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Universitá di Modena and CEPR

Marc Hallin
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Abstract

This paper proposes a new forecasting method that exploits information from a large
panel of time series. The method is based on the generalized dynamic factor model proposed
in Forni, Hallin, Lippi, and Reichlin (2000), and takes advantage of the information on
the dynamic covariance structure of the whole panel. We first use our previous method to
obtain an estimation for the covariance matrices of common and idiosyncratic components.
The generalized eigenvectors of this couple of matrices are then used to derive a consistent
estimate of the optimal forecast. This two-step approach solves the end-of-sample problems
caused by two-sided filtering (as in our previous work), while retaining the advantages of an
estimator based on dynamic information. The relative merits of our method and the one
proposed by Stock and Watson (2002) are discussed.

JEL subject classification : C13, C33, C43. Key words and phrases : Dynamic factor models,
principal components, time series, large cross-sections, panel data, forecasting.

1 Introduction

Economists and forecasters nowadays typically have access to information scattered through a
huge number of observed time series—aggregated and disaggregated, real and nominal variables.

∗Research supported by a P.A.I of the Belgian Federal Government, an A.R.C. contract of the Communauté
française de Belgique, and the Training and Mobility of Researchers Programme of the European Commission
(Contract ERBFMRX-CT98-0213).
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Intuition suggests that disregarding potentially useful information always produces suboptimal
forecasts; the more scattered the information, the more severe this loss of forecasting efficiency.
Yet, most multivariate forecasting methods in the literature are restricted to series of low di-
mension, and allow for incorporating only a limited number of key variables. Such methods are
thus of little help in large panels of time series, where the cross-sectional dimension is often of
the same order as, or even larger than the series lengths. The challenge for econometricians is to
develop alternative techniques that are sufficiently powerful as to overcome this dimensionality
problem, yet flexible enough to provide an adequate picture of economic reality.

Recently, Forni and Reichlin (1998), Stock and Watson (2002), Forni, Hallin, Lippi, and Re-
ichlin (2000, 2001, 2003), Forni and Lippi (2001) have developed factor model techniques that
are tailored to exploit a large cross-sectional dimension. Under such models, each time series
in the panel is represented as the sum of two mutually orthogonal components : the common
component, which is “strongly correlated” with the rest of the panel and has reduced stochastic
dimension, and the idiosyncratic component. These idiosyncratic components are either mu-
tually orthogonal or “mildly cross-correlated” across the panel. The common component is
(non-parametrically) consistently estimated as both the size n of the cross-section and the series
length T go to infinity. These results are obtained under conditions that look reasonable in
empirical situations, whenever there are comovements between time series, as it is generally the
case for macroeconomic data (for a documentation of this point, see Altissimo et al. 2001).

In a factor model, multivariate information can help forecasting the common component,
while the idiosyncratic, being mildly cross-correlated, can be reasonably well predicted by means
of traditional univariate methods (or methods based on low dimension models such as VARs).
Therefore, the forecast of the future of any given series in the panel can be obtained as the
sum of the forecast of the common component, where we exploit multivariate information,
and the forecast of the idiosyncratic component, where multivariate information safely can be
disregarded. The common component being of reduced stochastic dimension, its forecast can be
expressed as a projection on the span of a small number of appropriately constructed aggregates,
whereas each idiosyncratic component can be treated by means of standard univariate or low-
dimensional forecasting methods.

The two methods proposed in the literature, Stock and Watson (2002) and Forni, Hallin,
Lippi and Reichlin (2000) are both based on this general idea, but each of them presents a serious
shortcoming. Forni, Hallin, Lippi and Reichlin (2000) base their estimation of the common and
idiosyncratic components on the dynamic covariance structure of the data. This is a highly
desirable feature, since economic time series in general are non-synchronized, and the leading
variables should play a crucial role in the forecast of the lagging ones. Typically, provided
that leading series are included in the panel, such methods should allow for forecasting even
those lagging series that are unforecastable at univariate level. The estimator in Forni, Hallin,
Lippi an Reichlin (2000), however, is derived from the spectral density of the data and, as a
consequence, is based on a two-sided filtering of the observations (linear combination of present,
past and future observations). This two-sidedness feature is not a problem when within-sample
estimation of the common component is the objective; but it is most unpleasant in the forecasting
context, since at the end of the sample future observations are not available.

Stock and Watson (2002), on the other hand, propose to estimate the common component
by projecting onto the static principal components of the data. Their estimator relies on a one-
sided filtering of the observations, which does not cause any problems at the end of the sample.
However, being based on contemporaneous covariances only, it fails to exploit the potentially
crucial information contained in the leading-lagging relations between the elements of the panel.
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The method we propose in this paper aims at combining the advantages of both approaches
and consists of the following two steps. Firstly, using the dynamic techniques developed in Forni,
Hallin, Lippi and Reichlin (2000), we obtain estimates of common and idiosyncratic variance-
covariance matrices at all leads and lags as inverse Fourier transforms of the corresponding
estimated spectral density matrices. Secondly, we use these estimates in the construction of the
contemporaneous linear combinations of the observations having smallest idiosyncratic-common
variance ratio. The resulting aggregates can be obtained as the solution of a generalized principal
component problem (see Section 4). Our h-step ahead forecast is obtained as the projection of
the h step ahead observation onto these estimated generalized principal components.

We prove that, as n and T go to infinity, this forecast is a consistent estimator of the optimal
h-step ahead forecast. The same method can be applied to re-estimate the in-sample common
component without making use of future observations, thus solving the end-of-sample problem
arising in Forni, Hallin, Lippi and Reichlin (2000).

Both Stock and Watson’s estimators and ours are one-sided linear combinations of the ob-
servations, but the weighting schemes used are different. Both provide a consistent forecast.
Stock and Watson’s predictor is simpler, while ours exploits more information. We discuss the
relative performances of the two methods and argue that the frequency domain method should
perform better when the various cross-sectional items differ significantly in the lag structure of
the factor loadings, particularly if, in addition, there is substantial heterogeneity in the fraction
of the total variance explained by the idiosyncratic components. We therefore recommend to
use our frequency domain method when we expect a priori such features in the data set or
whenever such features are detected via the static principal component method. These points
are illustrated in our simulation exercise.

The paper is organized as follows. In Section 2 we present the model. In Section 3 we
illustrate the existing estimation methods. In Section 4 we present our proposed predictor. In
Section 5 we proof consistency. In Section 6 we discuss the relative merits of the competing
estimators. In Section 7 we present simulation results. Section 8 concludes. Some technical
material is collected in the Appendix.

2 The model

In this paper we consider a specialization of the generalized dynamic factor model of Forni,
Hallin, Lippi and Reichlin (2000) and Forni and Lippi (2001). Such models, and the one
used here, differ from the traditional dynamic factor model of Sargent and Sims (1977) and
Geweke (1977), in that the number of cross-sectional variables is infinite and the idiosyncratic
components are allowed to be mutually correlated to some extent, along the lines of Chamber-
lain (1983) and Chamberlain and Rothschild (1983). Similar models have been recently proposed
by Stock and Watson (2002) and Bai and Ng (2002).

Denote by XT
n = (xit)i=1,...,n; t=1,...,T an n×T rectangular array of observations. Throughout,

we assume that

A1. XT
n is a finite realization of a real-valued stochastic process X = {xit, i ∈ N, t ∈ Z} indexed

by N × Z, where the n-dimensional vector processes {xnt = (x1t · · · xnt)′, t ∈ Z}, n ∈ N
are stationary, with zero mean and finite second-order moments ΓΓΓnk = E[xntx′

n,t−k], k ∈ N.

The spectral techniques to be used in the sequel require in addition the following technical
assumption
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A2. For all n ∈ N, the process {xnt, t ∈ Z} admits a Wold representation xnt =
∑∞

k=0 Cn
kwn,t−k,

where the full-rank innovations wnt have finite moments of order four, and the matrices
Cn

k = (Cn
ij,k) satisfy

∑∞
k=0 |Cn

ij,k|k1/2 < ∞ for all n, i, j ∈ N.

Assumptions A1 and A2 jointly will be referred to as assumption A.
The process xit is the sum of two unobservable components, the common component χit

and the idiosyncratic component ξit. The common component is driven by a q-dimensional
vector of common factors ft = (f1t f2t · · · fqt), which however are loaded with possibly different
coefficients and lags:

χit = bi1(L)f1t + bi2(L)f2t + · · · + biq(L)fqt.

Note that q is independent of n (and small as compared to n in empirical applications). More
precisely, defining χχχnt = (χ1t . . . χnt)′ and ξξξnt = (ξ1t . . . ξnt)′, our model is

xnt = χχχnt + ξξξnt

= Bn(L)ft + ξξξnt,
(2.1)

where the factors ft follow a VAR scheme of the form

A(L)ft = ut,

and

B1. (a) Bn(L) = Bn
0 + Bn

1L + . . . + Bn
s Ls is a n × q polynomial of order s in the lag operator

L, with Bm
s 6= 0, for some m; (b) A(L) = I − A1L − . . . − ASLS a q × q polynomial of

order S ≤ s + 1; (c) all solutions of det[A(z)] = 0, z ∈ C, lie outside the unit ball;

B2. {ut = (u1t . . . uqt)′, t ∈ Z}, the vector of common shocks, is a q-dimensional orthonormal
white noise process orthogonal to {ξit, i = 1, . . . , n, t ∈ Z}.

Of course the matrices Bn
j are nested as n increases, so that Bn

s 6= 0 for all n > m. Orthogonality
between common and idiosyncratic components (Assumption B2) is a standard assumption in
factor models literature. The assumption on the characteristic roots of A(L) guarantees the
existence of the inverse operator [A(L)]−1. We shall return to condition B1(b) in the next
section.

We will need the following additional assumptions. Let ΣΣΣχ
n(θ), ΣΣΣξ

n(θ), θ ∈ [−π, π], be the
spectral density matrices of χχχnt and ξξξnt, respectively, and λχ

nk, λξ
nk the corresponding dynamic

eigenvalues, namely, the mappings θ 7→ λχ
nk(θ) and θ 7→ λξ

nk(θ), where λχ
nk(θ) and λξ

nk(θ) stand
for the k-th largest eigenvalues of ΣΣΣχ

n(θ) and ΣΣΣξ
n(θ), respectively. We assume:

C1. (a) λχ
nq(θ) → ∞ as n → ∞, θ-a.e. in [−π π]; (b) λχ

nk(θ) > λχ
n,k+1(θ) θ-a.e. in [−π π],

k = 1, . . . , q;

C2. There exists a real Λ such that λξ
n1(θ) ≤ Λ for any θ ∈ [−π π] and any n ∈ N.

Assumption C1(b) requires that the first q + 1 eigenvalues are distinct for almost all θ (note
that λχ

nj(θ) = 0 for j > q and all θ). It makes proofs easier while not causing a serious loss of
generality. Assumptions C1(a) and C2 are needed to guarantee identification of the common
and the idiosyncratic components (see Forni and Lippi, 2001). Note that condition C2 on
the asymptotic behavior of λξ

nk(θ) includes the case in which the idiosyncratic components are
mutually orthogonal with an upper bound for the variances. Mutual orthogonality is a standard,
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though highly unrealistic assumption in factor models; condition C2 relaxes such assumption by
allowing for a limited amount of cross-correlation among the idiosyncratic components.

Finally, let ΓΓΓχ
nk, ΓΓΓξ

nk be the k-lag covariance matrices of the vectors χχχnt, ξξξnt, let µχ
nj, µξ

nj be
the j-th eigenvalues of ΓΓΓχ

n0, ΓΓΓξ
n0, respectively, and define

r = q(s + 1). (2.2)

We assume that

D. limn→∞ µχ
nr = ∞.

Assumption D rules out the case in which some of the elements in ft−k, k = 0, . . . , s, are
loaded only by a finite number of the x’s. Note that C1(a) does not imply D; for example, if
χ1t = ut−1 and χit = ut for i ≥ 2, C1(a) clearly holds, with q = 1, but D does not hold, since
µχ

n1 → ∞ whereas µχ
n2 is bounded as n → ∞. Further technical assumptions will be introduced

in Section 5.
Letting Ft = (f ′t f ′t−1 . . . f ′t−s)

′ and Cn = (Bn
0 Bn

1 · · · Bn
s ), the same model (2.1) can also

be written under the form

xnt = Bn(L)ft + ξξξnt = CnFt + ξξξnt (2.3)

involving r = q(s + 1) common factors, loaded only contemporaneously. Equation (2.3) looks
like a static factor model. However, the dynamic nature of (2.1) implies that Ft has a special
structure: indeed, the spectral density matrix of Ft has rank q, which is smaller than r if s > 0.
In the sequel we call ‘static factors’ the factors of the static representation (2.3), i.e. the r entries
of Ft, and ‘dynamic factors’ q the entries of ft.

3 Two competing estimation methods

Stock and Watson (2002) and Forni, Hallin, Lippi and Reichlin (2000) have proposed estimators
for model (2.1). We will label them static and dynamic principal component method respectively.

In both cases the goal is either estimation of the common component or forecasting of the x’s.
Regarding forecasting, since both methods are based on the common-idiosyncratic decomposi-
tion, and since these two components are mutually orthogonal at any lead and lag, forecasting
the x’s can be split into two separate forecasting problems, for the common and for the idio-
syncratic components, respectively. Moreover, since the idiosyncratic components are mutually
orthogonal or only weakly correlated, their forecast can be obtained from standard univari-
ate or low-dimensional multivariate methods. Thus the analysis is exclusively concentrated on
forecasting the common component. Let us now present the two methods in detail.

Let ΓΓΓT
nk be the k-lag sample covariance matrix of xnt (i.e. ΓΓΓT

nk = (n−k)−1∑T
t=k+1 xntxn,t−k),

mT
nj the j-th largest eigenvalue of ΓΓΓT

n0 and ST
nj the corresponding row eigenvector. Moreover, let

MT
n be the r × r diagonal matrix the above eigenvalues, in descending order, on the diagonal,

and ST
n the r × n matrix

(
ST ′

n1 · · · ST ′
nr

)′
. The h-step ahead forecast of χχχnt based on the static

principal components is
ΓΓΓT

nhS
T ′
n (MT

n )−1ST
nxnT . (3.1)

Analogously, the in-sample estimator of the common component χχχnt is

ST ′
n ST

nxnt, (3.2)
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while the related estimate of the variance-covariance matrix of χχχnt, ΓΓΓχ
n0, is

ST ′
n MT

nST
n . (3.3)

The principal components are averages of the x’s (with possibly negative weights). The intuition
behind the method is that, by averaging along the cross-sectional dimension, the ξ’s, which are
poorly correlated, cancel out, whereas the χ’s do not. Hence, the factor space, i.e. the space
spanned by the components of Ft, denoted by G(F, t), and the approximate factor space, i.e. the
space spanned by the first r principal components, denoted by G(ST

nxn, t), tend to coincide as
n → ∞. An estimate of χχχnt can then be obtained by projecting χχχnt on the approximate factor
space, at time t. Similarly, we can predict χχχn,T+h by projecting χχχn,T+h on the approximate
factor space G(ST

nxn, T ). Note that Assumption B1(b) implies that enlarging the projection
space with past values of Ft does not improve the prediction.

The shortcoming of the static method is that it only exploits the information contained in
the matrix ΓΓΓT

n0, whereas lagged covariances are ignored. Equivalently, the static method makes
use of representation (2.3) without taking the dynamic structure of Ft into account (see the
observation at the end of Section 2).

An attempt to overcome this problem is Forni, Hallin, Lippi and Reichlin (2000), who make
use of the q largest principal component series or dynamic principal components in place of the
usual principal components to approximate the common factor space.1 The χ’s are estimated
by projecting on present, past and future values of such dynamic principal components.

Denote by ΣΣΣT
n (θ) =

(
σT

ij(θ)
)

, θ ∈ [−π, π], a consistent periodogram-smoothing or lag-window

estimator of the spectral density ΣΣΣn(θ) = (σij(θ)) of xnt. Let λT
nj(θ) be ΣΣΣT

n (θ)’s j-th largest
eigenvalue and pT

nj(θ) = (pT
nj,1(θ) . . . pT

nj,n(θ)) the corresponding row eigenvector. Defining

pT
nj

(L) =
1
2π

∞∑

k=−∞

[∫ π

−π
pT

nj(θ)eikθdθ

]
Lk, (3.4)

the proposed estimator of χχχnt is
[
p̃T

n1
(L)pT

n1
(L) + · · · + p̃T

nq
(L)pT

nq
(L)
]
xnt, (3.5)

(tilde denoting conjugate and transpose) which is the projection of xnt on the approximate
factor space (for details on the approximate factor space and the projection see Forni, Hallin,
Lippi and Reichlin, 2000). The corresponding estimates of the spectral density matrices of χχχnt

and ξξξnt are

ΣΣΣχT
n (θ) = λT

n1(θ)p̃T
n1(θ)pT

n1(θ) + · · · + λT
nq(θ)p̃T

nq(θ)pT
nq(θ) (3.6)

ΣΣΣξT
n (θ) = λT

n,q+1(θ)p̃T
n,q+1(θ)pT

n,q+1(θ) + · · · + λT
nn(θ)p̃T

nn(θ)pT
nn(θ), (3.7)

respectively, and the estimates of the k-lag covariance matrices of χχχnt and ξξξnt are

ΓΓΓχT
nk =

∫ π

−π
eikθΣΣΣχT

n (θ)dθ and ΓΓΓξT
nk =

∫ π

−π
eikθΣΣΣξT

n (θ)dθ. (3.8)

Equation (3.5) shows that, with this method, time filters are applied to the x’s before averaging
along the cross-sections. To get an intuition of why such filtering can be useful to approximate

1A comprehensive treatment of dynamic principal components can be found in Brillinger (1981).
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the common factor space, assume χ1t = ut, χ2t = ut−1, var(ξ1t) = var(ξ2t) = 1, cov(ξ1t, ξ2t) = 0,
so that the idiosyncratic to common variance ratio is 1 for both variables. Since the common
shock ut is serially independent, in the contemporaneous average (ut + ut−1 + ξ1t + ξ2t)/2, the
idiosyncratic component is still as large as the common component. By contrast, if we can shift
the x’s over time before averaging, we can take (x1t−1 + x2t)/2 = ut−1 + (ξ1t−1 + ξ2t)/2, whose
idiosyncratic variance is only 1/2 of the common variance. We will come back to this point with
greater detail in Section (6). Consistency results for the above estimators can be found in Forni,
Hallin, Lippi and Reichlin (2000), while consistency rates are studied in Forni, Hallin, Lippi and
Reichlin (2003).

The trouble with this estimation method is that the filters used in equation (3.5) are two-
sided. This creates no problem in the central part of the sample. But at the end (or the
beginning) of the sample, two-sided filters cannot be applied as they are. By truncating filters,
the performance of (3.5) as an estimator of χit deteriorates as t approaches T . For the same
reason, formula (3.5) cannot be used for prediction. Summing up, the dynamic principal com-
ponent estimator is good only if we are interested in estimating the covariances or the historical
values of the χ’s. By contrast, if we are mainly interested in the most recent values of the χ’s
or in prediction, we are forced to use only one-sided filters or contemporaneous averaging.

However, although the two-sided filters appearing in (3.5) can no longer be used, the es-
timated covariances (3.8) can help to construct one-sided or contemporaneous averages that
perform better than static principal components. Both the static and the dynamic method
consist, as we have seen, of the construction of an approximate factor space and a projection on
such a space. The basic idea of the present paper is that the estimates ΓΓΓχT

n0 and ΓΓΓξT
n0 , obtained

with the dynamic method, may produce both a better approximation of the factor space, and a
better estimate of the projection coefficients. In particular, to construct the approximate factor
space, we will make use of ΓΓΓχT

n0 and ΓΓΓξT
n0 to obtain contemporaneous averages of the x’s that

minimize the fraction of idiosyncratic variance contained in the aggregates.

4 A two-step, one-sided estimator

Formally, we want to find r linear combinations W jT
nt = ZT

njxnt, where the weights ZT
nj are

defined recursively as follows:

ZT
nj = Arg max

a∈Rn
aΓΓΓχT

n0 a′

subject to aΓΓΓξT
n0a

′ = 1 (4.1)

aΓΓΓξT
n0Z

T ′
nm = 0 for 1 ≤ m ≤ j − 1

for j = 1, . . . , r, a prime denoting transpose (for j = 1 only the first constraint applies). It
is possible to show that the vectors ZT

nj are the generalized eigenvectors associated with the
generalized eigenvalues νT

nj of the couple of matrices (ΓΓΓχT
n0 ,ΓΓΓξT

n0 ), i.e. that

ZT
njΓΓΓ

χT

n0
= νT

njZ
T
njΓΓΓ

ξT
n0 j = 1, 2, . . . , n, (4.2)

with the normalization ZT
njΓΓΓ

ξT
n0Z

T ′
nj = 1 and ZT

niΓΓΓ
ξT
n0Z

T ′
nj = 0 for i 6= j.2 The linear combinations

W kT
nt are the generalized principal components of xnt.
2For existence of vectors ZT

nj fulfilling (4.2), plus the normalization equations, and equivalence of (4.2) and
(4.1), see the Appendix.
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The forecast we propose for χi,T+h based on information available at time T is the estimated
projection of χi,T+h onto the space spanned by the r aggregates W kT

nT , k = 1, . . . , r, i.e.

χnT
i,T+h|T =

n∑

j=1

KTh
n,ijxjT , (4.3)

where (
KTh

n,ij

)
= KTh

n = ΓΓΓχT
nhZT ′

n

(
ZT

nΓΓΓT
n0Z

T ′
n

)−1
ZT

n , ZT
n = (ZT ′

n1 · · · ZT ′
nr)

′.

The corresponding formula for the in-sample estimator is

χnT
it =

n∑

j=1

KT0
n,ijxjt. (4.4)

We refer to the estimators (4.3) and (4.4) as two-step estimators, the first step estimating
the covariances ΓΓΓχ

n0 and ΓΓΓξ
n0, the second using such estimates to construct generalized principal

components of the x’s.
Note that an immediate consequence of (4.2) is that the vectors ZT

nj, j = 1, . . . , n, are also
the generalized eigenvectors of the couple (ΓΓΓχT

n0 +ΓΓΓξT
n0 ,ΓΓΓξT

n0) = (ΓΓΓT
n0,ΓΓΓ

ξT
n0 ), with eigenvalues νT

nj+1.
It follows that the generalized principal components reduce to the usual principal components
in the special case ΓΓΓξT

n0 = In.
Moreover, it is easily seen that the generalized principal components are invariant with

respect to linear transformations of the x’s, i.e. the generalized principal components of ynt =
Hxnt = Hχχχnt +Hξξξnt = αααnt +βββnt (say), with det(H) 6= 0, and those of xnt are the same. To see
this, consider that from (4.2) we get ZT

njH
−1ΓΓΓα

n0 = ZT
njH

−1HΓΓΓχ
n0H

′ = νnjZT
njH

−1HΓΓΓξ
n0H =

νnjZT
njH

−1ΓΓΓβ
n0, so that the generalized eigenvectors of the couple (ΓΓΓα

n0,ΓΓΓ
β
n0) are ZT

njH
−1 and

the generalized principal components are ZT
njH

−1ynt = W jT
nt .

As a consequence, computing the generalized principal components is equivalent to com-
puting the standard principal components of ynt = Hxnt, where H is such that the variance-
covariance matrix of βββnt is the n × n identity matrix. In other words, the generalized principal
component forecast can be obtained simply by applying a specific normalization and computing
Stock and Watson’s forecast (3.1) on the normalized x’s. When the idiosyncratic variance-
covariance matrix is diagonal, the normalization amounts to dividing each of the x’s by the
standard deviation of its idiosyncratic component. Such normalization is intuitively much more
appealing than the usual one, which consists in dividing by the standard deviation of the vari-
ables.

5 Consistency

In this section we prove consistency of the two-step in-sample estimator, meaning convergence
in probability of χnT

it to χit for each i as T and n tend to infinity, and convergence in probability
of the two-step forecast χnT

i,T+h|T to the population projection of χi,T+h on the space G(F, T ).
Stock and Watson (2002) prove consistency of their predictor for a model slightly different from
the one we are analyzing here.
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As in Section 3, denote by ΣΣΣT
n (θ) =

(
σT

ij(θ)
)

1≤i,j≤n
any consistent estimator of the spectral

density matrix ΣΣΣn(θ) = (σij(θ))1≤i,j≤n. Under Assumption A2 , for a given n and any ε > 0,

lim
T→∞

P

[
max

1≤i,j≤n
sup

θ∈[−π,π]
|σT

ij(θ) − σij(θ)| > ε

]
= 0. (5.1)

This is an easy consequence of Remark 1 to Theorem 10.4.1, Brockwell and Davis (1987), p.
353 (note that Remark 1 applies, mutatis mutandis, to Theorem 11.7.2, p. 447, which extends
Theorem 10.4.1 to the multidimensional case).

Define
Σ̌ΣΣ

χ
n(θ) = λn1(θ)p̃n1(θ)pn1(θ) + · · · + λnq(θ)p̃nq(θ)pnq(θ)

and
Σ̌ΣΣ

ξ
n(θ) = λn,q+1(θ)p̃n,q+1(θ)pn,q+1(θ) + · · · + λnn(θ)p̃nn(θ)pnn(θ) (5.2)

where λnj(θ) and pnj(θ) are the population counterparts of λT
nj(θ) and pT

nj(θ) respectively.
Under Assumption C1(b), continuity of eigenvalues and of the first q eigenvectors3 as func-

tions of the entries of ΣΣΣT
n (θ) implies that (5.1) applies to the entries of ΣΣΣχT

nt and Σ̌ΣΣ
χ
nt respectively,

i.e. that for a given n and any ε > 0,

lim
T→∞

P

[
max

1≤i,j≤n
sup

θ∈[−π,π]
|σχT

ij (θ) − σ̌χ
ij(θ)| > ε

]
= 0. (5.3)

The same property holds for ΣΣΣξT
nt and Σ̌ΣΣ

ξ
nt. Thus ΣΣΣχT

nt and ΣΣΣξT
nt are consistent estimators of

Σ̌ΣΣ
χ
nt and Σ̌ΣΣ

ξ
nt respectively. Moreover, (5.3) implies that ΓΓΓχT

nk and ΓΓΓξT
nk , as defined in (3.8), are

consistent estimators, of

Γ̌ΓΓ
χ
nk =

∫ π

−π
eikθΣ̌ΣΣ

χ
n(θ)dθ and Γ̌ΓΓ

ξ
nk =

∫ π

−π
eikθΣ̌ΣΣ

ξ
n(θ)dθ, (5.4)

respectively.
Denote by µ̌χ

nk and µ̌ξ
nk the eigenvalues of Γ̌ΓΓ

χ
nk and Γ̌ΓΓ

ξ
nk respectively. Lemma 9.3 (see the

Appendix) proves that, under Assumptions A, B, C and D, limn→∞ µ̌χ
nr = ∞ while µ̌ξ

n1 is
bounded. We will need the following technical assumption

E. (a) µ̌χ
nk > µ̌χ

n,k+1, k = 1, . . . , r; (b) µ̌ξ
nn is bounded away from zero as n → ∞.

Assumption E(a), like C1(b), does not imply any significant loss of generality. For a comment
on E(b) see the Appendix.

Lastly, let us introduce some new notation. By wkT
nt we denote the standardized version of

W kT
nt . Since

ZT
njΓΓΓ

ξT
n0Z

T ′
nj = ZT

njΓΓΓ
χT
n0 ZT ′

nj + ZT
njΓΓΓ

ξT
n0Z

T ′
nj = 1 + νT

nj,

then wkT
nt = zT

njxnt, where zT
nj = ZT

nj/
√

1 + νT
nj. Note that since ZT

njΓΓΓ
T
n0Z

T ′
nk = 0 for j 6= k

(using the constraints of (4.1)), the vectors wkT
nt , for k = 1, 2, . . . , r, form an orthonormal system

spanning a space of the same dimension as G(F, t). Denote by Žnj, ν̌nj, Ǩh
n, χ̌n

i,T+h|T , etc., the

objects playing the same roles as ZT
nj, νT

nj, KhT
n , χnT

i,T+h|T , etc., but with respect to Γ̌ΓΓ
χ
n0 and Γ̌ΓΓ

ξ
n0.

3The somewhat inaccurate expression “continuity of the eigenvectors” stands for continuity of each matrix
p̃T

nj(θ)p
T
nj(θ), for j = 1, . . . , q.
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Proposition 5.1 Suppose that Assumptions A, B, C, D and E hold for model (2.1). Then,
given i, for all ε > 0 and η > 0, there exist N0 = N0(ε, η), with N0 > i, and T0 = T0(n, ε, η)
such that, for all n ≥ N0, all T ≥ T0,

P
[∣∣∣χnT

i,T+h|T − χi,T+h|T

∣∣∣ > ε
]
≤ η. (5.5)

The proof of Proposition 5.1 relies on the following lemmas.

Lemma 5.1 Let an = (an1, . . . , ann) denote a triangular array of real numbers such that
limn→∞

∑n
i=1 a2

ni = 0. Then, under the assumptions of Proposition 5.1, anξξξnt → 0 in quadratic
mean as n → ∞. It follows that anxnt converges to G(F, t) in quadratic mean.

For a proof see e. g. Forni, Hallin, Lippi and Reichlin, 2000, Lemma 3, p. 551.

Lemma 5.2 Let K denote a subspace of the Hilbert space H of centered, square-integrable
random variables, with covariance scalar product. Assume that K is generated by a subset
(v1, . . . , vk) of k linearly independent elements of H. Let {vn1, . . . , vnk , n ∈ N} be a sequence of
k-tuples of H such that, denoting by proj ( . |K) the projection onto K,

(i) vnj − proj (vnj|K) converges to zero in quadratic mean as n → ∞,

(ii) the determinant of the covariance matrix (Cov (vni, vnj))i,j=1,...,k is bounded away from
zero as n → ∞.

Then, the projection of v ∈ H onto the space Kn spanned by {vn1, . . . , vnk} converges in quadratic
mean, as n → ∞, to the projection of v onto K.

For the proof see the Appendix.

Proof of Proposition 5.1. Lemmas 9.2 and 9.3 imply that ν̌nr tends to infinity as n → ∞. As
a consequence, each of the r sequences {Žnj/

√
1 + ν̌nj, n ∈ N}, j = 1, . . . , r, is a triangular array

fulfilling the assumption of Lemma 5.1. For, Žnj is bounded in modulus, since 1 = ŽnjΓ̌ΓΓ
ξ
n0Ž

′
nj ≥

µ̌ξ
nnŽnjŽ′

nj where, in view of Assumption E(b), µ̌ξ
nn is bounded away from zero. Lemma 5.1

implies that w̌j
nt = Žnjxnt/

√
1 + ν̌nj converges in quadratic mean to the space G(F, t) as n → ∞

for j = 1, . . . , r. Then, by Lemma 5.2, χ̌n
i,T+h|T converges to χi,T+h|T in quadratic mean and

therefore in probability. Thus, given ε > 0 and η > 0, there exists N1(ε, η), such that for n > N1

P(|χi,T+h|T − χ̌n
i,T+h|T | > ε) < η. (5.6)

Convergence in probability of ΓΓΓχT
n and ΓΓΓξT

n to Γ̌ΓΓ
χ
n and Γ̌ΓΓ

ξ
n, respectively, as T → ∞, and Assump-

tion E(a), imply that KTh
n converges in probability to Ǩh

n for T → ∞. This implies that, given
n, ε > 0 and η > 0, there exists T1(n, ε, η) such that for T > T1

P




n∑

j=1

|KTh
n,ij − Ǩh

n,ij| > ε


 < η.

Moreover, given n and η > 0, let M(n, η) be a positive real such that P(maxj=1,n |xjt| ≥
M(n, η)) < η. Then, given n, ε > 0 and η > 0, there exists T2(n, ε, η) such that for T > T2

P
(∣∣∣χ̌n

i,T+h|T − χnT
i,T+h|T

∣∣∣ > ε
)

= P



∣∣∣∣∣∣

n∑

j=1

(KTh
n,ij − Ǩh

n,ij)xjt

∣∣∣∣∣∣
> ε


 < η. (5.7)
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To see this, note that

P
(∣∣∣
∑n

j=1(K
Th
n,ij − Ǩh

n,ij)xjt

∣∣∣ > ε
)

≤ P
(∑n

j=1 |(KTh
n,ij − Ǩh

n,ij)|M(n, η/2) > ε and maxj=1,n |xjt| < M(n, η/2)
)

+P(maxj=1,n |xjt| ≥ M(n, η/2)) ,

so that (5.7) is obtained defining T2(n, ε, η) = T1(n, ε/M(n, η/2), η/2). Lastly,

P
(∣∣∣χi,T+h|T − χnT

i,T+h|T

∣∣∣ > ε
)
≤ P

(∣∣∣χi,T+h|T − χ̌n
i,T+h|T

∣∣∣ > ε/2
)
+P

(∣∣∣χ̌n
i,T+h|T − χnT

i,T+h|T

∣∣∣ > ε/2
)

.

(5.8)
Defining N0(ε, η) = N1(ε/2, η/2) and T0(n, ε, η) = T2(n, ε/2, η/2), the conclusion follows from
(5.6) and (5.7). QED

As the reader can easily check, the proof of Proposition 5.1 can be adapted with no difficulty
to prove consistency of our two-step in-sample estimator (4.4). Moreover, Proposition 5.1 holds
if the matrices ΓΓΓξT

n0 and Γ̌ΓΓ
ξ
n0 are replaced by any other couple of positive definite symmetric

matrices DT
n and Dn, respectively, provided that DT

n converges to Dn in probability, and that
the first eigenvalue of Dn is bounded, while the last one is bounded away from zero (indeed
Lemmas 9.2 and 9.3 hold). This implies consistency of Stock and Watson’s estimators (3.1) and
(3.2), for which Dn = DT

n = In.
Finally, letting γ̌χ

ij,nk and γχT
ij,nk be the (i, j) entry of Γ̌ΓΓ

χ
nk and ΓΓΓχT

nk respectively, note that
Lemma 5.2 implies that γ̌χ

ij,nk converges to γχ
ij,k = E(χit, χj,t−k) as n → ∞. Using this result,

the fact that ΓΓΓχT
nk is a consistent estimator of Γ̌ΓΓ

χ
nk for a given n as T → ∞, and an analogue of

(5.8), it is easily seen that γχT
ij,nk is a consistent estimator of γχ

ij,k, meaning that an analogue of

Proposition 5.1 holds for γχT
ij,nk and γχ

ij,nk.

6 Finite sample performances: A stylized example

A theoretical derivation of optimality properties or asymptotic relative efficiency values is dif-
ficult in such a general context. However, some insight into the respective advantages of our
method and Stock and Watson’s can be obtained, partly by analyzing simple examples, partly
through simulation. In this section we use a special, highly stylized, model to provide intuition
on why and when our method should perform better than the static method. For the sake of
simplicity, we concentrate on n-asymptotics, that is, we proceed as though T were infinite and
therefore the covariance matrices of xnt were known. In particular, when using the dynamic
method, we are assuming that the matrices Γ̌ΓΓ

χ
n0 and Γ̌ΓΓ

ξ
n0, and related numbers and vectors, are

known. In the next section we relax both the stylization and the T = ∞ assumption and esti-
mate a fairly large class simulated models, with different T , n, q and a wide variety of dynamic
loadings for the u’s. Simulation results confirm the intuition based on the stylized model.

Let us assume that there is only one common shock, ut, and two groups of variables, the first
loading ut with lag zero, the second with lag one. For convenience, we let n go to infinity by
adding one variable to each group, so that n is even. Moreover, to simplify notation, we reorder
the variables, for any given n, in such a way that the m = n/2 variables in the first group come
first. Lastly, we assume that ξξξnt is a vector white noise, so that ΣΣΣξ

n(θ) = ΓΓΓξ
n0/2π, and that ΓΓΓξ

n0

is diagonal. We have
xit = χit + ξit = aiut + biut−1 + ξit, (6.1)
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where bi = 0 for i = 1, . . . ,m, ai = 0 for i = m + 1, . . . , n. The static form of (6.1) is

xit = aiF1t + biF2t + ξit, (6.2)

where F1t = ut and F2t = ut−1. We have one ‘dynamic factor’ in (6.1) and two ‘static factors’
in (6.2). As mentioned above, we assume T = ∞, so that, for a given n, the spectral densities
and the covariances of xnt are known.

Under our assumptions on the coefficients ai and bi, the spectral density matrix of xnt is

ΣΣΣn(θ) =
1
2π

[
(a1 · · · am bm+1e

−iθ · · · bne−iθ)′(a1 · · · am bm+1e
iθ · · · bneiθ) + ΓΓΓξ

n0

]
. (6.3)

The space spanned by the process {ut, t ∈ Z} is approximated by the space spanned by present,
past and future values of the first dynamic principal component of xnt, i.e. p

n1
(L)xnt, where

pn1(θ) is the eigenvector corresponding to the first eigenvalue of ΣΣΣn(θ) (see (3.4) for the rela-
tionship between the filter p and the function p).

In our example the filter p
n1

(L) can be determined by an elementary procedure. We first
align the x’s so that all of them load ut:

yt = (x1t · · · xmt xm+1,t+1 · · · xn,t+1)′.

Secondly, let λn and cn = (cn1 · · · cnm cn,m+1 · · · cnm) be respectively the first eigenvalue and
the corresponding normalized eigenvector of the variance-covariance matrix of yt, i.e.

(a1 · · · am bm+1 · · · bn)′(a1 · · · am bm+1 · · · bn) + ΓΓΓξ
n0. (6.4)

It easily seen that

pn1(θ) = (cn1 · · · cnm cn,m+1e
iθ · · · cnneiθ), p

n1
(L) = (cn1 · · · cnm cn,m+1L

−1 · · · cnnL−1),
(6.5)

so that
p

n1
(L)xnt = cn1x1t + · · · + cnmxmt + cn,m+1xm+1,t+1 + · · · + cnnxn,t+1

(incidentally, note that even in this simple case, since the filter pn1(L) contains negative powers
of L, estimation of the factor using the dynamic method uses future values for some of the x’s,
this implying deterioration at the end of the sample). The estimated spectral density of χχχnt is

Σ̌ΣΣ
χ
n(θ) = λn1(θ)p̃n1(θ)pn1(θ),

and the estimated ΓΓΓχ
n0, i.e. Γ̌ΓΓ

χ
n0, is obtained by integrating the last expression, as in (3.8).

Inspection of (6.3) shows that λn1(θ) = λn for any θ ∈ [−π π], so that, using (6.5),

Γ̌ΓΓ
χ
n0 =

(
λnc′n,[1,m]cn,[1,m] 0m

0m λnc′n,[m+1,n]cn,[m+1,n]

)
,

where the vector cn,[m1,m2] is obtained by selecting the components from m1 to m2 of cn.
On the other hand, let µnj be the j-th largest eigenvalue of ΓΓΓn0, Snj be the corresponding

normalized row eigenvector and Sn = (S′
n1 S′

n2)
′. The estimated ΓΓΓχ

n0, with the static method, is
(

µn1S′
n1,[1,m]Sn1,[1,m] 0m

0m µn2S′
n2,[m+1,n]Sn2,[m+1,n]

)
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(see equation (3.3)).
Intuition on the difference between the two estimates can be obtained assuming ai = bm+i = 1

for i = 1, . . . ,m, and σ2
ξi

= 1 for all i. In this case, denoting by 1` and 0` the ` × ` matrices
whose entries are equal to 1 and 0 respectively, we obtain:

ΓΓΓχ
n0 =

(
1m 0m

0m 1m

)
and ΓΓΓn0 =

(
1m 0m

0m 1m

)
+ In. (6.6)

Moreover, µn1 = µn2 = m + 1, Sn1 = (1 · · · 1 0 · · · 0)/
√

m, Sn2 = (0 · · · 0 1 · · · 1)/
√

m,
λn = 1 + n, and, denoting by ιιι` the row `-dimensional vector with all entries equal to 1,
cn = ιιιn/

√
n, pn1(θ) = (ιιιm ιιιmeiθ)/

√
n. Hence the estimates of ΓΓΓχ

n0 with the dynamic and the
static method are

(
1 +

1
2m

)(
1m 0m

0m 1m

)
and

(
1 +

1
m

)(
1m 0m

0m 1m

)
(6.7)

respectively. Thus the dynamic estimation error is one half of the static. The reason for this
result is easy to see. Static estimation uses two aggregates, the first averaging the x’s from 1
to m, the second one averaging the x’s from m + 1 to n, with equal weights 1/m. By contrast,
dynamic estimation aligns the variables, uses only one aggregate with equal weights 1/2m = 1/n
and is therefore twice as efficient in annihilating the idiosyncratic component. The results are
not very different if we allow for distinct values of a and b, the ratio between estimation errors
remaining about 2.

Now let us slightly complicate the above example to analyze in-sample estimation of χχχnt.
We assume that m = 2s (so that n = 4s), ai = a for i = 1, . . . , s, ai = b for i = s + 1, . . . ,m,
bi = a for i = m+1, . . . , 3s, and bi = b for i = 3s+1, . . . , n, and σ2

ξi
is such that all the x’s have

unit variance. Thus the coefficients a and b are equally represented within the group loading ut

and the group loading ut−1. Figure 6.1 is obtained by letting a vary between .1 and .9, while
b = .6 and s = 5 (n = 20). The solid, dashed and bold lines represent

trace ΓΓΓe

trace ΓΓΓχ
20,0

, (6.8)

where ΓΓΓe is the variance-covariance matrix of the difference between estimated and actual χχχnt,
with the static method, the two-step method and the dynamic method, respectively. The plot
shows that:

1. The dynamic method has a great advantage over the static method. The ratio between the
traces varies about 2, which is, as we have seen, the order of magnitude of the estimation-
error ratio when ΓΓΓχ

n0 is estimated via the static and the dynamic methods, respectively.

2. A large part of this advantage is lost when we use the two-step estimator. Indeed, in
the second step we can only use contemporaneous values of the x’s. However, (I) the
projection on the estimated factor space uses the covariance matrix estimated with the
dynamic method, which is about twice as good as compared to what we use with the
static method; (II) the estimated ΓΓΓχ

n0 and ΓΓΓξ
n0 are used to compute generalized principal

components, so that the difference between a and b is exploited in an optimal way.

3. These two improvements over the static method do not combine straightforwardly. Indeed,
as inspection of Figure 6.1 shows, the minimum advantage of the two-step method lies near
but not exactly at a = .6, where a and b are equal, so that (II) is lost.
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Figure 6.1 Performance of static, two-step and dynamic estimators of χχχnt
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Solid line: static estimator; dashed: two-step estimator; bold: dynamic estimator.

Summing up, the suggestion arising from our stylized model is that two features of the model
underlying the data can be expected to be crucial for the relative performance of the competing
estimators: (i) substantial heterogeneity, among cross-sectional units, in the lag structure of the
factor loadings, and (ii) sizable differences in the common-to-idiosyncratic variance ratios.

If one is interested in the estimation of variances and covariances of the common and the
idiosyncratic components, we recommend using the dynamic method (formula (3.8)) whenever
condition (i) seems to hold true. Similarly, if one is interested in the historical values of the
common and the idiosyncratic components, formula (3.5) should be used.

On the other hand, if one is interested in forecasting or end-of-sample estimation, the two-
step predictor of equation (4.3) may provide a substantial improvement over the static principal
component predictor of equation (3.1) under (i), and in particular when (ii) holds as well.

Different data sets may differ considerably regarding (i) and (ii). If we do not have any
a priori information, we can get some indication about (i) simply be looking at the lagged
cross-correlations of the x’s (the static method, which is simpler, can be used for a preliminary
empirical assessment of (i) and (ii)).

7 Finite sample performances: Simulation results

In this section we perform simulations on four models which differ by the degree of heterogeneity
of the idiosyncratic variances and the dynamic structure of the common components.

The first model, M1, has one autoregressive factor, loaded only contemporaneously, and
spherical idiosyncratic components. This is a case where, in principle, the static method should
perform comparatively well. Models M2, M3 and M4 have a richer and heterogeneous dynamic
structure—a feature which should favor the dynamic method. M2 has MA(3) loading filters,
two serially uncorrelated factors and diagonal idiosyncratic variance-covariance matrix. M3 and
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M4 have one autoregressive factor and the common components of different groups are shifted
in time like in the stylized example of the previous section. The two models differ by the
idiosyncratic components: in M3 they have different variances whereas in M4 the variance is
the same. The comparison between the last two models should help us understanding the role
of heterogeneity of the size of the idiosyncratic components. Finally, in M3 the idiosyncratic
components are not mutually orthogonal (but condition C2 is still satisfied).
Model M1. More precisely, model M1 is

x∗
it = λift + αciεit

(1 − aL)ft = ut,
(M1)

where a = 0.5, the shocks ut and εit, t = 1, . . . , T , i = 1, . . . , n and the coefficients λi, i = 1, . . . , n
are mutually independent standard normal variables, while the coefficients ci are mutually inde-
pendent, independent of the latter variables, and uniformly distributed on the interval [0.1, 1.1]
to avoid cases of nearly zero idiosyncratic components. The constant α is set so as to guarantee
that the idiosyncratic-common variance ratio is equal to one on average (the same holds for all
models below). Here q = 1 and s = 1.
Model M2. Model M2 is

x∗
it =

3∑

k=0

aiku1,t−k +
3∑

k=0

biku2,t−k + αciεit. (M2)

Again, aik and bik, k = 0, 1, 2, 3, i = 1, . . . , n and the shocks u1t, u2t and εit t = 1, . . . , T ,
i = 1, . . . , n are standard normal variables while the ci’s are uniformly distributed on [0.1 1.1]
as for (M1). Here q = 2 and s = 3.
Model M3. Here the observations are generated by the equation

x∗
it =

∑li+2
k=li

λk−li,ift−k + ξ∗it (M3)

with
(1 − aL)ft = ut

ξ∗it = αci(εit + εi+1,t)

where a = .5, li = 0 for 1 ≤ i ≤ m , li = 1 for m + 1 ≤ i ≤ 2m and li = 2 for 2m + 1 ≤ i ≤ n.
In order for the three types to be equally present in the panel, we took m = [n/3] (as usual, we
denote by [z] the largest integer less than or equal to z). Here q = 1 and s = 5. Note that ξ∗it is
positively correlated with ξ∗i+1,t, but is orthogonal to ξ∗i+k,t at any lead and lag for k > 1.
Model M4. Here the observations are generated as in M3, but the idiosyncratic components
are no longer cross-sectionally correlated (ξ∗it = αciεit) and the coefficients ci are such that
var(λift)/var(x∗

it) = .5; the percentage of idiosyncratic variance then is the same for all i.
Before estimation, all variables were taken in deviation from their sample means and di-

vided by their standard deviations, i.e. spectral estimation was conducted on the standardized
observations

xit = (x∗
it − x̄∗

i )/si, (7.1)

where x̄∗
i =

∑T
t=1 x∗

it/T and s2
i =

∑T
t=1(x

∗
it − x̄∗

i )
2/(T − 1).

An important empirical finding of our simulations is that, when the cross-sectional dimension
n is large with respect to the period of observation T , forcing to zero the off-diagonal entries of the
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estimated variance-covariance matrix ΓΓΓξT
n0 of the idiosyncratic components significantly improves

forecasting performances, even when the actual matrix is non diagonal. Our explanation for this
somewhat counterintuitive result is the following. When computing ΓΓΓξT

n0 , we unavoidably get
some spurious large covariances, even when the true covariance is zero. When n increases and
T is held fixed, the number of such errors increases as n2, the order of the number of elements
in the n × n matrices ΓΓΓξT

n0 . On the other hand, by forcing to zero the off-diagonal entries of our
estimated matrix, we ignore the true off-diagonal non-zero entries. Also in this case the error
increases with n, but, owing to the boundedness of the eigenvalues, it increases only linearly
in n. Therefore, we henceforth set to zero the off-diagonal entries of ΓΓΓξT

n0 before computing
eigenvectors. Note that, as observed at the end of Section 5, replacing ΓΓΓξT

n0 with any symmetric
positive semi-definite matrix with bounded eigenvalues does not affect consistency results.

We generated data from each model with n = 20, 50, 100, 200 and T = 20, 50, 100, 200. Then
we computed the in-sample estimates and the forecasts using both the static and the two-step
method. We estimated the spectral density matrix of the x’s as

ΣΣΣT
n (θ) =

1
2π

M∑

k=−M

wkΓΓΓnT
k e−iθk

where wk = 1 − |k|
M+1 with window size M = [T 1/2]. The spectra were evaluated at 101 equally

spaced frequencies in the interval [−π, π], namely, at a grid of frequencies θh = 2πh
100 , h =

−50, . . . , 50. We then computed the dynamic principal component decomposition, as explained
in Section 3. In order to obtain ΓΓΓχT

nk and ΓΓΓξT
nk we used the inverse discrete Fourier transforms

ΓΓΓχT
nk =

2π
101

50∑

h=−50

ΣΣΣχT
n (θh)eiθhk and ΓΓΓξT

nk =
2π
101

50∑

h=−50

ΣΣΣξT
n (θh)eiθhk,

with ΣΣΣξT
n (θ) = ΣΣΣn(θ) − ΣΣΣχT

n (θ). We assumed both the number q of dynamic factors and the
number r = q(s + 1) of static factors to be known. Each experiment was replicated 1000 times.

We measured the performance of one-step-ahead forecasts by means of the criterion
∑n

i=1(χ
nT
i,T+1|T − χi,T+1)2

∑n
i=1

∑T
t=1 χ2

it/T

and performance of within-sample estimates by means of
∑n

i=1

∑T
t=1(χ

nT
i,t − χit)2

∑n
i=1

∑T
t=1 χ2

it

.

Results for models M1, M2, M3 and M4 are shown in Tables 5.1, 5.2, 5.3 and 5.4 respectively,
with part (a) devoted to forecasts and part (b) devoted to within-sample estimation. We report
the average value of the criterion, along with the empirical standard deviation (in brackets),
across the 1000 replications, both for the static and for the two-step method.
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Table 5.1a: Model M1, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.9462 0.9492 0.9287 0.9325 0.9292 0.9323 0.9288 0.9321
T = 20 (1.2356) (1.1961) (1.2035) (1.1598) (1.2030) (1.1519) (1.1971) (1.1470)

0.8642 0.8606 0.8584 0.8529 0.8555 0.8486 0.8553 0.8488
T = 50 (1.1493) (1.1430) (1.1472) (1.1288) (1.1451) (1.1190) (1.1439) (1.1174)

0.7995 0.8018 0.7869 0.7881 0.7864 0.7864 0.7851 0.7818
T = 100 (1.0449) (1.0425) (1.034) (1.0294) (1.0321) (1.0288) (1.0326) (1.0256)

0.7833 0.7785 0.7753 0.7770 0.7731 0.7704 0.7721 0.7700
T = 200 (1.0723) (1.0698) (1.0584) (1.0486) (1.0576) (1.0541) (1.0577) (1.0554)

Table 5.1b: Model M1, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.1463 0.1759 0.1070 0.1139 0.0969 0.0969 0.0924 0.0888
T = 20 (0.1030) (0.1447) (0.0551) (0.0665) (0.0447) (0.0508) (0.0403) (0.0427)

0.0631 0.0878 0.0408 0.0506 0.0354 0.0399 0.0328 0.0345
T = 50 (0.0351) 0.0471 (0.0156) 0.0190 (0.0111) 0.0126 (0.0091) 0.0099

0.0413 0.0649 0.0225 0.0327 0.0182 0.0233 0.0161 0.0186
T = 100 (0.0232) (0.0299) (0.0075) (0.0097) (0.0046) (0.0057) (0.0034) (0.0039)

0.0313 0.0544 0.0143 0.0244 0.0103 0.0155 0.0085 0.0111
T = 200 (0.0181) (0.0225) (0.0044) (0.0058) (0.0022) (0.0028) (0.0014) (0.0016)

Table 5.2a: Model M2, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.8901 0.9757 0.7773 0.8552 0.7227 0.7763 0.6911 0.7349
T = 20 (0.5266) (0.5423) (0.4790) (0.4851) (0.4276) (0.4422) (0.4132) (0.4255)

0.6514 0.7446 0.5025 0.5650 0.4613 0.4911 0.4412 0.4577
T = 50 (0.4360) (0.4793) (0.3446) (0.3692) (0.3165) (0.3251) (0.3078) (0.3130)

0.5385 0.6332 0.3944 0.4427 0.3552 0.3775 0.3402 0.3509
T = 100 (0.3844) (0.4284) (0.2895) (0.3015) (0.2692) (0.2736) (0.2645) (0.2689)

0.4949 0.5832 0.3660 0.4076 0.3278 0.3487 0.3127 0.3223
T = 200 (0.3367) (0.3702) (0.2852) (0.2896) (0.2694) (0.2733) (0.2673) (0.2693)

Table 5.2b: Model M2, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.4587 0.7163 0.3683 0.5476 0.3290 0.4536 0.3057 0.3933
T = 20 (0.1523) (0.2457) (0.1049) (0.1705) (0.0836) (0.1340) (0.0708) (0.1075)

0.2838 0.5632 0.1827 0.3106 0.1496 0.2109 0.1340 0.1672
T = 50 (0.0751) (0.1536) (0.0347) (0.0759) (0.0235) (0.0430) (0.0180) (0.0284)

0.2154 0.4861 0.1238 0.2110 0.0931 0.1303 0.0788 0.0953
T = 100 (0.0525) (0.1234) (0.0207) (0.0435) (0.0120) (0.0205) (0.0081) (0.0122)

0.1842 0.4336 0.0921 0.1613 0.0613 0.0909 0.0471 0.0598
T = 200 (0.0448) (0.0998) (0.0157) (0.0279) (0.0076) (0.0117) (0.0042) (0.0059)
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Table 5.3a: Model M3, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.7644 0.8645 0.6680 0.7748 0.5713 0.6383 0.5292 0.5499
T = 20 (0.6472) (0.6793) (0.5975) (0.6102) (0.4619) (0.4517) (0.3919) (0.3522)

0.5273 0.5913 0.4636 0.4962 0.3565 0.3773 0.2792 0.2771
T = 50 (0.5886) (0.5993) (0.5620) (0.5393) (0.3770) (0.3601) (0.2355) (0.2139)

0.4482 0.4966 0.3935 0.4094 0.2873 0.2957 0.1958 0.1943
T = 100 (0.5312) (0.5367) (0.5136) (0.4806) (0.3470) (0.3210) (0.1758) (0.1678)

0.4131 0.4690 0.3493 0.3719 0.2488 0.2562 0.1521 0.1563
T = 200 (0.4779) (0.5099) (0.4213) (0.4275) (0.2826) (0.2793) (0.1440) (0.1435)

Table 5.3b: Model M3, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.4143 0.9583 0.3104 0.6670 0.2970 0.5440 0.3025 0.4505
T = 20 (0.2145) (0.4796) (0.1326) (0.2913) (0.1096) (0.2299) (0.0985) (0.1893)

0.2285 0.7279 0.1444 0.4083 0.1335 0.2753 0.1326 0.1856
T = 50 (0.0900) (0.2752) (0.0433) (0.1223) (0.0317) (0.0791) (0.0268) (0.0525)

0.1682 0.6468 0.0921 0.3176 0.0831 0.1839 0.0809 0.1044
T = 100 (0.0613) (0.2184) (0.0234) (0.0758) (0.0157) (0.0415) (0.0119) (0.0218)

0.1386 0.5959 0.0662 0.2646 0.0554 0.1344 0.0501 0.0647
T = 200 (0.0469) (0.1748) (0.0151) (0.0473) (0.0092) (0.0222) (0.0059) (0.0096)

Table 5.4a: Model M4, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.7649 0.8531 0.6885 0.7820 0.5855 0.6424 0.5373 0.5395
T = 20 (0.6897) (0.7121) (0.6447) (0.6610) (0.5072) (0.4965) (0.4042) (0.3727)

0.5288 0.5692 0.4577 0.4886 0.3632 0.3759 0.2933 0.2746
T = 50 (0.5340) (0.5195) (0.4869) (0.4724) (0.3427) (0.3343) (0.2286) (0.1988)

0.4745 0.4919 0.4192 0.4184 0.3061 0.3025 0.2027 0.1908
T = 100 (0.5263) (0.5242) (0.5171) (0.4944) (0.3459) (0.3374) (0.1810) (0.1719)

0.4207 0.4390 0.3575 0.3595 0.2534 0.2496 0.1567 0.1509
T = 200 (0.4575) (0.4587) (0.4391) (0.4303) (0.2941) (0.2826) (0.1463) (0.1437)

Table 5.4b: Model M4, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step static two-step static two-step static two-step static

0.3883 0.8443 0.3011 0.6068 0.2881 0.4920 0.2937 0.4084
T = 20 (0.1775) (0.3858) (0.1297) (0.2761) (0.1100) (0.2223) (0.1038) (0.1869)

0.2284 0.6099 0.1487 0.3566 0.1359 0.2404 0.1324 0.1668
T = 50 (0.0641) (0.1763) (0.0393) (0.0986) (0.0317) (0.0678) (0.0283) (0.0476)

0.1799 0.5217 0.1024 0.2685 0.0896 0.1586 0.0839 0.0949
T = 100 (0.0371) (0.1059) (0.0189) (0.0510) (0.0148) (0.0309) (0.0122) (0.0187)

0.1594 0.4734 0.0811 0.2216 0.0656 0.1172 0.0561 0.0611
T = 200 (0.0262) (0.0690) (0.0111) (0.0283) (0.0080) (0.0150) (0.0059) (0.0079)

Inspection of the tables reveals the following facts.
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1. For model M1 the two competing methods yield similar performances for all n and T .

2. The two-step method performs better than the static method for models with hetero-
geneous dynamics, i.e. M2, M3 and M4. The performance is considerably better for
in-sample estimation.

3. Homogeneity in the common/idiosyncratic variance ratio (M4 versus M3) somewhat re-
duces the difference between the two methods, which however remains large, indicating
that in these two models a substantial gain is obtained simply from the estimation of
the matrix used to project the χ’s on the common factor space, whereas the advantage
stemming from a better estimation of the space itself is smaller.

8 Summary and conclusions

This paper proposes a new forecasting method that exploits information from a large panel
of time series. The method is based on the dynamic factor model proposed by Forni, Hallin,
Lippi, and Reichlin (2000) and proceeds in two steps. In the first step, we estimate the lagged
covariances of the common and idiosyncratic components using the frequency domain approach
proposed by Forni, Hallin, Lippi and Reichlin (2000). In the second step we use information
about the ‘degree of commonality’ of each variable to estimate the common factors and project
the variables to be predicted onto the linear space spanned by these factors. We show that
the projection converges to the optimal forecast as n and T go to infinity. Being a linear
combination of the x’s which does not involve future observations, the two-step predictor solves
the end-of-sample problems caused by two-sided filtering in the estimation method of Forni,
Hallin, Lippi and Reichlin (2000), while exploiting the advantages of dynamic information.
Both theoretical arguments and simulations suggest that our predictor can provide a substantial
improvement over the static principal component predictor when the various cross-sectional
items differ significantly in the lag structure of the factor loadings, particularly if, in addition,
there is substantial heterogeneity the fraction of total variance explained by the idiosyncratic
components.

9 Appendix

Let ΓΓΓ be a symmetric positive semidefinite n × n matrix and D a symmetric, positive definite n × n
matrix. There exist n real nonnegative numbers νj and real 1 × n vectors vj satisfying

ΓΓΓv′
j = νjDv′

j ,
vjDv′

j = 1,
vjDv′

m = 0, j 6= m.
(9.1)

The numbers νj and vectors vj are called the generalized eigenvalues and generalized eigenvectors of the
couple (ΓΓΓ,D) respectively. For existence of numbers νj and vectors vj fulfilling (9.1), see e. g. Anderson,
1984, Theorem A.2.2, p. 589. Throughout, we assume that eigenvalues are ranked in decreasing order of
magnitude. The following lemma hardly needs a proof in view of Anderson, Theorem A.2.4, p. 590.

Lemma 9.1 Let ΓΓΓ and D be as above. Define the 1×n vectors aj , j = 1, . . . , n, by the following sequence
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of maximization problems:

aj = Arg max
a∈Rn

aΓΓΓa′

subject to aDa′ = 1, (9.2)
aDa′

m = 0 for 1 ≤ m ≤ j − 1,

for j = 1, . . . , n (where for j = 1 only the first constraint applies). Denote by νj and vj the generalized
eigenvalues and eigenvectors of the couple (ΓΓΓ,D). Then aj = vj , for j = 1, . . . , n, while the maximum of
the j-th problem is νj .

Proof. Let j = 1. Because D is positive definite, the set aDa′ = 1 is bounded and a solution to (9.2)
exists. The Lagrangian for j = 1 in (9.2) is aΓΓΓa′ − λ(aDa′ − 1), so that the first order conditions are

ΓΓΓa′ = λDa′ and aDa′ = 1.

These conditions are satisfied by the generalized eigenvectors vj , j = 1, . . . , n, only. Because νj = vjΓΓΓv′
j

is the value of the objective function, a1 = v1 solves the problem for j = 1.
Now assume that aj = vj for j ≤ ` < n and set j = ` + 1. The Lagrangian is aΓΓΓa′ − λ(aDa′ − 1) −∑`

k=1 µk(aDv′
k), so that the first order conditions take the form

2ΓΓΓa′ − 2λDa′ −
∑̀

k=1

µkDv′
k = 0, aDa′ = 1, and aDv′

k = 0, k = 1, . . . , `. (9.3)

Premultiplying the first equation by vh and taking (9.1) into account, we get 2vhΓΓΓa′ − µh = 0, so that
2νhvhDa′ − µh = −µh = 0, for h = 1, . . . , `, and (9.3) reduces to

ΓΓΓa′ = λDa′, aDa′ = 1, and aDv′
k = 0, k = 1, . . . , `.

These conditions are satisfied only by the generalized eigenvectors vj , j = `+1, . . . , n, so that a`+1 = v`+1.
QED

Lemma 9.2 Given the integer k > 0, consider a sequence of real, symmetric, positive semi-definite n×n
matrices ΓΓΓn and a sequence of real, symmetric, positive definite n×n matrices Dn, n = k, k +1, . . . , and
assume that

(i) ΓΓΓn’s k-th largest eigenvalue µnk diverges as n → ∞, and

(ii) Dn’s largest eigenvalue is bounded from above by δ.

Then, the k-th largest generalized eigenvalue of (ΓΓΓn,Dn), νnk, diverges as n → ∞.

Proof. Let vnj , for j = 1, . . . , k − 1, be the generalized eigenvectors corresponding to the first k − 1
generalized eigenvalues of the couple (ΓΓΓn,Dn), and wnj , j = 1, . . . , k, the standard (unit-modulus)
eigenvectors corresponding to the first k eigenvalues of ΓΓΓn. Let αn1, αn2, . . . , αnk be any non-trivial
solution of the linear system of k − 1 equations in the k unknowns yj

(y1wn1 + y2wn2 + · · · + ykwnk)Dnv′
nj = 0, j = 1, . . . , k − 1.

Define qn = αn1wn1 + αn2wn2 + · · · + αnkwnk. Because the vectors wnj are orthonormal, then qn 6= 0.
Therefore, because Dn is positive definite, qnDnq′

n > 0. Thus, rescaling the α’s,

qnDnv′
nj = 0, j = 1, . . . , k − 1, (9.4)

qnDnq′
n = 1 (9.5)

(for k = 1 (9.4) does not apply and we are just setting αn1 = 1/
√

wn1Dnw′
n1). Assumption (ii) and

(9.5) imply that

α2
n1 + α2

n2 + · · · + α2
nk ≥

1
δ
. (9.6)
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Moreover, the definition of wnj and (9.6) imply

qnΓΓΓnq′
n = α2

1µn1 + α2
n2µn2 + · · · + α2

nkµnk ≥ 1
δ
µnk.

But (9.4), (9.5) and Lemma 9.1 imply that νnk ≥ qnΓΓΓnq′
n. The conclusion follows. QED

Lemma 9.3 Let Γ̌ΓΓ
χ

n0 and Γ̌ΓΓ
ξ

n0 be as in (5.4), µ̌χ
nk and µ̌ξ

nk being, respectively, their eigenvalues. Let r be
as in (2.2). Then, under Assumptions A, B, C and D,

(i) limn→∞ µ̌χ
nr = ∞;

(ii) µ̌ξ
n1 is bounded for n → ∞.

Proof. For any n-dimensional unit-modulus row vector v, we have

vΓ̌ΓΓ
ξ

n0v
′ = v

[∫ π

−π

Σ̌ΣΣ
ξ

n(θ)dθ

]
v′ =

∫ π

−π

vΣ̌ΣΣ
ξ

n(θ)v′dθ

≤
∫ π

−π

λn,q+1(θ)dθ = α (say)

We have (see Lancaster and Tismenetsky, 1985, p. 301, Theorem 1) λn,q+1(θ) ≤ λχ
n,q+1(θ) + λξ

n1(θ).
Thus, since λχ

n,q+1(θ) = 0, Assumption C2 implies α ≤ 2πΛ. Part (ii) of the lemma follows. Obviously

C2 implies that vΓΓΓξ
n0v

′ ≤ 2πΛ. Setting An = ΓΓΓξ
n0 − Γ̌ΓΓ

ξ

n0 and observing that vΓΓΓξ
n0v

′ and vΓ̌ΓΓ
ξ

n0v
′ are

non-negative, we obtain
|vAnv′| = |vΓΓΓξ

n0v
′ − vΓ̌ΓΓ

ξ

n0v
′| ≤ 2πΛ.

Because
An =

∫ π

−π

(
ΣΣΣξ

n(θ) − Σ̌ΣΣ
ξ

n(θ)
)

dθ =
∫ π

−π

(
Σ̌ΣΣ

χ

n(θ) −ΣΣΣχ
n(θ)

)
dθ = Γ̌ΓΓ

χ

n0 −ΓΓΓχ
n0,

it follows that
Γ̌ΓΓ

χ

n0 + 2πΛIn = ΓΓΓχ
n0 + [2πΛIn + An].

Because the matrix in square brackets is positive semi-definite, the result in Lancaster and Tismenetsky
mentioned above implies that the eigenvalues of the sum on the left-hand side are larger than or equal
to the corresponding eigenvalues of ΓΓΓχ

n0. This entails that µ̌χ
nr + 2πΛ ≥ µχ

nr; part (i) of the lemma thus
follows from Assumption D. QED

Proof of Lemma 5.2. Since we are only interested in proj(v|Kn), we can assume with no loss of
generality that var(vnj) = 1 for all n and j. Let v = (v1 · · · vk)′ and vn = (vn1 · · · vnk)′. Consider the
decomposition vn = anv+Rn, of vn into its (componentwise) orthogonal projection anv onto K and the
orthogonal complement. Assumption (i) implies that Rn → 0 in quadratic mean. Decomposing similarly
v into

v = bnvn + sn = bnanv + bnRn + sn and v = bv + s,

where bnvn and bv denote the orthogonal projections of v onto Kn and K, respectively, we obtain

proj (v|Kn) − proj (v|K) = bnvn − bv = (bnan − b)v + bnRn = s − sn. (9.7)

The assumption on var(vnj) and Assumption (ii) imply that bn is bounded. As a consequence bnRn → 0
in q. m., hence [(bn − b)v − (s − sn)] → 0 in q.m. But

|cov((bn − b)v, s − sn)| = |cov((bn − b)(v − bnvn), sn)| ≤
√

var(v)var((bn − b)Rn).

Convergence to zero of Rn and bnRn implies convergence to zero of the right hand side. This implies
that limn→∞(bn − b)v = limn→∞(s − sn) = 0. QED
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Comment on Assumption E(b). Using (3.2), it is easily seen that the idiosyncratic variance-covariance
matrix estimated with the static method is singular, i.e. its minimum eigenvalue vanishes, independently
of n and T . The same observation holds for ΣΣΣξT

n (θ) and Σ̌ΣΣ
ξ

n(θ), see (3.7) and (5.2), for any θ ∈ [−π π],
so that, in view of (5.4), one may raise the question whether E(b) makes sense. To see that the answer
is positive consider that

0 = λ̌ξ
nn(θ) = min

|a(θ)|=1
a(θ)Σ̌ΣΣ

ξ

n(θ)a′(θ), (9.8)

while
µ̌ξ

nn = min
|b=1|

bΓ̌ΓΓ
ξ

n0b
′ = min

|b=1|

∫ π

−π

(
bΣ̌ΣΣ

ξ

n(θ)b′
)

dθ,

so that µ̌ξ
nn = 0 only if the solution for a(θ) in (9.8) is independent of θ. But this may happen either

by a fluke or in uninteresting cases, among which the strictly static case (white-noise idiosyncratic terms
and static loading of the common shocks).

Going back to the stylized example of Section 6, with the specification ai = bm+i = 1 for i = 1, . . . , m,
and σ2

ξi
= 1 for all i, using (6.6) and (6.7), the estimated idiosyncratic variance-covariance matrices, with

the dynamic and the static method, respectively, are

In − 1
2m

(
1m 0m

0m 1m

)
and In − 1

m

(
1m 0m

0m 1m

)
.

The minimum eigenvalue of the second matrix is zero, as expected, whereas the minimum eigenvalue of
the first is independent of n and equal to .5.
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