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Abstract

In this tutorial we present some basic ideas behind the notion of Small World. We

review the state-of-the-art in the �eld, and put emphasis on some recent developments,

in connection with analyzing the structure of the Web.

1 Introduction

The small world phenomenon formalizes the anecdotal notion that \you are only ever six de-

grees of separation away from anybody else on the planet." Almost everyone is familiar with

the experience of running into a complete stranger at a party or in some public arena and,

after a short conversation, discovering to have some unexpected mutual acquaintanceship.

\Well, it's a small-world!" one would exclaim.

The small-world phenomenon is a generalized version of this experience, the claim being that

even when two people do not have much in common, only a short chain of intermediaries

separates them.

We will illustrate this phenomenon, and analyze its potential impact on computational issues

related to Web crawling and searching. We will start our review from folklore examples, and

from experiments done in the sixties in the social sciences [13, 14] which gave rise to the (by

now popular) expression \six degrees of separation".

We will then see how this pervasive notion later got the attention of the exact sciences and

�nally of computer science. We will especially focus on:

� the background in graph theory which must guide our understanding of the main issues

concerning small worlds;
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� the latest developments in the context of \decentralized" algorithms [9];

� applications to the Web [3].

2 Graph Theory and Real Networks

Networks are ubiquitous. The brain is a network of neurons; organizations are networks

of people; the global economy is a network of national economies, which are networks of

markets, which in turn are networks of producers and consumers. Diseases and rumors

both transmit themselves through social networks, and computer viruses propagate via the

Internet, which is a prime example of a network across which an increasing amount of our

daily business is conducted.

Any kind of network can be described in terms of a graph, composed of nodes (or vertices)

and a set of lines, edges, joining the nodes. The nodes could represent, e.g., members of a

population, and the edges their interpersonal ties, business ties, friendships, etc.

2.1 Distance

As creatures living in a three-dimensional world, we have historically tended to think of

distance as determined by separation in space. In problems dominated by geography, such

as deciding where to live in relation to work, this conception of distance often makes a lot

of sense. On the other hand, there are di�erent de�nitions of distance that may turn out

to be just as sensible and relevant in the modern world. Sociologists, for instance, think

about social distance which, crudely speaking, is a measure of how much individuals have

in common, for example in terms of wealth, nationality, religion, and/or profession. In

these settings, two individuals on opposite sides of the planet may turn out to be closer

to one another than two people who live in the same neighborhood. In a world of rapid

transport and even more rapid communications, it often turns out that social distance is

more important than geographical distance in determining who we interact with and what

factors in
uence the decisions we make.

It is now quite natural to ask ourselves how should we measure distance on networks.

Actually, it can be done quite simply. If node A is connected to node B, then regardless

of the particular nature of the connection (which could be a hardware connection, like an

Ethernet cable, as well as something quite intangible, like a friendship) and regardless of

what sort of geographical and social terrain that connection traverses, we can say that the

distance between A and B is just one. If A and B are not connected, but are both connected

to a third node, then the distance is two, and so on.

In the context of social networks, the above notion of distance corresponds to saying that

any two people in a (social) network are separated by so many degrees of separation, where

the degrees are given by the length of the chain of intermediaries (number of edges necessary

to connect the two people).
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3 An Introduction to Small Worlds: Milgram's Exper-

iment.

As mentioned above, we talk of a social network whenever we have a (typically large) number

of people, each corresponding to a node in a network, and we represent the presence of a

relationship (which could be acquaintanceship, friendship, etc.) between any two people by

an edge connecting the two nodes. We say that a social network exhibits the small world

property if, roughly speaking, any two individuals in the network are likely to be connected

through a short sequence of intermediaries.

This has long been the subject of anecdotal observation and folklore. It has since grown into

a signi�cant area of study in the social sciences, in large part through a series of striking

experiments conducted by Stanley Milgram and his co-workers in the 60's.

Recent work has suggested that the phenomenon is pervasive in networks arising in nature

and technology, and a fundamental ingredient in the structural evolution of the World Wide

Web1.

3.1 The Idea

Milgram's basic small-world experiment remains one of the most compelling ways to think

about the problem. The goal of the experiment was to �nd short chains of acquaintances

linking pairs of people in the United States who did not know one another. In a typical

instance of the experiment, a source person in Nebraska or Kansas would be given a letter

to deliver to a target person in Massachusetts. The source would initially be told basic

information about the target, including address and occupation; the source would then be

instructed to send the letter to someone she knew on a �rst-name basis in an e�ort to

transmit the letter to the target as rapidly as possible. Anyone subsequently receiving the

letter would be given the same instructions, and the chain of communication would continue

until the target were reached.

Over many trials, the average number of intermediate steps in a successful chain was found

to lie between �ve and six, a quantity that has since entered popular culture as the \six

degrees of separation" principle.

4 Beyond Milgram's Experiment

Why should there exist short chains of acquaintances linking together arbitrary pair of

strangers?

1See for example, the paper [2] by Lada A. Adamic, who has shown that the Web �ts the small-world

model
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In order to answer this question, certain structural properties of social networks have to be

analyzed.

There is a wide spectrum of possibilities for modeling real networks, the two extreme options

being an ordered network (exhibiting a very regular structure) and a completely random

network (characterized by the lack of any structure).

In an ordered network, like a crystal lattice, each node has the same number of edges that join

a small number of neighboring nodes in a tightly clustered pattern. In a random network,

each node is connected to any other node with some �xed probability.

Although ordered and random networks are in a very precise sense extreme opposites, they

share the common feature of uniformity,i.e., locally the network looks the same everywhere,

a fact that signi�cantly simpli�es the analysis.

4.1 Random Networks

The graphs in this class were �rst studied in the 60's by the Hungarian mathematicians Paul

Erd�os and Alfred R�enyi. [5] To build one of their graphs, one starts with a collection of n
vertices and no edges. Then one has to make a sweep through the graph, considering every

possible pairing of vertices, and in each case either draw an edge with probability p or do

nothing with probability 1�p. The outcome of this process is easy to predict in the extreme

cases: if p = 0, the graph remains edgeless, while, if p = 1, the graph becomes a clique, i.e., a

complete graph. Between the extremes, one can expect the graph to have about pn(n�1)=2
edges, placed randomly and independently.

Erd�os and R�enyi proved a number of interesting results about these graphs. Most of the

proofs are statements about \almost every" random graph; this sounds like a strangely vague

manner of speaking for a mathematical discourse, but it has a precise meaning. Saying that

almost every random graph has some property Q means that as the size of the graph n goes

to in�nity, the probability of Q being true approaches 1.

For example, a famous theorem by Erd�os and R�enyl (1959) guarantees that \almost any"

random graphs with at least n

2
lnn2 edges will be connected. Note that the above density

requirement for edges is equivalent to saying that k > lnn, where k is the average degree of

the graph, i.e., the average number of edges connected to a node.

The above theorem does not imply that one cannot construct disconnected graphs for k >

lnn, but rather that the random process has a vanishing chance of producing them when n

approaches in�nity.

It is important to notice that, for k < lnn, the graph will not be connected with high

probability, while, when k approaches lnn, the graph becomes suddenly connected with

high probability. This phenomenon of sudden change is called phase transition.

2The notation ln is used for the natural logarithm, while log will be used for the logarithm to the base 2.
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Figure 1: Phase transition in random graphs. The x-axis is the value of the ratio of edges to
nodes; the y-axis is the size (in arbitrary scale, independently of the number of nodes) of the

largest connected component of the resulting graph. A giant connected component emerges

w.h.p. when the ratio of edges to nodes approaches 0:5.
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As a model of small-world networks, the Erd�os-R�enyi random graph has some strengths. It

can be made as dense or as sparse as necessary just by adjusting the edge probability p.

The diameter (i.e. the longest shortest path across it) tends to be small (in some cases too

small). On the other hand Erd�os-R�enyi graphs show no tendency to form clusters. This

follows from the fact that the edges are placed independently, and neighbors of neighbors

are no more likely to be linked than any other randomly chosen vertices.

4.2 Not So Much Random!

Therefore random networks are not the right model to explain most small world phenomena

occurring in practice. Small world properties appear to fall somewhere in between the

ordered and random extremes. Friendship networks are a good example of this in-between

state. Since people meet most new friends through existing friends, the networks are locally

ordered. (Here order means that if A knows B and B knows C, then A is more likely to

know C than some other random element.)

Local ordering in such a network implies that one individual's friends are more likely than not

to know one another: a characteristic that is called clustering. Many real-world networks,

including friendship networks, tend to be highly clustered, but they are not entirely so. If

a person joins a club and meets new people or moves to a di�erent city, new connections

can form that prevent the existing network to become just a collection of (almost) disjoint

clusters.

4.2.1 Weak vs Strong Ties

M.S. Granovetter [6] argued that what holds a society together are not the strong ties within

clusters but rather the weak ones between people who span two or more communities.

Speci�cally, Granovetter analyzes social ties as follows:

\Consider, now, any two arbitrarily selected individuals, call them A and B, and the set,

S = C; D; E; : : : ; of all persons with ties to at least one of them. The hypothesis which

enable us to relate dyadic ties to larger structures is: the stronger the ties between A and

B, the larger the proportion of individuals in S to whom they will both be tied, that is,

connected by a weak or strong tie. This overlap in their friendship circle is predicted to be

least when their tie is absent, most when is strong and intermediate when it is weak."

In [7] Granovetter emphasizes the fact that weak ties are more signi�cant in a social network

than their strong counterparts; indeed weak ties are crucial bridges between pairs of closely

knit communities.
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5 Small Worlds and Graph Theory

We can now work out a general characterization of small world networks, taking advantage

of some properties encountered analyzing social networks.

� They tend to be sparse. The graphs have relatively few edges, compared with the

large number of vertices. In a graph with n vertices, the maximum number of edges is
n(n�1)

2
. In large size small-world graphs, the number of edges is generally closer to n

than to
n(n�1)

2
.

� They tend to be clustered. As we mentioned above in the context of social networks,

they have the following property: if two people share an acquaintance, there is a higher-

than-normal chance they also know each other. Thus the edges of the graph are not

distributed uniformly but are likely to form clumps or knots.

� They tend to have a small diameter.

A connected graph must have at least n � 1 edges, and its largest possible diameter3

is n � 1. At the opposite extreme, a complete graph, with n(n�1)

2
edges, has diameter

1, since one can get from any vertex to any other one in a single step. Graphs nearer

to the minimum than to the maximum number of edges might be expected to have a

large diameter.

Once �xed the number of edges, the clustering property could increase the diameter

further still, since edges used to creating local clumps leave fewer edges available for

long-distance connections.

Despite the above arguments, there are sparse and clustered graphs with small diam-

eter; in particular the diameter of the Web and other graphs describing, e.g., social

netowrks, seems to grow only logarithmically with the number of vertices.

Graphs with the above three properties (sparseness, clustering, and small diameter) have

been called \small world" graphs.

5.1 Small Worlds around us

Idealized models like the one just described suggest that the small-world phenomenon might

be common in sparse networks with many vertices. This leads to the question of whether

or not they arise in the real world. Actually, there are many real-world networks which

have been recognized to show the small-world properties listed above. Let us look at some

examples.

3Recall that the diameter of a graph is the longest shortest path across it, or, in other words, the length

of the most direct route between the most distant vertices. Diameter is �nite only for connected graphs, i.e.,

those that are all in one piece.
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� The electric power grid of Southern California, the vertices being generators, trans-

formers, and substations, and the links being high-voltage transmission lines. The

structure of the graph of the power grid is relevant to the eÆciency and robustness of

power networks.

� The neuronal network of the worm Caenorhabditis Elegans (C. Elegans, for short), the

vertices being the individual neurons and the links being connections between neurons.

(C.Elegans is the sole example of a completely mapped neuronal network.)

� The conformation space of a lattice polymer chain, where the vertices of the network

are in a one-to-one correspondence to the conformations of the chain, and an edge

between two vertices indicates the possibility of switching from one conformation to

the other by a single move of the chain.

� The Hollywood graph. The graph of actors is a particular social network, with the

advantage of being much more easily speci�ed; the vertices of the graph represent

actors, and links between vertices are present if the two corresponding actors have

been in a movie together4. A popular case study, based on this graph, consists of

starting with actor Kevin Bacon. Any actor is assigned a Bacon Number, measuring

how many links must be traversed to get back to Bacon. Bacon himself has Bacon

Number zero; anyone who has acted with him in a movie has Bacon Number one;

anyone who has acted with somebody in the group of people with Bacon Number one

(but not with Bacon himself) has Bacon Number two; and so on.

It turns out that of the 225; 000 actors listed in the Internet Movie Database as of

April 1997, only about 1; 300 have a Bacon Number of one, but nearly 80; 000 have a

Bacon Number of two. (Marilyn Monroe, for instance, is in that group. She was in

\Some Like it Hot" with Jack Lemmon, who in turn was in JFK with Kevin Bacon.)

No American actor, living or dead, has a Bacon Number greater than four. Even more

surprosingly is the fact that, although there are about 20; 000 non American actors

who cannot be connected to Bacon and therefore with Bacon number \in�nity", if we

restrict ourselves to those who can be linked to him, none of them has a Bacon number

higher than eight.

� The call graph. An interesting example of a very large graph comes from telephone

billing records.

In the following, we mainly follow [8], which contains a popularized presentation of the

main properties of the call graph.

The vertices of this graph are telephone numbers, and the edges are calls made from

one number to another. In [1] James M. Abello et al. have studied the evolution of the

graph as calls accumulate over a period of days. In one 20-day period, they observed

that the graph grew to have 290 million vertices and 4 billion edges. The call graph is

4It is akin to the graph of mathematical collaborations centered, traditionally, on P. Erd�os.
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actually a directed multigraph5. For ease of analysis, however, they collapsed multiple

edges into a single edge, and treated the graph as if it were undirected.

The �rst challenge in studying the call graph is that it is not possible to keep it in main

memory, even using a computer with six gigabytes of memory. Therefore portions of

the graph have to be repeatedly shuttled between memory and disk storage, and thus

most algorithms are extremely ineÆcient. For this reason, the call graph has become

a testbed for algorithms designed to run quickly on data held in external storage.

A one-day call graph analyzed by Abello and his colleagues has 53,767,087 vertices and

170 million edges. Although it is not connected (it actually has 3.7 million separate

components), it contains one giant connected component with 44,989,297 vertices, i.e.,

more than 80 percent of the total.

The diameter of the giant component is 20, which implies that any telephone in the

component can be linked to any other through a chain of no more than 20 calls. The

emergence of a giant component is characteristic of Erd�os-R�enyi random graphs, but

the pattern of connections in the call graph is surely not random.

� Last but not least: the Web. Studies have estimated that the Web has a diameter of

19 [3]. This means that to get from one randomly selected Web page to another one, it

takes an average of 19 clicks; this property makes the Web another example of a small

world graph.

6 Watts Strogatz model

Using a combination of results and techniques from graph theory, computer simulations,

and non-linear dynamics, Strogatz and Watts [15, 16, 17] proposed a model to explain the

small-world phenomenon.

6.1 Rewiring the Lattice

It is not surprising that both the lattice model and Erd�os-R�enyi model fail to reproduce some

features of networks such as the human friendship graph or the World Wide Web. After all,

these real-world networks are neither strongly regular nor fully random. People generally

know their neighbors, but their circle of acquaintances is not con�ned to those who live next

door, as the lattice model would imply. Conversely, links between, e.g., pages on the Web

are not created at random, as the Erd�os-R�enyi process requires. Watts and Strogatz deal

with these failures by employing the following simple strategy: they interpolate between the

above two models.

5directed because the two ends of a call can be distinguished as originator and receiver, a multigraph

because a pair of telephones can exchange more than one call
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p = 0 p = 1

Regular Small world Random

Figure 2: The random rewiring procedure for interpolating between a regular ring lattice

and a random network, without altering the vertices in the graph. Three realizations of this

process are shown, for di�erent values of p. For p = 0 the original ring is unchanged; as p
increases the graph becomes increasingly disordered until, for p = 1, all edges are rewired

randomly. For intermediate values of p, the graph is a small-world network highly clustered

like a regular graph, yet with small characteristic path length, like a random graph.

They start with a regular lattice, such as a ring, and then \rewire" some of the edges to

introduce a certain amount of randomness. Each edge in the original lattice is examined in

turn, and is either left in place or else is redirected to another randomly chosen destination.

The decision to rewire an edge is governed by a probability p, which can be adjusted over the

range from 0 to 1. If p is equal to 0, then the lattice is unchanged; this is what Watts calls

the Caveman universe. At the opposite end of the scale, for p equal to 1, we �nd what Watts

calls Solaria world : the lattice is transformed into a random graph much like a product of

the Erd�os-R�enyi procedure.

The interesting range clearly lies between these extremes6.

In their analysis of the rewired graphs, Watts and Strogatz did not examine the diameter,

but rather the minimum path length L averaged over all pairs of vertices. They observed

an abrupt transition in L as the rewiring probability increased. L is at its maximum in

the regular lattice, but it falls steeply as soon as a small fraction of the edges are rewired.

As a measure of clustering in their hybrid graphs, Watts and Strogatz de�ned a clustering

6Watts and Strogatz were not the �rst to explore the e�ect of short-circuiting a ring graph. In the 1980s,

Fan R. K. Chung, Michael R. Garey, and B�ela Bollob�as studied topological properties of graphs obtained by

randomly adding edges to cyclic graphs [4].
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Lactual Lrandom Cactual Crandom

Film actors 3.65 2.99 0.79 0.00027

Power grid 18.7 12.4 0.080 0.005

C. Elegans 2.65 2.25 0.28 0.05

Table 1: Characteristic path length L and clustering coeÆcient C for three real networks,

compared to random graphs with the same number of vertices (n) and the same average

number of edges per vertex (k). All three networks show the small-world phenomenon:

L � Lrandom, whereas C >> Crandom.

coeÆcient C, as follows.

List all the neighbors of a vertex, count the edges that link those neigh-

bors, and divide by the maximum number of edges that could possibly be

drawn among the neighbors; then repeat this procedure for all the ver-

tices, and take the average. This is C.

In contrast to the path length L, the clustering coeÆcient remains high until the rewiring

probability is rather large. This means that, for a wide range of values of p, the few shortcuts

provide eÆcient long-distance connections, despite the presence of a large majority of local

contacts between nearby nodes.

Watts and Strogatz tested their model against the Hollywood graph, which has L = 3:65
and C = 0:79. They created a rewiring model with the same number of vertices and edges

and the same average degree. The model has an L value of 3:9 and a C coeÆcient in the

range [0:61 0:84], in good agreement with the actors' graph. Erd�os-R�enyi model could not do

nearly as well: the path length (L = 2:99) is reasonably close, but the clustering coeÆcient

(C = 0:00027) is smaller by three orders of magnitude.

Watts and Strogatz suggest several more applications of their model to real world graphs,

including two of the examples we have mentioned above, i.e., a part of the U.S. electric power

grid, and the nervous system of the nematode worm C. Elegans. Model and observation

continue to be consistent, although the agreement is not as impressive as it is with the

Hollywood graph.

6.2 Another point of view

Watts-Strogatz model describes the topological structure of a small world; in such a setting

there is no notion of edge length, i.e., the properties of the graph are analyzed regardless to

the edge length (set to 1 for each edge).
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We now describe a new approach, suggested by Marchiori and Latora [12], according to

which the metrical nature of small world networks comes into play, determined by the so

called physical distance between vertices (edge length).

The set-up consists of a generic metrical graph G, that in principle, does not need be con-

nected. N will denote the number of vertices and k the overall number of edges. Two nodes

i and j connected by an edge are at a certain physical distance, which can be, for exam-

ple, the real distance between the two nodes or a measure of the strength of their possible

interaction. The distance on the graph d(i; j) is instead de�ned as the smallest sum of the

physical distances throughout all the possible paths in the graph from i to j.

If every node sends information along the network through its edges and every node in the

network propagates information concurrently, the amount of information sent from node

i to node j per unit of time is v=d(i; j), where v is the speed at which the information

travels over the network. When there is no path in the network between i and j, we say

that d(i; j) = +1, and consistently, that the amount of exchanged information is 0. The

performance of G can be de�ned as the total amount of information propagated over the

network per unit of time:

P =
X
i;j2G

v=d(i; j):

(Every sum here and in the following is intended for i 6= j.)

In order to quantify the typical separation between two vertices in the graph, it is convenient

to introduce the connectivity length D(G), de�ned as the �xed distance at which to set every

two vertices in the graph in order to maintain its performance. Interestingly enough, the

connectivity length of the graph turns out to be not the arithmetic mean but the harmonic

mean of all the distances:

D(G) = Hfd(i; j); i; j 2 Gg =
N(N � 1)P
i;j2G 1=d(i; j)

:

As we have seen before, the de�nition of small-world proposed by Watts and Strogatz is

based on two di�erent quantities, L and C. L, the characteristic path length, is a measure of

a global property of the graph L, while C, the clustering coeÆcient, is obtained by averaging

over local quantities. The main reason to introduce C is because L, de�ned as the simple

arithmetic mean of d(i; j), applies only to connected graphs.

Marchiori-Latora model provides a uniform description of both global and local properties

of the network by means of the single measure D.

Indeed, let us de�ne

1. Dglob as the connectivity length for the global graph G, i.e., Dglob = D(G), and
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2. Dloc as the average connectivity length of the graphs of neighbors of any given vertex.

Then we can de�ne small-worldness for networks: a network is a small world (or, in equivalent

terms, the network performance is locally and globally high) if and only if it has small D at

global and local scale, i.e., if Dglob and Dloc are both small.

The connectivity length D gives harmony to the whole theory of small-world networks, since:

� It is not just a generic intuitive notion of average distance in a network, but has a

precise meaning in terms of network eÆciency.

� It describes in a uni�ed way the system at both global and local scale.

� It applies to topological as well as metrical networks.

� It applies to any graph, not only to connected graphs as was the case for the original

theory.

� It describes structural as well as dynamical features of a network.

6.3 What are Small Worlds for?

The small world phenomenon suggests a fundamentally new way of looking at our world,

and might shed some light on a plethora of interesting questions:

� How do diseases spread?

� Can an accident at a single power station bring down the rest of the power grid?

� How does a joke spread across the Internet?

� How are the neurons of the brain connected?

� Can one prevent a crowd from panicking?

� How do you design the most eÆcient oÆce building?

The global and local scales at which social networks can be analyzed provide di�erent view-

points to observe the world in which we live:

1. At the global scale, we can appreciate the fact that we are all very closely connected;

this may have all sorts of consequences for phenomena like the spread of diseases, the

growth of fads, and the cascades of failures in the world's �nancial markets, none of

which are currently well-understood.
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2. At a local scale, it is very diÆcult for us to appreciate this relatively recent feature of

the world, con�ned as we are to our own highly clustered local environments.

The above observations put into evidence that there might be a subtle di�erence between

small-worldness per se, and the ability of taking advantage of it.

Understanding how small worlds a�ect issues like the di�usion of information, the coordi-

nation of distributed activities, and strategies for searching out speci�c information, are all

problems at the frontier of research.

In the next section, we come to terms with the di�erence between networks which are small

worlds only in a global sense, and networks further characterized by properties which make

it possible to exploit small-worldness using only local information.

7 Finding the Way in a Small World: Kleinberg Re-

sults

Kleinberg [9] comments on the success of Milgram's experiment, saying that it \suggests a

source of latent navigational cues embedded in the underlying social network, by which a

message could implicitly be guided quickly from source to target".

And also: \Existing models are insuÆcient to explain the striking algorithmic component

of Milgram's original �ndings: that individuals using local information are collectively very

e�ective at actually constructing short paths between two points in a social network".

The presence of a large number of short paths in a network (for instance, in a highly connected

random graph) does not imply that an agent using only local information can actually �nd

the right shortcuts which would let her traverse the network at a speed reasonably related

to the lengths of the short paths. In other words \one can imagine networks in which short

chains exists but no mechanism based on purely local information is able to �nd them."

As an example of the fact that existing models are insuÆcient to explain the success of

decentralized algorithms, Kleinberg [10, 11] �nds a counterexample for Watts-Strogatz (WS)

model, and introduces a family of models generalizing WS.

More precisely, he proves that:

(1) for one of these models there is a decentralized algorithm capable of �nding short paths

with high probability, and

(2) there exists only a unique model within the family such that (1) holds.

Kleinberg de�nes a simple framework that encapsules the paradigm of Watts and Strogatz.

The model is given by a lattice (grid) with the addition of a few randomly chosen long range

connections.

The basic ingredients are the following:
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Figure 3: (A) A two-dimensional lattice grid network with n = 6, p = 1, and q = 0. (B) The

contacts of a node u with p = 1 and q = 2. (u; v) and (u; w) are the long range contacts.

� Lattice distance between u = (i; j) and v = (k; l):

d(u; v) = jk � ij+ jl � jj :

� Universal constant p � 1 such that each node has a directed edge to every other node

at distance at most p (local contacts). For the 2-dimensional grid, p = 1.

� Universal constants q , r � 0 such that each node u has directed edges to q other nodes
(long range contacts), where the i-th edge from u has endpoint v with probability

proportional to [d(u; v)]�r.

The model de�ned above is rich in local connection, with a few range connections; it gener-

alizes the paradigm of Watts and Strogatz and satis�es the basic features of a small world.

In the following we outline the main di�erences w.r.t. Watts and Strogatz model.

� Watts and Strogatz proposed a model constructed starting with a set V of n points

uniformly spaced on a circle; each point is then connected to each of its k nearest

neighbors, for a small constant k, and �nally a small fraction of the edges is rewired.

Kleinberg model is based on a k-dimensional grid.

� In Watts and Strogatz model, edges are not directed, while Kleinberg's grid is directed.

The model proposed by Kleinberg has a simple geographic interpretation: individuals live on

a grid and know their neighbors for some number of steps in all directions; they also have

some acquaintances distributed more broadly on the grid.

Viewing p and q as �xed constants, he obtains a \one-parameter family of network" models

by tuning the value of the exponent r. When r=0, we have the uniform distribution over
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Figure 4: Three grids with di�erent long-range edge distribution (A) r = 0 (B) r > 2, (C)

r < 2.

long-range contacts, the distribution used in the basic network model of Watts and Strogatz,

according to which one's long range contacts are chosen independently of their position on the

grid. As r increases, the long-range contacts of a node become more and more clustered in its

vicinity on the grid. Thus, r describes how the underlying society of nodes is \networked".

Kleinberg's model allows us to give a solid foundation to Milgram's original �ndings; let us

consider a message which has to go from a source to a target. The message holder at any

given step has knowledge of:

a. underlying grid structure;

b. location of the target on the grid;

c. location of long range contacts of all the nodes that have been involved with the

message.

REMARKS:

� (c) is used only for lower bounds; upper bounds use only (a) and (b).

� Constraining the algorithm to use only local information is crucial; otherwise it is easy

to �nd the shortest path between any two nodes by, e.g., breadth-�rst seaarch.

The expected delivery time of a decentralized algorithm is the primary �gure of merit in

Kleinberg's analysis; it represents the expected number of steps taken by the algorithm to

deliver a message over a network from a source to a target chosen uniformly at random from

the set of nodes.

In Kleinberg model a message traveling on an edge across two connected nodes takes always

a unit of time, regardless to the lattice distance (as de�ned above) between the two nodes.
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In other words, long range and local contacts are traversed in the same amount of time,

i.e., the network is analyzed under a topological, rather than metrical, viewpoint. We could

interpret this from a physical standpoint saying that the speed V the message travels on the

network on an edge u is proportional to the length of u.

The expected delivery time as de�ned by Kleinberg makes sense when the goal is to analyze

information transfer processes in which the delivery time of a generic message is roughly

proportional to the number of steps (edges covered) taken by the message to move from the

source to the target.

7.0.1 Kleinberg Theorems

Kleinberg proves that the (topological) structure of the network deeply a�ects the ability of

a decentralized algorithm to �nd a short path.

� Theorem 1 Upper bound for inverse-square distribution. When r = 2 and p = q = 1,

there exists a decentralized algorithm A such that the expected delivery time for A is at

most �1(logn)
2, where �1 is a non-negative constant independent of n.

� Theorem 2 Lower bound for other distributions. (a) Let 0 � r < 2. The expected

delivery time of any decentralized algorithm is at least �2n
(2�r)=3, where �2 is a constant

depending on p; q; r, but independent of n.

(b) Let r > 2. The expected delivery time of any decentralized algorithm is at least

�3n
(r�2)=(r�1), where �3 is a constant depending on p, q, r, but independent of n.

Decentralized Algorithm: Description and Analysis

The algorithm A suggested by Kleinberg is extremely simple:

At each step, the current message holder chooses a contact that is as close as possible to the

target (in terms of lattice distance). (Greedy algorithm)

It is important to notice that the algorithm described above is not necessarily the only

decentralized algorithm such that 1) holds. It has been chosen because it is simple enough

to make a mathematical analysis possible, and it actually matches how short chains are

found in real life (as in Milgram's experiment).

In both proofs Kleinberg uses the Principle of Deferred Decision, a common mechanism for

analyzing randomized algorithms, and assumes that long range contacts of a node u are

generated only when the message �rst reaches the node u. Since a decentralized algorithm

does not learn the long range contacts of u until the message reaches u, this formulation is

equivalent for the purpose of the analysis.
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7.1 Upper bound for inverse-square distribution

Let us consider the n�n square grid de�ned above, and let p = q = 1. It turns out that the

probability that u chooses v as its long range contacts is d(u; v)�2=
P

u6=v d(u; v)
�2, and

X
v 6=u

d(u; v)�2 �
2n�2X
j=1

(4j)(j�2) = 4
2n�2X
j=1

j�1 �

� 4 + 3 log(2n� 2) � 3 log(6n);

so that the probability that v is chosen is at least [3 log(6n)d(u; v)2]�1.

The decentralized algorithm A must take the message from a source node s to a target node
t, where both s and t have been chosen randomly on the grid.

Given a target node t, we consider sets of nodes A0; A1; A2; : : : ; Alog n, where Aj is the set of

nodes at distance between 2j and 2j+1 from t.

For j > 0, we say that the execution of A is in phase j when the lattice distance from the

current node to t is greater than 2j and at most 2j+1. A is in phase 0 when the lattice

distance to t is at most 2. Thus the initial value of j is at most logn.

Let us suppose that the current message holder (the node at which the message is waiting

to be delivered) is u. From the de�nition of the decentralized algorithm A, it turns out that
the lattice distance between u and the target t is strictly decreasing.

Let us consider the behavior of the decentralized algorithm A.
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� log logn � j < logn. The message will leave phase j when the distance between the

current message holder u and the target t will become less than 2j. Let Bj be the set

of nodes within lattice distance 2j from t. It is easy to see that there are at least

1 +
2jX
i=1

i =
1

2
22j +

1

2
2j + 1 > 22j�1

nodes in Bj. Each node in Bj is within lattice distance 2j�1 of u; hence each has a

probability at least (3 log(6n)22j+4)�1 of being the long range contact of u.

Since the probability P of A to leave phase j depends only on the number of nodes in

Bj and on the distance between u and these nodes, we have that

P �
22j�1

3 log(6n)22j+4
=

1

96 log(6n)
:

Thus the total number of steps spent in phase j is at most

EXj =
1X
i=1

Pr[Xj > i] �
1X
i=1

(1�
1

96 log(6n)
)i�1 = 96 log(6n):

� 0 � j � logn. In this case, it is simple to prove that the arithmetic mean of the total

number of steps is at most 96 log(6n). This follows from the fact that the algorithm

can spend at most logn steps in phase j even if all the nodes pass the message to a

local contact.

Since the maximum number of phases is logn, then the mean of the total number of

steps (expected delivery time) is at most

X =
log nX
j=0

Xj:

Thus the expected delivery time is at most �1 log
2 n, for a suitable choice of �1.

The proofs of the theorems reveal a general structural property that implies the optimality

of the exponent r = 2 for the two-dimensional lattice: it is the unique exponent at which a

node's long-range contacts are nearly uniformly distributed over all \distance scales".

Speci�cally, given any node u, we can partition the remaining nodes of the lattice into sets

A0; A1; A2; : : : ; Alog n, where Aj consists of all nodes whose lattice distance to u is between

2j and 2j+1. These sets naturally correspond to di�erent levels of \resolution" as we move

away from u; all nodes in each Aj are at approximately the same distance (to within a factor

of 2) from u. At exponent r = 2, each long-range contact of u is nearly equally likely to

belong to any of the sets Aj; when r < 2, there is a bias toward sets Aj at greater distances,

and when r > 2, there is a bias toward sets Aj at nearer distances.
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Figure 6: On the left, the decentralized algorithm used for upper bound results (after 4

steps); on the right, the decentralized algorithm considered in Theorem 2. Filled nodes

represent the nodes which have touched the message, while patterned nodes represent the

long-range contacts known by the algorithm.

7.2 Lower bound for other distributions

For the sake of lower bounds, Kleinberg makes his setup for the decentralized algorithm

slightly more powerful. An algorithm initially has knowledge of the grid structure, all the

local contacts, and the locations of s and t. At step i, some set Si of nodes has touched the

message, and the algorithm has knowledge of all long-range contacts of all nodes in Si.

It chooses any contact v of any node in Si that has not yet received the message { v need

not be a contact of the current message holder { and it sends the message to v.

The set Si+1 thus contains one element more than Si, and the algorithm iterates. This is the

same as the basic model used to state the upper bound, except for the fact that it does not

take into account steps in which the algorithm \backtracks" by sending the message through

a node that has already received it.

This setting is indeed more powerful than the previous one. If we turn to Milgram's ex-

periment, we immediately realize that the message holder did not have knowledge of all

long-range contacts used by previous deliverers of the letters.

7.2.1 Proof of Theorem 2a (0 � r < 2)

Let us consider an arbitrary decentralized algorithm of the type described above, with the

goal of evaluating the expected number of steps required for the message to travel from s to

t, where s and t are generated uniformly at random.

The probability that a node u chooses v as its ith long-range contact (out of q options) is
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d(u; v)�r=
P

v 6=u d(u; v)
�r.

We have:

X
v 6=u

d(u; v)�r �
n=2X
j=1

(j)(j�r) =
n=2X
j=1

j1�r �
Z

n=2

1
x(1�r)dx �

� (2� r)�1((n=2)2�r � 1) �
1

(2� r)2(3�r)
� n(2�r);

where in the last line we assume that n � 23�r. Let Æ = (2� r)=3, and let U denote the set

of nodes within lattice distance pnÆ from t. Note that

jU j � 1 +
pnÆX
j=1

4j � 4p2n2Æ:

Assume that n is large enough so to satisfy pnÆ
� 2, and de�ne � = ((2� r)27�rqp2)�1.

Let "0 be the event that within �nÆ steps the message reaches a node other than t using a

long-range contact in U . Let "0
i
be the event that at step i, the message reaches a node other

than t using a long-range contact in U . We have that "0 =
S

i��nÆ "
0

i
.

The node reached at step i has q long-range contacts that are generated at random when it

is encountered (for the Principle of Deferred Decision), so that

Pr["0
i
] �

qjU j
1

(2�r)2(3�r) � n2�r

�
(2� r)23�rq � 4p2n2Æ

n2�r

=
(2� r)2(5�r)qp2n2Æ

n2�r
:

Since the probability of a union of events is bounded by the sum of their probabilities, we

have

Pr["0] �
X

i��nÆ

Pr["0
i
]

21



�
(2� r)25�r�qp2n3Æ

n2�r

= (2� r)25�r�qp2 �
1

4
:

Let � denote the event that the chosen source s and target t are separated by a lattice

distance of at least n=4. One can verify that Pr[�] � 1
2
.

Since Pr[� _ "0] � 1
2
+ 1

4
, we obtain Pr[� ^ "0] � 1

4
.

Finally, let X denote the random variable equal to the number of steps taken by the message

to reach t, and let " denote the event that the message reaches t within �nÆ steps.

If � occurs and "0 does not occur, then " cannot occur. In fact, if � occurs, then the distance

d(u; v) satis�es d(u; v) � n=4 > p�nÆ. Therefore in any s� t path of at most �nÆ steps the

message must have used at least once a long-range contact; furthermore the last time this

happened, the message must have used a long range contact in U , so that the event "0 must

occur. Otherwise, if "0 does not occur, the message can not reach the target t in at most �nÆ

steps.

This means that

EX �
1

4
�0nÆ;

where EX stands for the mathematical expected value of the random variable X.

Part (a) of the theorem now follows.

7.2.2 Proof of Theorem 2b (r > 2).

In this section we consider the same decentralized algorithm analyzed in the proof of Theorem

2(a).

Let � = r� 2. We consider a node u, and let v be a randomly generated long-range contact

of u. The normalizing constant for the inverse rth-power distribution is at least 1, and so,

for any m, we have

Pr[d(u; v) > m] �
2n�2X

j=m+1

(4j)(j�r) = 4
2n�2X

j=m+1

j1�r �

�

Z
1

m

x(1�r)dx � (r � 2)�1m2�r = ��1m��:
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We now de�ne � = �

1+�
, � = 1

1+�
, and �0 = min(�;1)

8q
.

Let "0 be the event that in step i the message reaches a node u 6= t that has a long-range

contact v satisfying d(u; v) > n�.

Let also "0 =
S

i��0n� "
0

i
be the event that this happens during the �rst �0n� steps.

We have:

Pr["0] �
X
�0n�

Pr["0
i
] � �0n�

� q��1n��� = �0q��1 �
1

4
:

Let � be the event that s and t are separated by a lattice distance of at least n=4. We observe

that Pr[� ^ "0] � 1
4
. Let X denote the random variable equal to the number of steps taken

by the message to reach t, and let " denote the event that the message reaches t within �0n�

steps. If "0 does not occur, then the message can move to a lattice distance of at most n� in

each of its �rst �0n� steps. This leads to a total lattice distance of at most

�0n�+� = �0n � n=4 ;

and so if � occurs (i.e., if s and t are separated by a lattice distance greater than n=4), then

the message will not reach t.

This implies the inequality

EX �
1

4
�0n�:

Therefore part (b) of the Theorem follows.

Let us now take into special account the case r = 0. The following happens:

� the long-range contacts are uniformly distributed, as in the basic network model of

Watts and Strogatz, where long-range contacts are in fact chosen independently of

their position;

� there exist short paths with high probability, but there is no way for a decentralized

algorithm to �nd them; indeed the expected delivery time turns out to be about n2=3.

As anticipated before, this shows that Watts and Strogatz models are insuÆcient to explain

the success of decentralized algorithms in �nding short paths through a social network.
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Figure 7: The number of steps needed to reach the target without using long range contacts

is at least n2=3. But the probability that any message holder has a long range contact in R
is roughly n�2=3. Thus the expected number of steps before a long range contact is found is

roughly n2=3

.
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Figure 8: Lower bound on delivery time in logarithmic scale. The x-axis is the value of r;

the y-axis is the resulting exponent of n. Tradeo� best exploited algorithmically is for r = 2.
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7.3 Conclusion

The correlation between local structure and long-range connections provides fundamental

cues for �nding short paths through the network.

� When this correlation is near a critical threshold, the structure of the long-range con-

nections forms a sort of \gradient" that allows individuals to guide a message eÆciently

towards a target.

� As the correlation drops below this critical value and the social network becomes more

homogeneous, these cues begin to disappear.

� In the limit, when long-range connections are generated uniformly at random, Klein-

berg model describes a world in which short chains exist but individuals, faced with a

disorienting array of social contacts, are unable to �nd them.

8 Small World Wide Web

Nowhere is the breakdown in the barriers posed by physical distance more dramatic than

in the rise of the Internet and the World Wide Web. In the past ten years, the Internet

has gone from an academic and military tool, unknown to the general public except as

a curiosity, to a social, technological and economic presence that a�ects everything from

personal communications to business practice, and even the US stock market. In so doing,

the Internet (in conjunction with an increasingly information-based economy and services

like rapid, world-wide delivery) has made physical distance increasingly irrelevant to the

retrieval of information, access to services, formation of organisations, and even the purchase

of material products ranging from cars to groceries.

Despite its increasing role in communication, the Web remains the least controlled medium:

any individual or institution can create websites with an essentially unrestricted number

of documents and links. This unregulated growth leads to a huge and complex Web graph,

which is a large directed graph, whose vertices are documents, and edges are the links (URLs)

pointing from one document to another. The topology of this graph describes the Web

connectivity and, consequently, our e�ectiveness in locating information.

Our knowledge of the Web topology is however partial. Due to its large size, estimated to

be of at least 8 � 108 documents, and the continuous change of documents and hyperlinks,

it is impossible to catalogue all vertices and edges. The challenge in obtaining a reasonably

accurate topological map of the Web is illustrated by the limitations of the commercial search

engines: Northern Light, the search engine with the largest coverage, is estimated to index

only about 38 % of the Web [3].
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8.1 Low Diameter and Power Law

Sparseness, clustering, and small diameter are not the only properties of large real-world

graphs that have been extensively studied. Another characteristic that has attracted notice

is the degree sequence d0; d1; : : : ; dn�1, where dj is the number of vertices which have degree

j.

As an example, a lattice has a very simple degree sequence: all the vertices have the same

number of edges, and so a plot of the degree sequence consists of a single sharp spike. Any

randomness in the graph broadens this peak.

In the case of an Erd�os- R�enyi graph, the degree sequence has a Poisson distribution, which

falls o� exponentially away from the peak value. Because of this exponential decline, the

probability of �nding a vertex with k edges becomes negligibly small for large k. There

is evidence that certain real graphs, among which the Web is the most popular example,

behave di�erently. The distribution of degrees is described by a power law rather than an

exponential. This means that the fraction of vertices of degree k is not given by e�k (an

exponential function) but by k�� (a polynomial function).

The power-law distribution falls o� more gracefully than an exponential, allowing for vertices

of very large degree. Several research groups have independently found evidence of this

property for the degree sequence of the Web graph7.

Barab�asi et al. [3] set out to estimate the diameter of the Web (or, strictly speaking, its

characteristic path length), and found that two randomly chosen pages are about 19 mouse-

clicks apart. In the course of their analysis they sampled the degree sequence, observing

that the probability that a page has links to k other pages is approximately k�2:45, and that

the probability that k pages point to a given page is k�2:1. To explain the power-law degree

sequence, they have proposed a new random graph model. They argue that other models

fail to take into account the two following attributes of the Web.

� The Web is continually sprouting new pages, but most models are static: although

edges can be added or rearranged, the number of vertices never changes.

� Both Erd�os-R�enyi and Watts-Strogatz processes assume uniform probabilities when

creating new edges, but this is not very realistic. Barab�asi et al. note that Web pages

that already have many links are more likely to acquire still more links.

Like Erd�os-R�enyi model, Barab�asi et al. model starts with n vertices and no edges, but the

evolution is di�erent.

1. At every step, we add to the existing graph a single new vertex and m edges; all the

new edges link the new vertex to some of the vertices already present in the graph.

7A group that includes Kleinberg and several scientists from the IBM Almaden Research Center found

evidence of a power law in the Web, and so did Adamic and Bernardo A. Huberman of the Xerox Palo

Alto Research Center, as well as Albert-L�aszl�o Barab�asi, R�eka Albert and Hawoong Jeong of Notre Dame

University.
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2. The probability that a given vertex will receive a new edge is proportional to the share

of the total set of edges that the vertex already has; hence well-connected nodes become

better-connected.

3. After t steps, the graph has n+ t vertices and m � t edges.

Upon growing according to these rules, the graph achieves a statistical steady state: the

shape of the distribution of node degrees does not change over time. The distribution is

described by a power law with an exponent of 3; in other words, the probability of �nding a

vertex with k edges is proportional to k�3.

Barab�asi et al. have tested their model on several large graphs, including those discussed by

Watts and Strogatz { the Hollywood graph, an electric power grid, and the neural network

of C. Elegans. They found that both of the novel features of the model are essential to

its success; eliminating either growth in the vertex set or preferential attachment of edges

impairs the model's performance. The straightforward way according to which Barab�asi

et al. model mimics the dynamics of the Web evolution gives the model strong intuitive

appeal. Nevertheless it turns out that the correspondence between theory and observation

is not quite as good as one might hope.

As noted above, the actual exponents for the Web are about 2:45 for outward links and

2:1 for inward links, and thus signi�cantly di�erent from the model's prediction of 3. For

some other graphs, such as the C. Elegans network, the discrepancy is even larger. Various

adjustments could tune the model for a better match, but they inevitably sacri�ce some of

its simplicity.

8.1.1 Small Diameter, High Resources

The relatively small value of the characteristic path length d suggests the possibility that

an intelligent agent (someone who can make some sense out of the links and follow only the

relevant one), could in principle �nd in a short time the desired information by navigating

the Web.

However, this is for sure not the case of a robot that tries to locate information based on

purely syntactic rules, like matching strings: Barab�asi et al. have shown that such a robot,

aiming at identifying a document at distance d , needs to search M ' 0:53N0:92 documents.

For N = 8 � 108, this leads to a �gure of M = 8 � 107, i.e., 10% of the whole Web.

This indicates that robots cannot take much advantage of the highly connected nature of the

Web, their only successful strategy being indexing as large a fraction of the Web as possible.

A better understanding of the Web topology, aided by modeling e�orts, will be instrumental

to developing search algorithms or designing strategies for eÆciently accessing information.

The good news is that, due to the surprisingly small diameter of the Web, all that information

is just a few clicks away.
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