992.  

Since all private Italian firms are compelled to pay national security contributions for their 

employees to INPS, the registration of a new firm as “active” signals an entry into the market, while 

the cancellation of a firm denotes an exit (this happens when a firm finally stops paying national 
security contributions). For administrative reasons - delays in payment, for instance, or uncertainty 

about the current status of the firm - some firms are classified as “suspended”. In the present work 

we consider these suspended firms as exiting from the market at the moment of their transition from 

the status of “active” to that of “suspended”, while firms which have stopped their activity only 

temporarily were included again in the sample once they turned back active. We carry out also an 

accurate cleaning procedure, aimed at identifying internal inconsistencies and entry or exit due to 

firm transfers and acquisitions. As regards acquisitions, these are denoted as “extraordinary 

variations” in the INPS database, and firms involved in such activities can therefore be easily 

identified and cancelled from the database itself. A correct identification of firms disappeared via 

acquisitions permitted to avoid acquiring firms to be drawn disproportionately from the low end of 

the size distribution. As pointed out by Sutton (1998; cf. also Hart and Prais, 1956; Hymer and 

Pashigian, 1962) this would have caused a violation in the proposed bound and altered the 
significance of the overall analysis. 

We focus our analysis on four industries - Electrical & Electronic Engineering, Instruments, 

Food, and Footwear & Clothing - mainly for two main reasons: the first one concerns their very 
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different market structure in terms of cost of entry (sunk costs), and the second the fact that the 
latter two industries are less technologically progressive than the former two ones2. 

To examine the effect of firms’ age on the distribution of their sizes, we study each cohort at 

each quarter after start-up, and this for their first six years in the market. In Tables 1A-1D and in 

Table 2 some descriptive statistics are reported. In general, all industries experience a shakeout 

period during which the number of survivors, among new entrants, declines by 40 per cent or more. 

From Tables 1A, B, C, and D it turns out that, on average, the survival rate at the end of the period 

(i.e., after 21 quarters) is much higher within the cohorts belonging to the Electrical & Electronic 

Engineering and the Instruments industries, than it is the case with the Food and the Footwear & 

Clothing industries. Thus, consistently with Audretsch’s (1995) hypothesis, industry specific 

characteristics, such as the commitment to innovative activities, seem to set in motion a pre-entry 

selection mechanism that selects only those start-ups that find in their endowment of innovative 

capabilities a possible competitive advantage.  
Looking at Table 2 Figure 1, one immediately observes that - with the sole exception of the 

Food industry - the standard deviation of firm sizes is much higher at the end of the relevant period 

than in the first quarter. Dispersion of firm sizes tends therefore to widen as surviving firms reach 

the MES level of output and specialize in one of the many clusters of products which - according to 

John Sutton's (1998, pp. 597-605) "independent submarkets" hypothesis - characterize each 

industry. In turn, firm size increases along with its age for the Electrical & Electronic Engineering 

and the Instruments industries, but only for the first 13 and 12 quarters respectively, corresponding 

with a period comprised approximately between December 1989 and January 19913. Afterwards, a 

decline in average firm size emerges, which is consistent with views of recessions (the period 

between 1991 and 1993 has been characterized in Italy by a significant slowdown in the GDP 

growth rates) as times of “cleansing” (cf. Boeri and Bellmann, 1995). In fact, the sectoral data 

reported in Table 3 show for both industries a significant decrease in the growth rates of value 
added since 1989, with a trough in 1993. This pro-cyclical pattern of the average firm size is even 

more marked in the Footwear & Clothing industry, in which the average size starts to decline after 

the eight quarter in the market (as early as 1989, that is the initial year of the recession). The data on 

the Footwear & Clothing industry show a substantial stability of the average firm size over time. 

This result is to some extent consistent with the dynamics of value added in the same industry: 

Table 3 points out alternate peaks and troughs in the Footwear & Clothing industry growth rates 

that are unlikely to affect firm size, since this needs time to adjust its patterns to variations in value 

added.  

 

                                                                 
2 And this would allow to draw some conclusions on whether the FSD is or is not sensitive to technological factors. 
3 In effect, since the 12 cohorts include firms  born in each month of 1987, each column in Table 2 deals with all firms 
and all cohorts. 
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Table 1A - Number of firms active at the end of each quarter – Electrical & Electronic Engineering 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 

Cohort 1  128 125 121 120 117 113 112 109 108 107 106 105 104 103 102 102 97 95 93 92 90 
Cohort 2 64 61 59 56 53 51 52 51 50 50 50 50 49 47 44 43 40 38 36 37 38 
Cohort 3 72 68 65 62 60 61 61 61 57 55 53 53 53 51 51 48 48 48 48 47 43 
Cohort 4 49 46 47 47 47 47 45 43 43 43 42 41 40 41 41 39 38 34 33 33 33 
Cohort 5 59 53 53 52 53 50 50 47 46 48 46 44 44 43 41 40 37 37 35 34 34 
Cohort 6 71 68 65 64 62 62 63 59 58 55 49 49 49 48 47 45 44 42 41 37 36 
Cohort 7 41 41 41 41 39 38 38 37 37 36 34 30 30 29 28 27 27 27 25 24 23 
Cohort 8 18 18 18 17 17 17 17 17 16 15 15 15 15 15 14 14 14 14 14 12 12 
Cohort 9 72 67 63 63 64 62 60 58 58 57 57 57 55 56 52 52 53 52 50 50 49 
Cohort 10 60 58 54 50 49 50 52 49 47 47 44 44 44 41 42 42 42 42 40 39 38 
Cohort 11 57 53 55 53 53 51 51 51 50 48 46 46 43 42 40 41 39 38 39 39 39 
Cohort 12 29 28 26 25 25 25 25 26 25 25 24 23 23 23 23 22 22 22 21 20 19 
Total 720 686 667 650 639 627 626 608 595 586 566 557 549 539 525 515 501 489 475 464 454 

Table 1B - Number of firms active at the end of each quarter – Instruments 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 

Cohort 1  62 61 60 60 59 56 56 56 55 53 51 51 50 50 48 46 43 41 40 42 40 
Cohort 2 38 37 35 36 35 35 34 34 34 33 32 29 28 27 27 27 26 24 24 25 25 
Cohort 3 34 32 33 33 31 31 30 30 28 27 27 26 24 23 22 21 19 20 20 20 20 
Cohort 4 26 26 25 24 23 23 20 19 19 18 18 17 17 17 17 16 17 17 17 17 17 
Cohort 5 20 20 20 19 19 19 19 19 18 19 18 17 17 15 14 14 14 14 14 13 13 
Cohort 6 33 33 32 31 28 28 28 27 27 25 24 23 21 21 21 21 21 21 21 17 19 
Cohort 7 35 34 30 30 30 28 27 25 25 25 24 25 25 24 23 23 22 21 21 22 22 
Cohort 8 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 7 7 7 6 
Cohort 9 27 27 25 24 24 23 23 23 23 22 22 22 21 20 20 20 19 20 18 18 18 
Cohort 10 32 30 28 26 26 27 25 24 23 24 22 21 21 20 19 18 18 18 18 17 17 
Cohort 11 26 25 25 24 24 22 22 19 19 19 18 17 17 17 17 17 16 16 15 15 15 
Cohort 12 18 18 17 16 15 14 14 14 14 14 14 13 13 12 11 11 11 11 11 11 10 
Total 362 354 340 333 324 316 308 300 295 289 280 271 264 256 249 244 234 230 226 224 222 
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Table 1C - Number of firms active at the end of each quarter – Food 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 

Cohort 1 93 88 88 83 78 76 73 72 70 70 68 67 65 63 61 59 58 56 57 55 54 
Cohort 2 47 43 40 37 34 34 33 33 29 28 28 27 24 24 24 24 22 23 23 21 21 
Cohort 3 46 43 42 39 40 37 37 34 34 33 30 27 26 27 25 21 21 23 23 19 19 
Cohort 4 40 35 30 29 30 29 29 29 28 28 29 27 26 25 23 19 19 20 20 19 19 
Cohort 5 41 38 35 33 34 35 34 32 29 28 27 27 25 24 23 22 22 21 21 21 19 
Cohort 6 44 42 37 35 32 29 29 29 28 28 25 25 25 25 25 25 24 24 24 24 22 
Cohort 7 46 35 35 34 38 35 33 33 35 30 30 27 25 24 24 23 22 21 22 22 21 
Cohort 8 20 16 15 15 14 13 12 8 9 8 8 8 8 8 8 8 9 7 7 7 7 
Cohort 9 30 27 22 19 20 19 18 17 18 19 17 18 16 17 15 15 14 15 14 13 13 
Cohort 10 51 40 34 32 32 30 30 26 29 26 23 24 26 21 19 18 23 19 18 16 19 
Cohort 11 110 65 53 47 72 49 42 40 67 40 32 31 40 33 31 30 57 38 30 28 43 
Cohort 12 80 42 23 23 47 29 21 18 49 19 12 12 22 10 10 9 37 25 12 11 27 
Total 684 514 454 426 471 415 391 371 425 357 329 320 328 301 288 273 328 292 271 256 284 

Table 1D - Number of firms active at the end of each quarter – Footwear & Clothing 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 

Cohort 1 164 159 158 156 145 143 136 132 129 126 121 120 113 112 110 110 103 100 98 95 93 
Cohort 2 92 89 84 80 74 69 68 67 61 55 55 55 53 50 46 46 43 42 40 37 35 
Cohort 3 85 79 76 73 71 65 62 60 59 56 51 50 48 45 45 41 40 40 38 38 37 
Cohort 4 97 91 83 77 72 70 69 64 64 62 58 51 51 45 40 40 37 36 35 34 34 
Cohort 5 100 93 86 83 83 79 78 74 74 70 68 66 67 65 59 55 55 48 40 49 45 
Cohort 6 89 87 81 77 74 72 72 70 69 64 63 59 58 53 51 50 49 45 44 43 41 
Cohort 7 88 80 73 69 69 65 63 60 57 55 54 55 53 52 48 44 43 43 42 41 41 
Cohort 8 36 28 24 26 25 23 22 23 22 21 19 18 17 16 15 13 13 13 13 12 12 
Cohort 9 97 95 87 84 78 75 70 68 67 63 65 63 60 59 57 56 55 55 52 51 49 
Cohort 10 104 99 88 81 78 75 78 71 66 62 61 62 61 56 56 55 54 52 46 46 43 
Cohort 11 96 93 86 78 75 68 63 61 61 57 54 51 49 47 43 41 40 40 38 37 34 
Cohort 12 51 46 43 41 39 35 34 34 35 31 29 27 28 28 27 26 26 26 26 24 20 
Total 1099 1039 969 925 883 839 815 784 764 722 698 677 658 628 597 577 558 540 522 506 484 
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Table 2 – Average Size, Standard Deviation, and Number of Firma Active at the end of each quarter, all industries. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 

Electrical & Electronic Eng.                      
Average Size 4.61 6.33 7.23 7.77 8.24 8.78 9.11 9.23 9.48 9.69 9.98 9.91 10.51 10.42 10.53 10.34 9.81 9.84 9.73 9.67 9.66 

Standard Deviation 9.01 10.89 12.45 13.24 14.15 15.7 16.06 16.02 16.25 16.87 17.56 18.47 28.27 31.86 31.53 31.06 28.88 29.92 28.52 30.23 29.03 
Number of ActiveFirms 720 686 667 650 639 627 626 608 595 586 566 557 549 539 525 515 501 489 475 464 454 

Instruments                      
Average Size 3.37 4.66 6.02 7.31 7.9 8.2 8.63 9.14 9.36 9.37 9.43 9.72 9.59 7.91 8.01 8.15 8.05 7.97 8.07 9.68 9.85 

Standard Deviation 7.77 11.03 15.77 20.97 25.21 25.98 27.29 29.02 29.39 29.83 29.67 30.47 29.97 17.79 17.72 17.85 17.62 17.47 18.05 36.59 37.3 
Number of ActiveFirms 362 354 340 333 324 316 308 300 295 289 280 271 264 256 249 244 234 230 226 224 222 

Food                      
Average Size 4.15 4.39 4.44 4.43 4.66 4.65 4.49 4.46 4.87 4.6 4.53 4.43 4.59 4.38 4.31 4.22 4.52 4.28 4.21 4.06 4.16 

Standard Deviation 8.28 8.51 10.16 10.15 9.72 10.04 9.4 9.4 9.74 9.63 10.29 10.45 10.83 10.65 11.04 11.18 11.77 11.33 11.47 11.43 11.45 
Number of ActiveFirms 684 514 454 426 471 415 391 371 425 357 329 320 328 301 288 273 328 292 271 256 284 

Footwear & Clothing                      
Average Size 6.31 8.67 9.36 9.76 9.78 9.81 9.76 9.88 9.81 9.64 9.39 9.28 9.16 9.14 8.91 8.76 8.68 8.43 8.08 7.74 7.17 

Standard Deviation 10.26 13.95 14.85 16.03 16.29 16.98 17.34 17.7 17.7 18.02 17.84 17.83 17.81 18.32 15.57 18.62 18.87 18.92 18.59 18.32 17.5 
Number of ActiveFirms 1099 1039 969 925 883 839 815 784 764 722 698 677 658 628 597 577 558 540 522 506 484 
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Figure 1 – Average Size and Standard Deviation, by industry. 
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Table 3 – Growth rates (%) of Value added in constant (1995) prices          

Industries 1986 1987 1988 1989 1990 1991 1992 1993 1994 

Electrical & Electronic Engineer. - 0,5 2,9 5,1 3,9 0,2 - 1,3 0,2 - 8,7 6,1 
Instruments 5,9 5,3 7,8 4,9 3,7 2,6 - 1,2 - 4,2 6,5 
Food 7,0 2,3 5,8 2,4 5,9 3,3 7,4 1,7 0,0 
Footwear & Clothing 0,2 2,4 4,7 1,1 2,6 1,8 0,4 - 2,7 6,8 
Source: ISTAT, National Statistical Office of Italy 
 

In a recent paper by Machado and Mata (2000) the Box-Cox quantile regression method is 

used to estimate the distribution of firm sizes and, accordingly, to analyze industry dynamics in 
Portugal.  This approach consists in modelling each quantile as a function of a number of industry 

characteristics that are expected to affect firm size.  Since our database doesn’t provide any details 

about industry characteristics, in the present study we use instead a non-parametric approach.  The 

basic idea is to look if, with the passing of time, the empirical distribution of firm sizes converges 

towards a lognormal distribution, under the hypothesis that this represents the limit distribution. 

Since the aim of this work was to look for empirical regularities and stylized facts, we employed a 

simple non-parametric technique of density estimation. The advantage of this methodology is that 

no specified functional form of the density in exam is required.  In this approach the density is 

estimated directly on the data and represents the most natural way to compare, also graphically, the 

empirical distribution to some a priori known distribution.  To characterize the distribution, we 

used the Kernel density estimator (Pagan and Ullah, 1999), which can be summarized as follows. 

Let f(x) be the unknown density to be estimated. In such a non-parametric approach, there is 
no need to postulate the true parametric distribution of f, while f(x) is directly estimated through the 

data. As a consequence, the estimates will have a stepwise nature. 

 

The general formulation of a Kernel density estimator is: 
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where the Kernel function K(•) is defined in such a way that: 
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with h denoting the window-width (or the smoothing parameter, or band-width) and n the 

size of the sample.  There are several ways to estimate non-parametrically a distribution: we used 

the Gaussian distribution as Kernel function (as in Cabral and Mata, 1996). 
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We used also different kernel functions, such as the Epanechnikov kernel, but we found out 
that the shape of the nonparametric estimate of the FSD was not sensitive to such choice. 

More crucial is instead the choice of the band-width parameter.  Usually some criterions are 

followed: minimizing the Integrated Squared Error or the Integrated Mean Squared Error, or some 

cross-validation techniques.  We used a band-width parameter, given by the formula: 

 

5

9.0
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h =  

 
where n is the number of observations in the sample, and 
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Heuristically, according to Silverman (1986), this automatic band-width parameter performs 

very well in the case of unknown densities that are a mixtures of normal distributions, or heavily 

skewed or bimodal. 

Accordingly, for each quarter, and each industry, we estimated the distribution of the 

logarithm of the firms’ size, and checked if a tendency towards a normal distribution does emerge.  

The results are shown in Tables A in the Appendix.  Moreover, in order to test statistically the 

conformity of the empirical distribution to the normal, we computed some tests of normality.  First 

of all, we estimated the Skewness and Kurtosis statistics, since they represent very good descriptive 
and inferential indexes for measuring normality.  The Skewness and the Kurtosis indexes are the 

third and the fourth standardized moments of the distribution.   

In particular, the literature refers to the Skewness index as: 

( )
3

3

1 σ
µβ −= XE

 

and to the Kurtosis index as: 

( )
4

4

2 σ
µβ −= XE

 
where µ and σ are, the mean and the standard deviation of the distribution under exam.  Since for a 
normal distribution they are equal to 0 and 3 respectively, a natural way to evaluate the 

nonnormality of a distribution is to look at the difference of such moments from those values. 

The Skewness index measures the degree of symmetry of a distribution: if 01 >β  it’s 

skewed to the right, while 01 <β  corresponds to skewness to the left.  Looking at Table 4, one 

can note that for three industries out of four (the only exception being the Footwear & Clothing 

one) the FSD tends to become more symmetric over time, with different patterns of convergence. 

But even after 21 quarters, the FSD in the Electrical & Electronic Engineering, the Instruments and 

  interquartile range 
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the Food industries is still skewed to the right, while in the Footwear & Clothing industry, starting 
from a distribution skewed to the right, it turns out to be skewed to the left. 

The Kurtosis index represents a measure of the curvature: distributions with 32 >β  show 

thicker tails than the normal distribution and tend to exhibit higher peaks in the center of the 

distribution, whereas distributions with 32 <β  tend to have lighter tails and to have broader peaks 

than the normal4  For all industries (see Table 4), the Kurtosis index shows a convergence towards 

the normal distribution, although in the case of the Electrical & Electronics and the Instruments 
industries, at the end of the relevant period, it appears to be more concentrated around the mean 

than in that of the other two industries, for which it tends to be more spread. 

Aimed at evaluating the pattern of convergence to a normal distribution, we computed also different 

tests for normality.  First, we used a simple test based on the Skewness and Kurtosis indexes 

(D’Agostino et al. 1990), which allow to test statistically null hypothesis 0: 1 =βoH  and 

3: 2 =βoH .  The results are reported, in terms of significance, in the first two lines of Table 4.  In 

the third line the results from Kolmogorov-Smirnov5 test are reported: we used this test to compare 

statistically the empirical distribution to the normal distribution.  Subsequently, two omnibus tests 

were computed: the Shapiro-Wilk W test (Shapiro and Wilk, 1965) and the D’Agostino-Pearson K2 

(D’Agostino and Pearson, 1973).  By omnibus, following D’Agostino et al. (1990) we mean a test 

that is able to detect deviations from normality due to either skewness or kurtosis. 
The results suggest a strong departure from normality of the FSD for all industries during 

their infancy.  With the passing of time and the mechanism of self-selection, the Electrical & 

Electronics and the Instruments industries show a certain degree of normality at the end of the 

relevant period, even if with different timings, while for the Food and the Footwear & Clothing 

industries no significant converge does emerge. 

 

                                                                 
4 We usually refer to them as leptokurtic distributions in the first case and to platykurtic in the latter. 
5 We computed such test even if we are aware of its poor properties when testing for normality. 
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Table 4 –Test for Normality for each quarter, all industries. 

 Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 

Electr. & Electronic Eng.                      
Skewnessa 

1.23*** 0.68*** 0.55*** 0.44*** 0.36*** 0.34*** 0.31*** 0.26*** 0.24** 0.25** 0.24** 0.27** 0.27** 0.24** 0.23** 0.19* 0.19* 0.16 0.13 0.07 0.11 

Kurtosisb 3.86*** 2.83*** 2.78 2.66** 2.71* 2.76 2.79 2.86 2.90 2.92 3.03 3.02 3.30 3.31 3.29 3.23 3.09 3.15 3.11 3.14 3.12 

Kolmogorov-Smirnov 0.26*** 0.15*** 0.11*** 0.10*** 0.08*** 0.08*** 0.07*** 0.06*** 0.06** 0.05** 0.05* 0.06** 0.04* 0.05* 0.05* 0.05* 0.05** 0.05* 0.04* 0.04 0.04 

Shapiro -Wilk  0.95*** 0.98*** 0.98*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.98*** 0.98*** 0.98*** 0.99*** 0.99*** 0.99** 0.99** 0.99*** 0.99*** 

D’Agostino 38.54**
* 

37.02**
* 

26.91**
* 

20.41**
* 

14.29**
* 

12.13**
* 

1.039**
* 7.20** 5.72* 6.31** 5.38* 6.59** 8.04** 6.89** 6.50** 4.65* 3.31 2.98 1.77 1.07 1.43 

Instruments                       

Skewnessa 
1.85*** 1.29*** 1.12*** 0.96*** 0.96*** 0.91*** 0.83*** 0.79*** 0.75*** 0.75*** 0.70*** 067*** 0.61*** 0.44*** 0.40** 0.33** 0.32** 0.34** 0.30* 0.50*** 0.47*** 

Kurtosisb 6.43*** 4.60*** 4.40*** 4.04*** 4.27*** 4.09*** 3.81** 3.75** 3.61* 3.61* 3.61* 3.60* 3.55* 2.98 2.93 2.89 2.84 2.85 2.80 3.50 3.44 

Kolmogorov-Smirnov 0.33*** 0.23*** 0.18*** 0.16*** 0.12*** 0.11*** 0.11*** 0.10*** 0.10*** 0.09*** 0.08** 0.08** 0.08** 0.08** 0.07* 0.07* 0.07* 0.06 0.06 0.06 0.06 

Shapiro -Wilk  0.90*** 0.94*** 0.95*** 0.96*** 0.96*** 0.96*** 0.96*** 0.96*** 0.97*** 0.97*** 0.97*** 0.97*** 0.97*** 0.98*** 0.98*** 0.98*** 0.98*** 0.98*** 0.98*** 0.97*** 0.98*** 

D’Agostino 65.44**
* 

60.88**
* 

48.89**
* 

37.89**
* 

38.55**
* 

34.03**
* 

27.73**
* 

25.29**
* 

22.17**
* 

21.91**
* 

19.59**
* 

17.84**
* 

15.09**
* 7.64** 6.28** 4.59 4.21 4.68* 3.81 10.05**

* 8.88** 

Food                      

Skewnessa 
1.39*** 0.83*** 0.75*** 0.69*** 0.72*** 0.56*** 0.52*** 0.49*** 0.57*** 0.40*** 0.40*** 0.41*** 0.42*** 0.37*** 0.38*** 0.39*** 0.60*** 0.46*** 0.40*** 0.42*** 0.54*** 

Kurtosisb 4.49*** 3.02 2.91 2.81 2.88 2.61* 2.50** 2.48*** 2.57** 2.41*** 2.39*** 2.36*** 2.33*** 2.37*** 2.39*** 2.38*** 2.68 2.52** 2.42** 2.35*** 2.55* 

Kolmogorov-Smirnov 0.26*** 0.18*** 0.17*** 0.15*** 0.15*** 0.13*** 0.13*** 0.12*** 0.12*** 0.11*** 0.12*** 0.12*** 0.12*** 0.11*** 0.13*** 0.12*** 0.12*** 0.11*** 0.11*** 0.12*** 0.12*** 

Shapiro -Wilk  0.94*** 0.97*** 0.97*** 0.97*** 0.97*** 0.98*** 0.97*** 0.98*** 0.97*** 0.98*** 0.98*** 0.98*** 0.97*** 0.98*** 0.97*** 0.97*** 0.97*** 0.97*** 0.98*** 0.97*** 0.97*** 

D’Agostino 43.52**
* 

37.99**
* 

28.82**
* 

24.46**
* 

28.41**
* 

19.65**
* 

19.39**
* 

17.66**
* 

21.26**
* 

16.23**
* 

15.81**
* 

16.85**
* 

18.44**
* 

14.35**
* 

13.20**
* 

13.32**
* 

16.62**
* 

12.18**
* 

11.92**
* 

13.69**
* 

13.89**
* 

Footwear & Clothing                       

Skewnessa 
0.71*** 0.31*** 0.14* 0.07 0.05 0.00 -0.02 -0.04 -0.05 -0.05 -0.05 -0.09 -0.12 -0.15 -0.14 -0.12 -0.09 -0.11 -0.10 -0.13 -0.11 

Kurtosisb 2.53*** 2.23*** 2.15*** 2.28*** 2.30*** 2.33*** 2.36*** 2.40*** 2.35*** 2.44*** 2.45*** 2.43*** 2.44*** 2.51*** 2.45*** 2.45*** 2.46*** 2.46*** 2.40*** 2.38*** 2.31*** 

Kolmogorov-Smirnov 0.20*** 0.11*** 0.10*** 0.09*** 0.08*** 0.08*** 0.08*** 0.07*** 0.07*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.07*** 0.06*** 0.07*** 0.08*** 

Shapiro -Wilk  0.98*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.99*** 0.98*** 0.98*** 0.99*** 0.99*** 0.99*** 0.98*** 0.98*** 0.98*** 

D’Agostino 84.03**
* 

72.09**
* 

58.61**
* 

43.27**
* 

36.40**
* 

29.53**
* 

26.13**
* 

21.22**
* 

25.12**
* 

16.04**
* 

14.58**
* 

16.29**
* 

15.57**
* 

11.74**
* 

13.79**
* 

13.24**
* 

11.69**
* 

11.74**
* 

14.15**
* 

15.51**
* 

19.65**
* 

***, **, * mean statistically significant at α = 0.01, α = 0.05 and α = 0.10 respectively. 
a, b = The values are the Skewness and Kurtosis indexes. We reported the significance level of the D’Agostino et al. test. 
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4 - Empirical Findings  

The alleged structural and technological differences among the industries taken into account 

allow for the somewhat contradictory results obtained from the Kernel density estimates. Thus, for 

the Electrical & Electronic Engineering industry, the shape of the normal distribution begins to 

emerge after the 8th quarter, as confirmed by the normality test (see Table A.1 in Appendix A). The 

convergence towards the normal distribution begins instead to be clear only after the 13th quarter in 

the case of the Instruments industry (see Table A.2 in Appendix A). Thus, firm’s age is a major 

factor affecting the FSD in these industries: as the normal distribution of sizes is reached with the 

passing of time, Gibrat’s Law turns out to hold when firms are in their second and third year in the 

market, respectively for the Electric & Electronics and the Food industries.  

Different is the case of the Food and the Footwear & Clothing industries (see Table A.3 and 

A.4 in Appendix A), for which no significant patterns of convergence do emerge. After 6 years of 

observation, these two industries are still far from the limit distribution and, moreover, the 

distributions of firm sizes are still bimodal. In the Footwear & Clothing industry, in particular, the 
shakeout after entry is less drastic than in the former two industries. For this reason, at the end of 

the relevant period, the FSD exhibits two modes: one identifies the “core” of the industry, while the 

second is located at the fringe of the industry, suggesting the existence of an evolutionary process of 

active learning that allows firms below the MES level of output to survive and grow. 

A possible explanation of the contrasting results obtained for the two groups of industries is 

that the selection and learning processes are much slower in the traditional consumer goods 

industries than it is the case with two technologically progressive industries such as the Electrical & 

Electronic Engineering and the Instruments ones. Thus, in the Food and the Footwear & Clothing 

industries the process of industry dynamics should be allowed to run for more periods before a 

convergence to the normal distribution begins to emerge. Unfortunately, our data do not allow 

observing the behavior of newborn firms in these industries beyond their 21st quarter in the market. 

 With the aim of measuring the evolution of the FSD over time, we looked also at the 
moments of this distribution.  In particular, we studied the patterns of evolution of the Skewness 

and Kurtosis indexes, to see if and how a convergence to the normal distribution does emerge. The 

results confirm, coherently with the Kernel estimations, and the normality tests, the different 

patterns of the evolution of the size distribution of firms in the various industries. Accordingly, 

following Pakes and Ericson (1998), we may argue that the evolution of the FSD in the Food and 

the Footwear & Clothing industries is consistent with the active learning model, while in the 

Electrical & Electronic Engineering and the Instruments industries it turns out to be consistent with 

the passive learning model put forward by Jovanovic (1982).  Nevertheless, both groups of 

industries display a dynamics that is to a large extent consistent with the evolutionary approach 

developed by Audretsch (1995).  
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5 - Conclusions 
In this paper we examine the evolution of the FSD for 12 cohorts of newborn firms, to draw 

some conclusions about which model of industry dynamics is more consistent with the size 

distribution of young firms in four selected industries. In general, the process of convergence 

towards the limit distribution appears to be just a matter of time, although, unfortunately, our data 

set allows us to follow the post-entry performance of these firms only for their first 6 years in the 

industry.  

However, we take into account four industries very different from the point of view a) of the 

productive capacity required for entering the market at the MES level of output, and b) of their 

technological content and characteristics. Differences in industry-specific characteristics concerning 

the levels of sunk costs and the rate of entry allow for differences in the way a convergence towards 

a lognormal distribution does or does not arise. This Bayesian perspective helps to explain the 

different speed of convergence of the FSD to a lognormal distribution. In particular, it is consistent 
with our empirical finding that only in the most technologically advanced industries - in which 

smaller entrants tend to invest in their capacity more gradually, after exploring their efficiency level 

with respect to their competitors - a convergence towards the lognormal distribution emerges with 

the passing of time. Conversely, in the most traditional industries the same tendency is less marked. 

Whether this is due to the fact that the selection and learning processes are much slower in the 

traditional consumer goods industries than it is the case with the technologically progressive ones 

could be detected only when and if new data will be forthcoming allowing a thorough analysis of 

the behavior on new-born firms in these industries beyond their 21st quarter in the market. 
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Appendix A 
 

 

Table A.1 – Kernel Density Estimation, log(size), quarterly, Electrical & Electronic Eng. (continuous line is the Normal Distribution fitted into the data).  Test of 

Normality below. 

 

d1

Kernel Density Estimate
LN_Q1

-.243354 4.82832

.000145

.76299

 

d
2

Kernel Density Estimate
LN_Q2

-.26122 4.88619

.001052

.429982

 
 

d
3

Kernel Density Estimate
LN_Q3

-.251995 5.20782

.000696

.370051

 
 

d
4

Kernel Density Estimate
LN_Q4

-.268374 5.31823

.000775

.365845

 
 

d
5

Kernel Density Estimate
LN_Q5

-.266404 5.51343

.000498

.370163

 
 

d6

Kernel Density Estimate
LN_Q6

-.26714 5.7436

.000298

.370607

 
 

d
7

Kernel Density Estimate
LN_Q7

-.239122 5.74445

.000309

.374916

 
 

d
8

Kernel Density Estimate
LN_Q8

-.256629 5.74969

.000298

.383009

 
 

d
9

Kernel Density Estimate
LN_Q9

-.25774 5.73001

.000361

.38555

 
 

d
1
0

Kernel Density Estimate
LN_Q10

-.262792 5.71383

.000476

.381786

 
 

d
1
1

Kernel Density Estimate
LN_Q11

-.235254 5.68199

.000596

.407565

 
 

d
1
2

Kernel Density Estimate
LN_Q12

-.264156 5.88093

.000317

.394876
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Table A.1 – following 
 

d
1
3

Kernel Density Estimate
LN_Q13

-.236693 6.63529

.000024

.409879

 
 

d
1
4

Kernel Density Estimate
LN_Q14

-.237653 6.85906

.000012

.406529

 
 

d
1
5

Kernel Density Estimate
LN_Q15

-.245488 6.83853

.000017

.389453

 
 

d
1
6

Kernel Density Estimate
LN_Q16

-.253139 6.83516

.000017

.390652

 
 

d
1
7

Kernel Density Estimate
LN_Q17

-.27752 6.79075

.000017

.376148

 
 

d
1
8

Kernel Density Estimate
LN_Q18

-.255681 6.81812

.000014

.377866

 
 

d
1
9

Kernel Density Estimate
LN_Q19

-.269731 6.76801

.000021

.396547

 
 

d
2
0

Kernel Density Estimate
LN_Q20

-.282974 6.85386

.000021

.382259

 
 

d
2
1

Kernel Density Estimate
LN_Q21

-.278261 6.78105

.000032

.400216
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Table A.2 – Kernel Density Estimation, log(size), quarterly, Instruments. (continuous line is the Normal Distribution fitted into the data).   Test of Normality below. 
 

d
1

Kernel Density Estimate
LN_Q1

-.225597 4.62005

9.2e-06

1.03435

 
 

d
2

Kernel Density Estimate
LN_Q2

-.271556 5.19154

.00002

.624652

 
 

d
3

Kernel Density Estimate
LN_Q3

-.293507 5.37491

.000074

.469364

 
 

d
4

Kernel Density Estimate
LN_Q4

-.312026 5.90301

.000043

.397631

 
4th Q: Pr(Sk) = 0.000  Pr(Kur) = 0.003  Pr(χ2) = 0.0000 

d
5

Kernel Density Estimate
LN_Q5

-.263021 6.18191

.000018

.368495

 
 

d
6

Kernel Density Estimate
LN_Q6

-.264339 6.19923

.00003

.35631

 
 

d
7

Kernel Density Estimate
LN_Q7

-.294019 6.29047

.000042

.346034

 
 

d
8

Kernel Density Estimate
LN_Q8

-.320683 6.38447

.000049

.352399

 
 

d
9

Kernel Density Estimate
LN_Q9

-.321763 6.41307

.000062

.342984

 
 

d
1
0

Kernel Density Estimate
LN_Q10

-.323088 6.43456

.000063

.336379

 
 

d
1
1

Kernel Density Estimate
LN_Q11

-.325139 6.43216

.000065

.342386

 
 

d
1
2

Kernel Density Estimate
LN_Q12

-.345932 6.44849

.000088

.350925
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Table A.2 – following 
 

d
1
3

Kernel Density Estimate
LN_Q13

-.284193 6.36641

.000127

.34897

 
 

d
1
4

Kernel Density Estimate
LN_Q14

-.337478 5.28624

.002275

.350612

 
 

d
1
5

Kernel Density Estimate
LN_Q15

-.287537 5.19281

.003366

.351572

 
 

d
1
6

Kernel Density Estimate
LN_Q16

-.298374 5.20365

.003813

.352236

 
 

d
1
7

Kernel Density Estimate
LN_Q17

-.31063 5.20098

.004129

.352415

 
 

d
1
8

Kernel Density Estimate
LN_Q18

-.329987 5.21279

.004

.354385

 
 

d
1
9

Kernel Density Estimate
LN_Q19

-.330859 5.2937

.003897

.34733

 
 

d
2
0

Kernel Density Estimate
LN_Q20

-.331447 6.73502

.000071

.352541

 
 

d
2
1

Kernel Density Estimate
LN_Q21

-.350095 6.75697

.000091

.358689
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Table A.3 – Kernel Density Estimation, log(size), quarterly, Food. (continuous line is the Normal Distribution fitted into the data).   Test of Normality below. 
 

d
1

Kernel Density Estimate
LN_Q1

-.200798 4.7334

.00007

.951447

 
 

d
2

Kernel Density Estimate
LN_Q2

-.266489 4.79909

.000539

.504765

 
 

d
3

Kernel Density Estimate
LN_Q3

-.28369 5.27412

.000226

.445048

 
3rd Q: Pr(Sk) = 0.000  Pr(Kur) = 0.788  Pr(χ2) = 0.0000 

d
4

Kernel Density Estimate
LN_Q4

-.290648 5.2033

.000413

.405044

 
4th Q: Pr(Sk) = 0.000  Pr(Kur) = 0.487  Pr(χ2) = 0.0000 

d
5

Kernel Density Estimate
LN_Q5

-.279174 5.1312

.00038

.412036

 
 

d
6

Kernel Density Estimate
LN_Q6

-.293577 5.19142

.000639

.366087

 
 

d
7

Kernel Density Estimate
LN_Q7

-.296662 4.83996

.002156

.366913

 
 

d
8

Kernel Density Estimate
LN_Q8

-.301685 4.65839

.004127

.364313

 
 

d
9

Kernel Density Estimate
LN_Q9

-.275682 4.71833

.002945

.365732

 
 

d
1
0

Kernel Density Estimate
LN_Q10

-.303968 4.72281

.004462

.364385

 
 

d
1
1

Kernel Density Estimate
LN_Q11

-.315561 5.00691

.002776

.356962

 
 

d
1
2

Kernel Density Estimate
LN_Q12

-.326039 5.09672

.002499

.347349
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Table A.3 – following 
 

d
1
3

Kernel Density Estimate
LN_Q13

-.330384 5.10107

.002784

.341229

 
 

d
1
4

Kernel Density Estimate
LN_Q14

-.330597 5.02194

.003608

.346798

 
 

d
1
5

Kernel Density Estimate
LN_Q15

-.338105 5.02024

.004093

.342039

 
 

d
1
6

Kernel Density Estimate
LN_Q16

-.345728 5.02786

.004519

.337975

 
 

d
1
7

Kernel Density Estimate
LN_Q17

-.302677 5.01221

.002813

.342929

 
 

d
1
8

Kernel Density Estimate
LN_Q18

-.334414 5.04394

.003336

.345207

 
 

d
1
9

Kernel Density Estimate
LN_Q19

-.346665 5.11735

.003687

.33799

 
 

d
2
0

Kernel Density Estimate
LN_Q20

-.358946 5.14644

.003969

.330228

 
 

d
2
1

Kernel Density Estimate
LN_Q21

-.34377 5.13956

.002716

.337629
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Table A.4 – Kernel Density Estimation, log(size), quarterly, Footwear & Clothing. (continuous line is the Normal Distribution fitted into the data).   Test of Normality 
below. 
 

d
1

Kernel Density Estimate
LN_Q1

-.247807 4.78041

.001651

.581436

 
 

d
2

Kernel Density Estimate
LN_Q2

-.258221 5.75539

.000408

.346372

 
 

d
3

Kernel Density Estimate
LN_Q3

-.265542 5.82237

.000661

.3417

 
 

d
4

Kernel Density Estimate
LN_Q4

-.26554 5.85279

.000752

.344707

 
 

d
5

Kernel Density Estimate
LN_Q5

-.267594 5.82828

.000932

.345516

 
 

d
6

Kernel Density Estimate
LN_Q6

-.271028 5.91294

.00088

.344462

 
 

d
7

Kernel Density Estimate
LN_Q7

-.273136 5.90076

.00101

.343606

 

d
8

Kernel Density Estimate
LN_Q8

-.274043 5.8462

.001342

.345438

 

d
9

Kernel Density Estimate
LN_Q9

-.277699 5.84604

.001456

.342595

 

d
1
0

Kernel Density Estimate
LN_Q10

-.275 5.86971

.001359

.349868

 

d
1
1

Kernel Density Estimate
LN_Q11

-.275927 5.86691

.001376

.351274

 

d
1
2

Kernel Density Estimate
LN_Q12

-.282834 5.80829

.001713

.344931
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Table A.4 – following 
 

d
1
3

Kernel Density Estimate
LN_Q13

-.284064 5.80553

.001791

.345228

 

d
1
4

Kernel Density Estimate
LN_Q14

-.287061 5.85541

.001731

.344743

 

d
1
5

Kernel Density Estimate
LN_Q15

-.29608 5.86823

.001788

.337686

 

d
1
6

Kernel Density Estimate
LN_Q16

-.295355 5.85604

.001905

.341262

 

d
1
7

Kernel Density Estimate
LN_Q17

-.296711 5.86123

.001942

.342317

 

d
1
8

Kernel Density Estimate
LN_Q18

-.300745 5.84592

.002268

.339717

 

d
1
9

Kernel Density Estimate
LN_Q19

-.307011 5.8404

.002347

.335186

 

d
2
0

Kernel Density Estimate
LN_Q20

-.31487 5.83633

.002457

.32893

 

d
2
1

Kernel Density Estimate
LN_Q21

-.321095 5.76351

.002884

.325365

 

   

 


