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Abstract

The first part of this paper establishes some new pieces of evidence on the dynam-
ics of prices and volumes in wholesale electricity day-ahead markets (NordPool, APX,
Powernext). The growth of prices is more strongly autocorrelated than the growth of
volumes; it is more more heavy-tailed; and its conditional standard deviation decays like
the reciprocal of the price level (1/P scaling). In the second part of the paper, it is
shown that a linear supply function with stochastic intercept and constant slope suffices
to explain the 1/P scaling. Furthermore, this model allows to decompose price fluctua-
tions in an exogenous demand effect and a strategically-driven supply effect. In light of
this model, the heavier tails of price growth and its stronger autocorrelation structure
are due to persistent and intermittent strategic moves by suppliers, related to expected
demand growth.

JEL Classifications: C16, D4, L94.
Keywords: Electricity Markets, Supply Curve, Subbotin Distribution, Fat Tails,

Scaling, Demand Effect, Supply Effect.

1 Introduction

As outcomes of the liberalization policies pursued all around the world from the Eighties on,
wholesale electricity markets challenge the economic profession, thanks to a number of char-
acteristics (non-storability, low price-elasticity of demand, transmission constraints, network
congestion) which make the optimal design of electricity auctions a complex problem and en-
gender high opportunities for market manipulation. Most of the existing literature analyses
the day-ahead market, a uniform-price, sealed-bid auction which determines equilibrium prices
and quantities each day for every hour of the day after.
Stimulated by the rich structure of price fluctuations in day-ahead markets (multiple pe-

riodic patterns, persistency, spikes, heavy tails, time-dependent volatility), efforts towards
proper statistical modelling of electricity price dynamics have blossomed (Geman and Ron-
coroni 2002, Eberlein and Stahl 2003, Weron, Bierbrauer and Truck 2004, Sapio 2004, Bottazzi,
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Sapio and Secchi 2005, Knittel and Roberts 2005, Guerci et al. 2006, among others). Surpris-
ingly, much less explored are the statistical properties of day-ahead power volumes dynamics:1

though, auction-theoretic models of electricity pools (von der Fehr and Harbord, 1993) and
the pivotal-generator approach (Blumsack et al., 2002) suggest that the demand-capacity ra-
tio and its fluctuations are key in determining whether prices stay close to generating costs,
or jump to the maximum admissible level. Focusing on just price dynamics can at best give
a partial view of the market. Nevertheless, for any given characterization of the exogenous
demand dynamics, different assumptions on the supply schedule yield different properties of
price fluctuations. Insights on how day-ahead power pools work can thus be obtained by
comparing distributions of both price and volume growth rates and finding those restrictions
on the properties of the supply function which are consistent with the statistical evidence.
The contribution of this paper is twofold. First, it reviews and verifies some pieces of

evidence on the dynamics of prices and volumes in day-ahead electricity markets, focusing on
the Scandinavian NordPool, the Dutch APX, and the French Powernext. The comparative
strength of serial correlations for the growth of prices and volumes is assessed, showing that the
former are more strongly autocorrelated than the latter in all markets. Density fit exercises,
based on the Subbotin family of distributions - a family including Laplace and Normal laws
as special cases - show that price growth is more heavy-tailed than volume growth. Finally,
the conditional standard deviation of price growth decays like the reciprocal of the price level
(1/P scaling) in the NordPool and Powernext markets, whereas the scaling evidence for the
APX is rather mixed.
The second goal of the paper concerns the theoretical interpretation of the detected em-

pirical facts. For the 1/P scaling to emerge, it suffices that the supply function is piecewise
linear with stochastic intercepts and constant slopes. This model allows to decompose price
fluctuations in an exogenous demand effect and a strategically-driven supply effect. Within
this framework, the heavier tails of price growth and its stronger autocorrelation structure are
due to persistency and intermittency in market gaming attempts by suppliers. More in detail,
generating companies can respond to changing demand conditions in heterogeneous ways (e.g.
entry, exit, capacity withholding) which can have opposite effects on the market price. A
kurtosis gap is likely to emerge if (i) the aggregate impact of entry and exit is quantitatively
greater than the impact of capacity withholding; (ii) volatile demand growth is associated with
volatile shifts in the supply schedule; and (iii) individual moves are coordinated in such a way,
that parallel shifts in the supply schedule are either very small, or very large. The observed
gap between serial correlations of price growth and demand growth is due to persistency in
the strategic responses to expected demand growth, and to adaptive behavior in the process
of expectation formation.
The paper is organized as follows. In Section 2, an overview of the main empirical facts

on autocorrelations (2.1), distributional shapes (2.2), and scaling (2.3) is provided. Section
3 performs a theoretical analysis of the conditions underlying the emergence of the empirical
properties illustrated in Section 2, with a focus on the proposed linear supply function (3.1),
and on the implied explainations of the kurtosis (3.2) and autocorrelation (3.3) patterns.
Section 4 draws some conclusions and perspectives for future research.

1See Nowicka-Zagrajek and Weron (2002) for an exception.
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2 Some pieces of evidence on wholesale electricity mar-

ket outcomes

The present analysis concerns three markets: NordPool (including Norway, Sweden, Finland,
Denmark), 1095 daily observations from January 1, 1997, to December 31, 1999; the Amster-
dam Power Exchange (APX), daily data from January 6, 2001, to December 31, 2004 (1457
observations); and the Powernext, 1065 datapoints from November 27, 2001, to December 31,
2004.2 For each market, 24 prices and volumes are available for every trading day.
The structure of the markets under analysis is the following.3 Each day, 24 uniform price

auctions are run simultaneously in order to determine prices and quantities for each hour
of the following day. Market participants (power generating companies on the supply side,
utilities and large industrial consumers on the demand side) can submit a limited number of
price-quantity couples, during a given bidding period. As the bidding deadline expires, the
central market operator collects all bids and asks, sorts the former in ascending order, and the
latter in descending order. The 24 day-ahead market prices are determined, for each auction,
by the intersection between the curves, and all power is sold and purchased at that price by
inframarginal participants.
There are two ways to determine the market-clearing price. In a flat bid order system, the

market-clearing price is determined on the basis of step curves drawn between the submitted
price-volume combinations. This is true of the APX and of other markets that have not been
analyzed here (such as the Spanish Omel, and the Slovenian Borzen). In the NordPool and in
the Powernext, the order system is based on interpolation between the submitted price-volume
combinations: the market supply schedule can thus be seen as a piece-wise linear function (see
also Meeus, 2005). Statistical properties of market outcomes may change accordingly.
Analysis of the available datasets allows to extend and integrate the existing evidence

on three phenomena: (i) autocorrelations of price growth rates at weekly lags are stronger
than the corresponding autocorrelations of volume growth rates (Section 2.1); (ii) the tails of
price growth rates are fatter than the tails of volume growth rates (2.2); (iii) the conditional
standard deviation of price growth rates decays like the reciprocal of the price level (2.3).

2.1 Basic statistical properties

Let Pht and Qht be, respectively, the price and volume at hour h of day t, and pht and qht their
natural logarithms. For each given hourly market, one shall focus on the following variables:4

• daily price changes: ∆Pht ≡ Pht − Ph,t−1

• daily price growth rates, or log-returns : rht ≡ pht − ph,t−1 ≈
∆Pht
Ph,t−1

• daily volume changes: ∆Qht ≡ Qht −Qh,t−1

• daily volume growth rates: ght ≡ qht − qh,t−1

2Data sources, respectively: NordPool FTP Server; www.apx.nl; www.powernext.fr.
3There exists a vast literature on the institutional characteristics of electricity markets and on their evo-

lution. Suggested overviews are in Joskow (1996), Wolak and Patrick (1997), Wilson (2000), Green (2002),
Holburn and Spiller (2002), Newbery (2002), and in the book edited by Glachant and Finon (2003).

4Both absolute and relative changes in prices and volumes are analyzed. Indeed, while it is common to
analyze log-prices, a number of authors have studied the dynamics of price levels (Alvarado and Rajaraman,
2000; Lucia and Schwartz, 2002; Knittel and Roberts, 2004).
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This section gives a snapshot of the main statistical properties of the above variables, and
performs comparisons between the properties of price and volume dynamics, with remarks
regarding the cross-country robustness of the detected facts.

Table 1: Summary statistics of daily log-returns, price changes, load growth rates, and load
changes, for the NordPool, APX, and Powernext markets: 1 am and 12 am.

Markets mean std.dev. skewness exc.kurt.

1 am 12 am 1 am 12 am 1 am 12 am 1 am 12 am

r
NordPool -.0006 -.0005 .078 .118 -.169 .769 11.402 13.100

APX .0001 .0003 .284 .692 -.145 .804 16.376 3.587
Powernext .0003 -.0001 .292 .494 .132 1.124 2.815 7.821

∆P
NordPool -.0956 -.0771 6.610 13.115 -.050 .345 6.043 8.679

APX .0016 .0103 5.032 112.217 -.136 -1.024 7.124 104.775
Powernext .0038 -.0026 4.436 52.105 .118 2.102 2.084 208.785

g
NordPool .0003 .0004 .049 .088 .180 .768 1.419 2.272

APX .0005 .0008 .220 .215 -.111 -.101 5.281 2.417
Powernext .0024 .0029 .393 .413 -.071 .007 3.910 10.880

∆Q
NordPool 2.373 3.568 303.437 667.144 .106 .800 .865 2.896

APX .611 .791 275.968 251.872 -.033 -.118 .654 1.043
Powernext 1.180 1.447 300.827 284.418 .229 .220 2.016 2.883

In Table 1, summary statistics for r, ∆P , g and ∆Q are provided, for two representative
hours: 1 a.m. and 12 a.m. These tables show that, while drifts and asymmetries in price growth
distributions are rather weak, standard deviations are clearly higher in day-time auctions
than during the night, in all countries. As regards excess kurtosis, all series are leptokurtic,
sometimes extremely so. The ∆P excess kurtosis is highest during the day, whereas log-returns
r in APX are more leptokurtic by night. Descriptive statistics for g and ∆Q (1 a.m. and 12
a.m.) are in the lowest part of Table 1. All volume series show positive trends in mean, with
different magnitudes. Daily changes in electricity demand are more volatile during the central
hours of the day, except for APX. Skewness values are generally low, and as regards signs, no
patterns can be detected. Excess kurtosis is always positive, with relatively low values for the
variable ∆Q.
Relevant differences between indicators of price and volume dynamics appear quite clearly.

Log-returns tend to be more volatile than volume growth rates.5 All series are leptokurtic,
but log-returns and price changes are much more so, in comparison with volume changes and
growth rates. All of these comparative properties are preserved even when time dependencies
are filtered out, as shown in Table 2, which reports the summary statistics of price and volume
fluctuations after a Cholesky filter has been applied (see Diebold, Ohanian and Berkovitz 1997
for its definition, and Bottazzi, Sapio and Secchi 2005 for a previous application).
The different statistical nature of prices and volumes is shown also by Figures 1, 2,

and 3. While price series differ considerably across hours, volumes observed at different
hours of the day look very similar to each other, apart from some diversities in variance

5A similar comparison between standard deviations of ∆P and ∆Q is not correct, in that units are different.
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Figure 1: NordPool prices and volumes, from Jan 1, 1997, to Dec 31, 1999. Hours: 1 am, 12
am.

Table 2: Summary statistics of daily filtered log-returns, price changes, load growth rates, and
load changes, for the NordPool, APX, and Powernext markets: 1 am and 12 am.

Markets mean std.dev. skewness exc.kurt.

1 am 12 am 1 am 12 am 1 am 12 am 1 am 12 am

εr
NordPool 0.0000 0.0000 1.0000 1.0000 -0.2157 -0.3174 10.5679 7.1356

APX 0.0000 0.0000 1.0000 1.0000 -1.1935 0.7032 10.2266 2.7038
Powernext 0.0000 0.0000 1.0000 1.0000 -0.4670 0.2727 1.3977 5.9757

ε∆P

NordPool 0.0000 0.0000 1.0000 1.0000 -0.0823 0.4523 5.1562 8.1691
APX 0.0000 0.0000 1.0000 1.0000 0.6009 4.9863 4.9543 63.7976

Powernext 0.0000 0.0000 1.0000 1.0000 -0.0311 6.6982 1.8630 94.7312
εg

NordPool 0.0000 0.0000 1.0000 1.0000 0.1610 0.0531 1.9604 0.9392
APX 0.0000 0.0000 1.0000 1.0000 -0.6072 -0.3546 4.7253 1.4238

Powernext 0.0000 0.0000 1.0000 1.0000 0.3076 -1.1783 4.5467 12.6202
ε∆Q

NordPool 0.0000 0.0000 1.0000 1.0000 -2.6990 0.1787 24.6974 0.8404
APX 0.0000 0.0000 1.0000 1.0000 0.0712 -0.0382 0.3942 0.5070

Powernext 0.0000 0.0000 1.0000 1.0000 0.3725 0.5540 0.9536 1.5032

(typically higher during the central hours of the day: see NordPool volumes). Although
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Figure 2: APX prices and volumes, from Jan 6, 2001, to Dec 31, 2004. Hours: 1 am, 12 am.
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Figure 3: Powernext prices and volumes, from Nov 27, 2001, to Dec 31, 2004. Hours: 1 am,
12 am.
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Figure 4: Autocorrelograms of log-returns and volume growth, 1 a.m. Autocorrelation coeffi-
cients are significant if their absolute value is greater than 0.0592 (NordPool), 0.0513 (APX),
0.0601 (Powernext).

volumes tend to display annual seasonality (NordPool, APX), this property is not always
observed in prices: some annual seasonality is pretty evident in NordPool prices, much less so
in APX and Powernext. In the latter market, one can moreover observe a strong increasing
trend in the day-ahead volume level, which is most likely due to the increasing share of day-
ahead transactions over the total national power consumption level. Finally, all price series
display sharp and short-lived spikes, whereas volume series seem to be characterized by rather
homoskedastic increments.
The persistent and systematic nature of time dependencies in electricity price and vol-

ume fluctuations is a well-established fact in the empirical literature on power markets (see
Longstaff and Wang 2002, Weron 2002, and Sapio 2004). Along with yearly seasonals and
long-run trends, the dynamics of power prices and volumes is characterized by weekly pat-
terns. In Figures 4 and 5, this claim is corroborated by the autocorrelograms of log-returns
and volume growth rates (1 a.m. and 12 a.m. series).6 In the 1 a.m. market, log-returns
are either serially uncorrelated (NordPool) or display some very mild weekly periodicity and
a small, negative autocorrelation at lag 1 day (APX, Powernext). As it can be noticed, log-
returns in the 12 a.m. market are always strongly autocorrelated at lags 1 week, 2 weeks, and

6Autocorrelograms of ∆P and ∆Q, not reported here, are in any case very similar to those of r and g.
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Figure 5: Autocorrelograms of log-returns and volume growth, 12 a.m. Autocorrelation coef-
ficients are significant if their absolute value is greater than 0.0592 (NordPool), 0.0513 (APX),
0.0601 (Powernext).

so forth. Autocorrelation coefficients are between 0.4 and 0.6 for the first weekly lags, and
decay quite slowly. Autocorrelation patterns for the NordPool volume growth mirror the ones
displayed by log-returns, whereas APX and Powernext volume growth rates show first-order
negative autocorrelation, and a very mild weekly pattern.
The weekly periodicity is not surprising: it is determined by decreasing energy consumption

during weekends, and increasing use of power at the beginning of the week, following the overall
economic activity. These patterns cannot be smoothed out, because electricity is not storable.
Less obviously, the autocorrelation coefficient of price growth at lag 7 days tends to be at
least as high as the corresponding autocorrelation of volume growth rates. Such an evidence
is interesting: given that electricity demand is exogenous, inelastic, and tied to the time
profile of the overall economic activity, serial correlations of electricity prices are expected to
track demand fluctuations quite closely. The stronger structure of price dynamics may thus
be due to some endogenous mechanism, such as strategic interaction between power market
participants.
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2.2 Subbotin density fit

A second piece of evidence on wholesale electicity markets concerns the shape of the probability
density functions of indicators of price and volume dynamics. Density fit exercises based on
the Subbotin family allow to quantify their degrees of peakedness and heavy-tailedness within
a quite general, parsimonious, and flexible framework.
First used in economics by Bottazzi and Secchi (2003), the Subbotin probability density

function of a generic random variable X reads (Subbotin, 1923):

Pr {X = x} =
1

2ab1/bΓ(1 + 1
b
)
e−

1

b
|x−µ
a
|b (1)

with parameters a (width), b (shape), and µ (position). Γ(.) is the gamma function. The
Subbotin reduces to a Laplace if b = 1 and to a Gaussian if b = 2.7 The Continuous Uniform
is a limit case for b = ∞. As b gets smaller, the density becomes heavier-tailed and more
sharply peaked.8

Compared to previously fitted distributions, such as the Generalized Hyperbolic (Eberlein
and Stahl, 2003), the Subbotin has a more parsimonious specification: just 3 parameters need
to be estimated (2 if the data are demeaned). Moreover, the Subbotin distribution allows for
greater flexibility with respect to the tail behavior. For instance, the Generalized Hyperbolic
distribution family only admits exponential tail decay (cf. the application by Eberlein and
Stahl, 2003, on NordPool data). On the other hand, evidence of Subbotin distributions would
rule out power-law tails, which characterize Levy phenomena with tail index α < 2 (see
Bystroem, 2001, Bellini, 2002, and Deng, Jiang and Xia, 2002, for applications to electricity
price dynamics).
Estimates of the Subbotin parameters have been obtained through Maximum Likelihood

methods, making use of the Subbotools (details are available in Bottazzi, 2004). Tables 3 and
4 display, for each of the markets under analysis, the estimated shape parameter b and the
corresponding standard error, respectively for price and volume dynamics. For the sake of
brevity, estimated a’s have been omitted. Furtherly, normalization implies µ = 0. Figures 6,
7 and 8 depict histograms of the variables under analysis for some hours, with superimposed
Subbotin fits.
Filtered log-returns display a Laplace shape, a fact holding robustly across markets, with

some slight deviation (e.g. b values clustering around 0.8 during night hours in the APX).
Values of b for filtered price changes are clustered around 1 for the NordPool, around 0.6-0.7
for APX and Powernext (night auctions), and higher than 1 for APX and Powernext (day
auctions). Estimates of b for filtered volume growth in NordPool and APX tend to be half-
way between the values implied by Laplace and Normal laws, i.e. b ≈ 1.5. On the contrary, in
the Powernext b values are around 1.1. Estimated shape coefficients for volume changes are
around 1.5 or 1.6 in the NordPool, 1.7 or 1.8 in the APX, and 1.4 in the Powernext.
These results shed light on a very interesting property. Estimated shape coefficients for

price dynamics variables are systematically higher than for volume dynamics, implying that

7The Laplace distribution (also known as double exponential) has been detected in diverse economic phe-
nomena: from price changes in financial markets (Kozubowski and Podgorski, 2001; McCauley, 2004) to the
growth of economic organizations (firms in Stanley et al., 1996, and in Bottazzi and Secchi, 2003; countries in
Lee et al., 1998).

8It has been proved by West (1987) that a Subbotin with b ∈ [1, 2] can be obtained as a mixture of normal
distributions, with α-stable mixing density. Specifically, b = 2α, showing that, when α = 0.5, a Laplace law
emerges through an Exponential mixing density.
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Table 3: The estimated Subbotin shape parameters of the daily filtered log-returns and price changes for the NordPool, APX, and
Powernext markets.

r ∆P

NordPool APX Powernext NordPool APX NordPool

b std.err. b std.err. b std.err. b std.err. b std.err. b std.err.

1 .967 .054 1.081 .054 1.259 .076 1.123 .065 1.128 .056 1.353 .083
2 .899 .049 .852 .040 1.224 .073 1.122 .065 1.255 .064 1.464 .091
3 .901 .049 .864 .041 1.222 .073 1.020 .057 1.312 .068 1.495 .094
4 .911 .050 .837 .039 1.187 .070 1.123 .065 1.380 .073 1.542 .098
5 .927 .051 .806 .038 1.056 .061 1.155 .067 1.347 .070 1.605 .103
6 .885 .048 .785 .036 1.086 .063 1.152 .067 1.318 .068 1.603 .103
7 .930 .051 .754 .035 .948 .053 1.142 .066 1.306 .068 1.391 .086
8 .944 .052 .778 .036 1.040 .060 .991 .056 .984 .048 1.280 .077
9 .956 .053 .846 .040 .998 .057 .816 .044 .772 .036 .920 .051
10 .995 .056 .899 .043 .942 .053 .884 .048 .709 .032 .648 .034
11 1.146 .066 1.023 .050 1.082 .063 1.052 .060 .685 .031 .634 .033
12 1.146 .066 1.233 .063 1.022 .058 1.140 .066 .701 .032 .641 .034
13 1.047 .059 1.121 .056 1.050 .060 1.208 .071 .652 .029 .628 .033
14 1.089 .062 1.153 .058 1.073 .062 1.196 .070 .671 .030 .640 .033
15 1.059 .060 1.103 .055 1.042 .060 1.140 .066 .670 .030 .631 .033
16 1.072 .061 1.026 .050 1.059 .061 1.018 .057 .591 .026 .624 .033
17 1.047 .059 1.045 .051 1.220 .073 .880 .048 .667 .030 1.195 .071
18 .986 .055 1.068 .053 1.147 .067 .790 .042 .670 .030 1.033 .059
19 1.069 .061 .976 .047 1.021 .058 1.020 .058 .640 .029 .967 .055
20 1.005 .056 1.102 .054 1.027 .059 1.101 .063 .714 .032 .993 .056
21 .936 .052 1.084 .054 1.149 .068 1.087 .062 .785 .036 1.264 .076
22 .972 .054 .811 .038 1.125 .066 1.126 .065 1.007 .049 1.325 .081
23 .998 .056 .772 .036 1.130 .066 1.185 .069 .987 .048 1.411 .087
24 1.029 .058 .864 .041 1.063 .061 1.152 .067 .974 .047 1.345 .082
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Table 4: The estimated Subbotin shape parameters of the daily filtered volume growth and volume changes for the NordPool, APX,
and Powernext markets.

g ∆Q

NordPool APX Powernext NordPool APX NordPool

b std.err. b std.err. b std.err. b std.err. b std.err. b std.err.

1 1.421 .087 1.408 .074 1.038 .060 .383 .018 1.715 .096 1.492 .094
2 1.424 .087 1.490 .080 1.108 .065 1.556 .097 1.811 .103 1.358 .083
3 1.097 .063 1.364 .071 1.101 .064 1.641 .104 1.723 .096 1.413 .087
4 1.436 .088 1.622 .089 1.197 .071 1.042 .059 1.884 .108 1.322 .080
5 1.435 .088 1.641 .090 1.231 .074 1.601 .101 1.889 .108 1.419 .088
6 1.398 .085 1.541 .083 1.100 .064 1.589 .100 1.800 .102 1.404 .087
7 1.348 .081 1.482 .079 1.113 .065 1.593 .100 1.808 .102 1.446 .090
8 1.514 .094 1.429 .076 1.252 .075 1.495 .093 1.737 .097 1.214 .072
9 1.483 .092 1.375 .072 1.150 .068 1.573 .099 1.561 .085 1.292 .078
10 1.519 .095 1.558 .085 1.079 .062 1.548 .097 1.626 .089 1.377 .085
11 1.487 .092 1.366 .072 1.169 .069 1.557 .098 1.546 .084 1.391 .086
12 1.467 .090 1.398 .074 1.164 .069 1.569 .099 1.734 .097 1.391 .086
13 1.516 .094 1.479 .079 1.151 .068 1.551 .097 1.724 .096 1.381 .085
14 1.484 .092 1.531 .083 1.118 .065 1.631 .104 1.693 .094 1.313 .080
15 1.540 .096 1.539 .083 1.119 .065 1.667 .107 1.713 .096 1.275 .077
16 1.570 .099 1.499 .081 1.155 .068 1.614 .102 1.708 .095 1.303 .079
17 1.530 .095 1.470 .079 1.025 .059 1.577 .099 1.785 .101 1.456 .091
18 1.578 .099 1.624 .089 .998 .057 1.590 .100 1.927 .111 1.543 .098
19 1.610 .102 1.374 .072 1.076 .062 1.677 .107 1.679 .093 1.600 .102
20 1.607 .102 1.466 .078 1.087 .063 1.697 .109 1.851 .106 1.493 .094
21 1.494 .093 1.435 .076 1.148 .067 1.779 .116 1.875 .107 1.460 .091
22 1.346 .081 1.399 .074 1.087 .063 1.668 .107 1.774 .100 1.521 .096
23 1.463 .090 1.403 .074 1.120 .065 1.513 .094 1.782 .101 1.404 .087
24 1.498 .093 1.454 .077 1.102 .064 1.544 .097 1.814 .103 1.465 .092
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Figure 6: Subbotin density fit for NordPool filtered log-returns, 12 a.m. (left), and filtered
load changes, 12 a.m. (right). Notice the log scale on vertical axes.
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Figure 7: Subbotin density fit for APX filtered log-returns, 1 a.m. (left), filtered volume
growth, 1 a.m. (right). Notice the log scale on vertical axes.
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Figure 8: Subbotin density fit for Powernext filtered log-returns, 12 a.m. (left), and filtered
volume changes, 1 a.m. (right). Notice the log scale on vertical axes.
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the r and ∆P densities are characterized by heavier tails than for g and ∆Q. As a conclusion,
extremely large relative fluctuations are more likely to be observed in electricity prices than
in volumes.

2.3 Volatility-price scaling

A third fact, detected by Bottazzi, Sapio and Secchi (2005) and by Simonsen (2005) for the
NordPool market, is that the conditional standard deviation of price growth rates is price-
dependent.
As in previous works (Bottazzi, Sapio and Secchi, 2005; Sapio, 2005), the price growth

conditional standard deviation is modelled as a power function of the price level. Taking
natural logarithms, this reads

log
√

V [rt|Pt−1] = χ+ ρ logPt−1 + εt (2)

where χ and ρ are constant coefficients, and εt is an i.i.d. error term. The parameter ρ is null
under a multiplicative random walk; |ρ| ∈ (0, 1) for multiplicative stationary ARMA processes
with non-zero first-order autoregression; and ρ = −1 for all additive processes (stationary
or not) and for multiplicative stationary processes with null first-order autoregression.9 This
approach is an alternative to the common GARCH approach, which has been often applied to
electricity prices (Bellini, 2002; Worthington et al., 2002; Knittel and Roberts, 2004; Cavallo,
Sapio and Termini, 2005; Guerci et al., 2006).
Estimation of the power law scaling model is implemented as follows. For any given

time series, data are grouped into equipopulate bins. Next, sample standard deviations of
log-returns in each bin are computed, and the logarithm of the sample standard deviations is
regressed on a constant and on the logarithm of the median price level within the corresponding
bins.10

Table 5 reports the estimated slope coefficients ρ from Eq. 2, along with confidence inter-
vals and R2 values.11 Three markets (NordPool, APX, and Powernext) and 24 daily series are
analyzed. As a dependent variable in the regressions, the sample standard deviation of nor-
malized log-returns is considered. Information about the estimated intercept is not reported,
for the sake of brevity.
Point estimates of ρ suggest that standard deviations of normalized log-returns are neg-

atively related with lagged price levels : ρ < 0 in almost all cases. More in detail, ρ in the
NordPool and in the Powernext is often around -1, quite homogeneously across hours. It
is instead difficult to detect patterns in the APX values of ρ: values around 0 are detected
between 7 and 9 p.m., around -0.5 in the early afternoon, and roughly equal to -1 in all other
hours. The reported bounds of the confidence intervals are very narrow, and R2 values are
generally high. Fig. 9 depicts some examples of the estimated scaling relationships.
The foregoing analysis supports evidence of a negative volatility-price relationship, at least

for NordPool and Powernext:

9However, in multiplicative ARMA models, χ is not independent of Pt−k, k = 2, 3, ....
10Alternatively, one could choose the mean prices within bins, or also minima or maxima. The median is a

better choice because it is less affected by extreme values.
11Each time series has been split into 8 equipopulate bins. The regression is run excluding the bin cor-

responding to the highest price levels: the latter are affected by short-lived spikes, and as such they cannot
be considered homogeneous to all other price bins. Results are robust with respect to the number of bins
considered.
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√

V [rt|Pt−1] ∼
1

Pt−1
(3)

The detected scaling relationship is dubbed 1/P scaling. The scaling coefficient for the
APX market is rather unstable. Notice, in passing, that while the former markets have adopted
an interpolation order system, in the latter the equilibrium price is set according to a flat bid
system. Differences in statistical properties may therefore be due to differences in market
settings.

3 An empirically based model of the supply curve

A broadly unexplored perspective in empirical studies of day-ahead electricity markets ac-
knowledges that, given an inelastic demand schedule and a uniform-price auction format, one
can derive the properties of price growth through the statistical regularities observed in power
demand growth, and that such properties vary under different assumptions about the supply
curve. Intuitively, only some supply curve models are consistent with the existing joint evi-
dence on prices and volumes. Aim of this section is to provide some theoretical hints at the
determinants of the empirical facts uncovered in this paper, namely:

1. the standard deviation of price growth goes like the reciprocal of the price (1/P scaling);

2. the kurtosis of price changes is higher than the kurtosis of changes in demand;

3. the autocorrelation coefficients of price changes are higher than for changes in demand.

Let Pt and Qt denote the wholesale price and supply of electricity at a given hour of day
t, and assume they are random variables with values in <+. Let the inverse supply function
f :M ⊂ <+ → <+ be continuous and differentiable:

Pt = f(Qt; θt) (4)

whereM is a neighbourhood of the market-clearing price-quantity couple, and θt is a set of
(possibly random) parameters. This can be seen as a reduced form of a two equation system,
comprising (i) an upward-sloping inverse supply function, and (ii) a stochastically-shifting
inelastic demand. The non-storability of electrical power imposes the equality between supply
and demand, therefore Qt here is also interpreted as the market demand level.
Define ∆Pt ≡ Pt − Pt−1 and ∆Qt ≡ Qt − Qt−1 as respectively the change in price and

demand from t − 1 to t. Taking the Taylor approximation of Pt about Qt−1 and subtracting
Pt−1 yields

∆Pt ≈ ∆ft(Qt−1) + f ′(Qt−1; θt)∆Qt +
1

2
f ′′(Qt−1; θt)(∆Qt)

2 (5)

where ∆ft(Qt−1) ≡ f(Qt−1; θt)− f(Qt−1; θt−1) - i.e. the shift of the function f(.) evaluated
at Qt−1. This formulation allows to explicitly link the dynamics of the electricity price with
the fluctuations of volumes.
The term ∆ft(Qt−1) can be seen as the component of electricity price fluctuations which is

not directly due to shifts in demand (it is the value of ∆Pt when ∆Qt = 0). Such a component
conveys the effects of all supply-side phenomena which affect the wholesale price of electricity
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Table 5: Slopes of the power law relationship between standard deviation of normalized daily
log-returns and lagged price levels. Markets: NordPool, APX, and Powernext. Number of
equipopulate bins: 8.

Hour NordPool APX Powernext

ρ R2 ρ R2 ρ R2

1 −1.183± .021 .738 −1.194± .014 .860 −.570± .010 .751
2 −1.218± .022 .715 −1.151± .029 .580 −.778± .015 .702
3 −1.182± .018 .793 −.987± .015 .798 −.783± .012 .801
4 −1.191± .014 .869 −.744± .019 .576 −1.065± .016 .797
5 −1.128± .012 .892 −.618± .013 .676 −1.065± .016 .797
6 −1.260± .013 .885 −.747± .008 .890 −1.275± .016 .855
7 −1.196± .016 .834 −.459± .012 .549 −1.275± .016 .855
8 −1.102± .008 .938 −.450± .014 .468 −.978± .013 .841
9 −.958± .019 .678 −.852± .016 .712 −.978± .013 .841
10 −1.034± .022 .668 −.996± .013 .837 −1.232± .015 .863
11 −1.121± .014 .840 −.988± .016 .758 −1.232± .015 .863
12 −1.298± .011 .923 −.552± .011 .694 −1.005± .020 .696
13 −1.431± .008 .966 −.625± .010 .772 −1.299± .016 .856
14 −1.313± .008 .957 −.505± .013 .569 −1.376± .017 .849
15 −1.308± .006 .974 −.528± .013 .583 −1.298± .013 .896
16 −1.283± .008 .962 −.654± .013 .673 −1.165± .017 .808
17 −1.071± .012 .868 −.792± .006 .936 −1.025± .015 .827
18 −.943± .017 .732 .016± .021 .001 −.876± .005 .957
19 −1.081± .014 .834 .595± .020 .424 −1.124± .009 .929
20 −1.244± .012 .909 .377± .010 .558 −1.124± .009 .929
21 −1.452± .009 .957 .332± .019 .216 −1.164± .013 .879
22 −1.459± .007 .971 −.886± .066 .134 −1.514± .009 .960
23 −1.368± .014 .894 −.264± .059 .017 −1.556± .005 .986
24 −1.206± .010 .923 −1.523± .060 .359 −1.665± .021 .841

15



4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

log P
t

lo
g 

σ t−
1(r

t)

Power law fit of the relationship between prices and standard deviation of log−returns

empirical
fitted

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

log P
t

lo
g 

σ t−
1(r

t)

Power law fit of the relationship between prices and standard deviation of log−returns

empirical
fitted

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

log P
t

lo
g 

σ t−
1(r

t)

Power law fit of the relationship between prices and standard deviation of log−returns

empirical
fitted

Figure 9: Linear fit of the relationship between log of the conditional standard deviation of
normalized log-returns, log σt−1(rt), and lagged log-price level log(Pt−1). Clockwise: NordPool
(left, 5 p.m., β = −1.071), APX (left, 1 a.m., β = −1.194), Powernext (7 p.m., β = −1.124).
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between t−1 and t - such as plant failures, strategic capacity withholding, changes in the level
of water reservoirs, the dynamics of fuel costs, changes in markups - holding constant the level
of electricity demand at t−1. Henceforth, it will be referred to as supply effect. The remaining
component is a polynomial function of ∆Qt: it measures the direct impact of changed demand
levels on the electricity price, holding constant the supply schedule. Therefore it is called
demand effect. Yet, the impact of demand is tuned by parameters (f ′, f ′′, and so forth)
which may reflect the strategic interaction between agents on the market - i.e. supply-side
phenomena. More generally, the shape of the supply function, as defined by the parameters
∆f , f ′, f ′′ etc., is supposed to depend on the expectations formed by market participants as
regards the magnitude and sign of demand growth. Thus, the supply-effect and demand-effect
components may not be independent. This sort of electricity price growth accounting can
however be extremely useful in guiding the economic interpretation of the statistical evidence
presented in this paper.
The first part of this section (3.1) shows that, under certain conditions, higher order terms

of the Taylor approximation are not needed for explaining the 1/P scaling. A linear model with
constant slope and (possibly random) intercept suffices. Starting from this simple model, the
second part of the section (3.2) restricts the set of possible combinations of parameter values
and properties which is consistent with the observed patterns of kurtosis in the distributions
of price and demand changes. In the third and final part (3.3), autocorrelation in intercept
shifts is shown to strengthen the patterns of serial dependence of demand changes, yielding
an even stronger autocorrelation structure in price dynamics.

3.1 Volatility-price scaling and linear supply

The empirical evidence on wholesale electricity markets reveals that the conditional standard
deviation of price growth goes like the reciprocal of the price level. Sufficient conditions for
the model of Eq. 5 to reproduce the scaling evidence are proposed as follows.

Proposition. Consider the model

rt ≈
1

Pt−1
[∆ft(Qt−1) + f ′(Qt−1; θt)∆Qt +

1

2
f ′′(Qt−1; θt)(∆Qt)

2] (6)

The conditional standard deviation of price growth rates goes like the reciprocal of the
price level under the following sufficient conditions:
(i) Suppose V [(∆Qt)

k|Qt−1] is independent of Qt−1 and Pt−1, ∀ k = 1, 2, .... Then the
sufficient condition is that the inverse supply function f is linear, with (possibly) random
intercept and constant slope,

Pt = αt + βQt (7)

and that both slope and intercept are independent of past values of price and demand.
(ii) Suppose V [(∆Qt)

k|Qt−1] is not independent of Qt−1 and Pt−1. Then the sufficient
condition is that V [∆ft] and f (k)(Qt−1)(∆Qt)

k are independent of Qt−1 and Pt−1, for k =
1, 2, ....

Proof. It suffices to show that the variance of ∆Pt is independent of Pt−1 and of Qt−1.
Independence from Pt−1 is not enough, because Pt−1 = f(Qt−1; θt−1). Two cases are considered.
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(i) If f ′ is constant with respect to Qt−1, all higher derivatives of f are zero. Moreover,
∆ft is independent of volumes and prices at t − 1. The supply schedule is therefore locally
linear. The variance of rt in such a case reads:

V [rt|Pt−1] =
V [∆ft + f ′∆Qt]

P 2t−1
(8)

Given V [∆Qt|Qt−1] independent of prices and volumes at t− 1, it is easy to see that if f
′

and the conditional variance of ∆f are independent as well, the variance of ∆Pt is independent,
too. Hence, 1/P scaling results. Notice that the scaling evidence can be reproduced even if
V [∆ft] = 0, i.e. a constant intercept. The slope β must also be constant over time. This
is required for V [∆ft] to be independent of Qt−1. Indeed, if βt 6= βt−1, then ∆ft(Qt−1) =
∆αt +∆βtQt−1, which conditional variance depends on Qt−1, and thus on Pt−1.
(ii) The variance of rt in such a case reads:

V [rt|Pt−1] =
V [∆ft + f ′∆Qt + f ′′(∆Qt)

2]

P 2t−1
(9)

Suppose V [∆Qt|Qt−1] is not independent of prices and volumes at t − 1. Then it can be
seen that the conditional variance of ∆Pt (the above numerator) is independent as well if the
conditional variance of ∆ft is independent, too, and if f

′, f ′′ etc. are not independent of prices
and volumes in the previous market session, in such a way that variances V [f (k)(∆Qt)

k] are
independent.

Case (i) is consistent with a broad family of volume generating processes, such as any
additive time series (either stationary or not), and multiplicative models with null AR co-
efficient at lag one. The latter may look too restrictive. Though, even if positive and high
autocorrelation is usually observed at lag 1 day, this may in fact reflect annual - rather than
1st order - autocorrelation. The remainder of the paper shall deal with case (i), while leaving
to future research the investigation of case (ii).
In terms of the supply effect-demand effect dichotomy, the above proposition suggests that

the 1/P scaling relationship can be obtained by assuming a time-varying supply effect, and
a demand effect characterized by a constant factor of proportionality. In other words, the
exogenous dynamics of demand and the endogenous strategic response by market participants
are additive. All effects of market gaming result in intercept shifts, without affecting the slope
of the supply schedule at the intersection between demand and supply.
For a further illustration of the above proposition, let us assess the predictions of an existing

supply function model.
Mount’s model. Mount’s (2000) analysis aims to understand how randomness about the

electricity load is amplified by the structure of offers to sell power, and to explain why, even if
the load is symmetrically distributed, some positive skewness can emerge in the distribution
of prices. Mount put forward a mixed linear-power model:

Pt = α +Qβ
t (10)

Positive price skewness can be predicted by the above equation if one assumes β > 1,
i.e. convexity of the market supply function - an assumption made plausible by convexity of
short-run variable costs of power generation. However, Mount did not derive any implication
as to the distribution of price changes. Mount’s model is in fact ruled out by the evidence on
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volatility-price scaling. To see this, let f(Qt;α, β) be the inverse supply function, and let us
compute ∆ft(Qt−1) and f

′(Qt−1):

∆ft(Qt−1) = Qβ
t−1 −Qβ

t−1 = 0 (11)

i.e. a null supply effect; but

f ′(Qt−1) = βQβ−1
t−1 (12)

Clearly, in this case the slope of f evaluated in Qt−1 is not independent of Qt−1, so that it

depends indirectly upon Pt−1. If V [∆Qt|Qt−1] ∼ Q
2(1−β)
t−1 , then the model predicts 1/P scaling.

If instead the variance of price changes is independent of Qt−1 (case (i) in the Proposition),
Mount’s model runs against the evidence of 1/P volatility-price scaling.

3.1.1 Alternative interpretations of linearity

A linear description of the inverse supply function in a wholesale electricity market can sound
simplistic - particularly the prediction of a constant slope - and is subject to at least two
routes of criticism.
First, if rated and declared plant capacities, variable costs of power generation, and indi-

vidual offer strategies are heterogeneous, why should a linear supply function emerge? Second,
power generating companies can post a limited number of price-quantity couples: this should
engender a step-wise supply schedule, rather than a linear, upward-sloping one.
The former doubt is justified if one views the supply schedule as globally linear. This

amounts to assuming that the slope of the supply function is constant ∀ Q ∈ [0,∞). Such an
interpretation is hardly acceptable, but not really necessary. Demand fluctuations are never
so wide as to cover the whole range of feasible capacity values. One can think of demand
fluctuations being bounded within a certain value region, and therefore that linearity holds
(at least approximately) within that region, without necessarily holding everywhere.
The second criticism, based on the step-wise nature of supply schedules, implicitly assumes

that a flat bid order system is at work - namely, that the system marginal price is determined
on the basis of step curves drawn between the submitted price-volume combinations. This is
true of the APX and of other markets that have not been analyzed here (such as the Spanish
Omel, and the Slovenian Borzen). In the NordPool and in the Powernext, the order system is
based on interpolation between the submitted price-volume combinations: the market supply
schedule can thus be seen as a piece-wise linear increasing function (see also Meeus, 2005).12

These considerations hint at some reasons why the slope of the supply function, at the
market-clearing intersection, may appear constant. A first possibility is that, as demand
changes, different generating companies become marginal, but all offers are such that local
slopes are (approximately) the same. This is however very similar to the globally linear supply
case. Alternatively, the piece-wise linear schedule is characterized by very heterogeneous local
slopes, but the dynamics of the market is such that demand ends up intersecting always the
same piece of the supply schedule - i.e. any given hourly market is virtually always cleared
by the same plant. Heterogeneity across generating companies makes the latter case sound
more likely. All of this suggests to view the proposed model as a piece-wise linear function.
Variations of demand and the structure of supply are supposed to interact in such a way as to

12The different order system adopted by the APX may be the reason behind the comparatively poor per-
formance of the 1/P volatility-price scaling for that market. This can be seen as a nice example of how much
institutions matter in shaping the properties of market outcomes.
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determine some high persistency as regards which plant is assigned the market-clearing role
in a given hourly market.13

3.1.2 Economic meaning of the intercept and slope parameters

The proposed (piece-wise) linear model of the supply schedule is characterized by just two
parameters (for each piece of the curve): intercept and slope. The former defines the so-called
supply effect; the latter, multiplied by ∆Qt, measures the demand effect. The evidence of 1/P
scaling can be reproduced by assuming that such effects are additive.
Consider a piece-wise linear supply function. At any time, the relevant intercept parameter

is the intercept of the linear function which the inelastic demand schedule intersects. This can
fluctuate over time for a number of reasons.
A first mechanism is related to the evidence reported by Guerci et al. (2005). According

to their analysis of the Spanish market, a certain fraction of power is supplied by the so-called
passive sellers - i.e. by sellers posting an offered price equal to zero. Their orders can be seen
as a sort of market orders. Those who post positive prices are instead called active sellers.
If either the number of passive sellers or the capacity offered by them (or both) change

over time, parallel shifts of the supply function occur. Holding constant the offer prices and
the capacities of active sellers, shifts due to passive agents modify the value of the intercept of
each linear piece composing the market supply schedule, while leaving the slopes unaffected.
Specifically, intercepts decrease following an increase in the total capacity supplied by passive
sellers. The dynamics of entry, exit and capacity withholding by passive agents are probably
driven by strategic considerations. An expected increase in demand would induce, on one
hand, passive sellers to enact a supply reduction, adding to the demand effect and yielding
higher profits for the benefit of all inframarginal sellers through a higher market-clearing price;
on the other hand, outsider generating companies may decide to enter the market.
In markets with a considerable fraction of hydropower generation - such as the NordPool -

parallel shifts of the supply schedule may be due to increases or decreases in the level of water
reservoirs. These are slowly-varying forces, mostly dependent on meteorological and climatic
factors, way beyond the control of power generating companies, and largely exogenous to
demand fluctuations. The entailed supply effect has no strategic content.
Capacity withholding by active agents, too, may drive overall shifts in the supply schedule.

However, shifts of this type can also be due to changes in the markups charged by generating
companies on operating costs - in auction-theoretic terms, to a varying amount of bid shading.
Both capacity withholding by active agents and the dynamics of bid shading are supposed to
affect the local slopes of the supply function, too.
The evidence of 1/P volatility-price scaling is consistent with a supply schedule charac-

terized by stochastic intercept αt and constant slope β. Under such a supply model, most of
the strategically-driven action behind the dynamics of wholesale electricity prices occurs by
way of entry, exit and capacity changes by agents posting market orders. These phenomena
are indeed captured by intercept shifts. Changes in the slope are instead assumed away: the
demand effect is functionally stable over time. In light of the foregoing discussion, strategic
moves by active agents, which would spoil the time constancy of β at the market-clearing vol-
ume level, play a relatively minor role. Moreover the time constancy of the slope requires that
in any given hourly market, demand and supply always intersect in the same branch of the
supply schedule. This can happen if the dynamics of passive capacity is positively correlated

13In such a case, the assumptions of continuity and differentiability of the supply function have to be
weakened and given a local interpretation.
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with the dynamics of demand, and at the same time if the structure of the supply schedule is
stable in regard to the merit order of companies posting limit orders, their offered capacities,
and their markups. For instance, an expected increase in demand could create incentives for
entry of new passive sellers and for capacity withholding by extant ones. These effects imply,
respectively, a right-ward and a left-ward shift of the supply schedule. Because demand would
increase (i.e. the inelastic demand schedule would shift to the right), intersection between
demand and supply curves keeps occurring in the same piece of the supply schedule if the
right-ward shift of the supply curve overwhelms the left-ward shift - i.e. if a net increase of
passive capacity occurs.

3.2 Distributions of price and demand dynamics

The empirical evidence reported in this paper shows that the kurtosis of filtered electricity
price changes is higher than for filtered changes in electricity demand. This section investigates
upon the properties of supply which, given a random and inelastic demand, yield the observed
asymmetry between the distributions of the filtered ∆Pt and ∆Qt. The forthcoming analysis
assumes a supply schedule model characterized by the following features:

1. the inverse supply function is piece-wise linear with random intercepts and constant
slopes;

2. shifts in the intercept term (supply effect) are correlated with demand dynamics;

3. intercept shifts are drawn from a zero-mean, symmetric distribution.

Linearity with random intercept and constant slope has been shown before to be sufficient
for the 1/P scaling to emerge. The correlation between the supply effect and demand dynam-
ics captures the aggregate impact of two ways through which suppliers can react to expected
growth in demand: capacity withholding by existing generating companies, and entry of new
capacity. The former determines an increase of the supply intercept, the latter a downward
shift. Therefore we expect ∆αt to be negatively correlated with ∆Qt whenever entry is quan-
titatively more relevant than capacity withholding. Otherwise, a positive correlation regime
sets in.
The following research questions are asked. First, which properties of the intercept-shift

process ∆αt and which values of β are consistent with the observed variance and kurtosis of
∆Pt and ∆Qt? Second, and more generally: under which conditions the properties of the
intercept-shift variable ∆αt determine a divergence between the tail properties of price and
demand dynamics? The forthcoming two subsections provide some answers.

3.2.1 Implied variance of the intercept process.

Let ∆αt ≡ αt−αt−1 and ∆Qt be random variables, which distributions are symmetric around
a zero mean. Let vx be the variance of a random variable x, and γx,y the covariance between
x and y. Under the assumed supply model, the variance of ∆Pt reads

v
∆P
= v

∆α
+ β2v

∆Q
+ 2βγ

∆α,∆Q
(13)

The variance of volume dynamics, the variance of the intercept shift process, and the
covariance between intercept shifts and volume growth - all have a positive impact on the
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variance of ∆P . Holding v∆P , v∆Q and γ∆α,∆Q fixed, the local slope of the relationship
between β and v∆α reads

dv
∆α

dβ
= −2(βv

∆Q
+ γ

∆α,∆Q
) (14)

This can be seen as the slope of a level curve - the locus of all pairs (v∆α, β) such that
Eq. 13 holds. Such a slope is negative if γ∆α,∆Q > −βv∆Q. This occurs, for instance, when
capacity withholding reacts to demand growth more than entry. In such a case, steeper supply
functions must be characterized by low volatility of their parallel shifts.
A steep slope could emerge in a market where very heterogeneous ask prices are submitted

for very small capacity ranges. This given, if supply shifts are negatively correlated with de-
mand dynamics, the proposed model implies a supply function which experiences very volatile
shifts. This seems to be a good description of the dynamics of daily auctions. On the con-
trary, when any given offered price is posted for a wide capacity range, and offers are rather
homogeneous across companies, β is small, and under a negative correlation regime one should
observe rather stable, non-volatile parallel shifts in the supply schedule. This fits better for
night auctions.
Notice that if β = 0, then v∆α = v∆P ; and that v∆α = 0 if

β = β ≡ −ρ
∆α,∆Q

√

√

√

√

v
∆α

v
∆Q

±

√

√

√

√ρ2
∆α,∆Q

v
∆α

v
∆Q

+
v
∆P

v
∆Q

where ρ denotes a correlation coefficient. Values of β > β would imply negative variance
of ∆α, which is impossible. Hence, the range of feasible β values is [0, β].

3.2.2 Explaining kurtosis patterns.

Let kx be the kurtosis of a random variable x. Under the assumed model, the kurtosis of the
price change variable ∆P reads:

k
∆P
=
v2
∆α
k
∆α
+ β4v2

∆Q
k
∆Q
+ 6β2γ

∆α2,∆Q2
+ 4βγ

∆α3,∆Q
+ 4β3γ

∆α,∆Q3

v2
∆P

(15)

This complicated expression can be solved for the difference k∆P − k∆Q, which empirically
is known to be positive:

k
∆P
− k

∆Q
=

1

v2
∆Q

[a1β
−1 + a2β

−2 + a3β
−3 + a4β

−4] (16)

where:

a1 ≡ 4(γ
∆α,∆Q3

− k
∆P
v
∆Q
γ
∆α,∆Q

) a2 ≡ 2(3γ
∆α2,∆Q2

− 2k
∆P
γ2
∆α,∆Q

− k
∆P
v
∆α
v
∆Q
)

a3 ≡ 4(γ
∆α3,∆Q

− k
∆P
v
∆α
γ
∆α,∆Q

) a4 ≡ v2
∆α
(k
∆α
− k

∆P
)

The gap between kurtosis values of price and volume dynamics depends negatively on the
correlation between the supply effect and demand fluctuations:
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∂(k
∆P
− k

∆Q
)

∂γ
∆α,∆Q

= −
4k
∆P
v
∆P

β4v2
∆Q

< 0 (17)

A high kurtosis gap can thus be due to a strongly negative correlation between supply
curve shifts and demand growth, as is the case when the aggregate effect of entry and exit by
passive sellers is greater than the aggregate effect of changing incumbents’ capacities. On the
contrary, the impact of the kurtosis of intercept shifts is positive:

∂(k
∆P
− k

∆Q
)

∂k
∆α

=
v2
∆α

β4v2
∆Q

> 0 (18)

This suggests that a large kurtosis gap may occur when the probability of very large shifts
in the supply function is non-negligible. The relationship with the variance of demand growth
is positive only if k∆α >

v∆P
v∆α

k∆P - i.e. if intercept fluctuations are fat-tailed enough:

∂(k
∆P
− k

∆Q
)

∂v
∆α

= −
2(k

∆P
v
∆P
− k

∆α
v
∆α
)

β4v2
∆Q

(19)

The gap between kurtosis of price and volume fluctuations is increasing in the value of
the higher order covariances, as it can be easily verified. Finally, notice that the kurtosis gap
vanishes as β grows large:

limβ→∞k
∆P
− k

∆Q
= 0 (20)

However, the relationship between k∆P − k∆Q and β - a quartic function - is not in general
monotonic.
To sum up, the kurtosis gap can be reproduced by assuming: (i) the impact of entry and

exit, at the aggregate market level, is higher than the impact of capacity withholding (negative
correlation between ∆α and ∆Q); (ii) volatile demand growth and volatile shifts in the supply
schedule are associated (positive high order correlations, such as γ∆α2,∆Q2); and (iii) some
coordination of individual strategic moves exists, such that the supply schedule experiences
either very small or very large parallel shifts (large kurtosis of ∆α).

Case: linear supply with non-stochastic parameters. In order to fully appreciate
the role of a stochastic supply effect, let us study the special case of a linear model with
constant parameters; namely

Pt = α + βQt (21)

In this case, vα = 0, implying v∆P = β2v∆Q, and k∆P = k∆Q. Because ∆Qt is symmetric
by assumption, also odd moments of price and demand changes are equal. As a conclusion,
under a linear supply function with non-stochastic parameters, the distributions of ∆Pt and
∆Qt are identical up to a constant factor β.

14

As another way to see this, recall that the equality

∆Pt = β∆Qt (22)

14It is worth noting that such a conclusion is based on the comparison between kurtosis indicators, which
are a-dimensional, and between variances of ∆Pt and of β∆Qt, which are expressed in the same units by a
suitable choice of β.

23



implies, for ∆Q ∼ f∆Q, that

f∆P (x) =
1

β
f∆Q(x) (23)

∀ x in the relevant domain. The observed asymmetry between tail behaviors of the distri-
butions of price and demand dynamics cannot be reproduced, unless α and/or β are random
variables. Introducing randomness in α is therefore a way to reproduce the different tail
behavior of changes in prices and demand.

3.3 Autocorrelation patterns

The previous empirical analysis has shown that the weekly pattern of electricity prices, mea-
sured by its autocorrelation at 7 days, is stronger than for demand dynamics. Let ρx(k) be the
autocorrelation coefficient of a random variable x at lag k, and ρx,y(k) the cross-correlation
between x and y at lag k. Furtherly assume that all variables of interest are covariance
stationary. Under the assumed supply model, the following holds:

ρ
∆P
(k) = v−1

∆P

[

v
∆α
ρ
∆α
(k) + β2v

∆Q
ρ
∆Q
(k) + 2β

√

v
∆α
v
∆Q
ρ
∆α,∆Q

(k)
]

(24)

The observed regularity ρ∆P (7) > ρ∆Q(7) requires that the following condition is satisfied:

(β2v
∆Q
− v

∆P
)ρ
∆Q
(k) + v

∆α
ρ
∆α
(k) + 2β

√

v
∆α
v
∆Q
ρ
∆α,∆Q

(k) > 0

Plugging Eq. 13 into the above and doing some algebra yields:

v
∆α
(ρ
∆α
(7)− ρ

∆Q
(7)) + 2β

√

v
∆α
v
∆Q
(ρ
∆α,∆Q

(7)− ρ
∆α,∆Q

(0)) > 0 (25)

This condition indicates that the autocorrelation structure of intercept shifts (ρ∆α) and its
cross-correlation with changes in demand (ρ∆α,∆Q) play an important role in driving the weekly
pattern observed in wholesale electricity price dynamics. The former indicates persistency of
the supply effect. The latter denotes the existence of a strategic linkage between the supply
effect (e.g. capacity withholding, entry, exit) and demand dynamics.
The observed autocorrelations pattern depends on (i) whether ∆α is more persistent than

∆Q (first term of the summation in Eq. 27); and on (ii) how slowly the correlation between
∆α and ∆Q decays over time (2nd term). The observed evidence is more likely to be verified
if demand growth and the supply effect are very volatile, and when β is high.
The interaction between supply shifts and the expected demand dynamics is the truly

interesting economic aspect of the dynamics of wholesale electricity auctions. Were suppliers
not to react to either expected or past realized demand dynamics, the difference between
magnitudes of price and demand growth autocorrelations would be milder. For instance, were
∆α deterministic and not correlated with ∆Q, Eq. 27 would be identically equal to 0, i.e. no
gap between autocorrelations would be observed.
To conclude, the existence of an autocorrelation gap indicates that the strategic response

to expected demand dynamics is persistent and periodic (high autocorrelation of ∆α at weekly
lags); and (ii) such strategic moves and the expectations they are based upon are linked to the
past dynamics of demand, in an adaptive fashion (high lagged correlation between ∆α and
∆Q).
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4 Concluding remarks

In this paper, the statistical properties of day-ahead electricity prices have been studied
through a new approach. The main idea is that, given an inelastic demand schedule and
a uniform-price auction format, one can derive the properties of price growth through the
statistical regularities observed in power demand growth, and that such properties vary under
different assumptions about the supply curve. Intuitively, only some supply curve models are
consistent with the existing joint evidence on prices and volumes.
Consistently, the properties of day-ahead electricity price and volume growth rates have

been jointly analyzed. More in detail, it has been shown that serial correlations of the growth
of prices are stronger than for volume growth; that price growth is more heavy-tailed than
volume growth; and that the conditional standard deviation of price growth decays like the
reciprocal of the price level (1/P scaling). The latter fact can be explained by a piece-wise
linear supply function, with stochastic local intercepts and constant local slopes. The other
two facts have been interpreted in light of the proposed model. The analysis shows that most
of the action behind day-ahead electricity price dynamics is due to entry, exit, and capacity
withholding by the so-called passive sellers, whereas changes in the merit order of active sellers
plays a minor role. In models in which generating companies respond to changing demand
conditions in heterogeneous ways (entry, exit, capacity withholding), the kurtosis gap can
be reproduced by assuming (i) that the aggregate impact of entry and exit is quantitatively
greater than the effect of capacity withholding; (ii) that expectations of a volatile demand
growth are associated with volatile shifts in the supply schedule; and (iii) that individual
reactions are coordinated in such a way, that parallel shifts in the supply schedule are either
very small, or very large. The observed gap between serial correlations of price growth and
demand growth is due to persistency in the strategic responses to expected demand growth,
and to adaptive behavior in the process of expectation formation.
Studying the interdependence between demand and supply is therefore a key to a deeper

understanding of how day-ahead uniform-price auctions for electricity work. Availability of
data about individual offers - i.e. about the empirical market curves - will further enhance such
understanding, and will allow to validate the proposed model and to amend it for consistency
with real-world properties.
As a long-term objective of this research, one would like to build an auction model capable

to predict the patterns of entry, exit and capacity variations which seem to be driving the
observed empirical regularities. The empirically-based model put forward in this paper can be
seen as an aggregate perspective to understanding the electricity market dynamics. Extensions
of models such as von der Fehr and Harbord (1993) and Crampes and Creti (2003) may provide
the necessary microfoundations and shed light on the empirical strengths and weakenesses of
the existing, axiomatic auction-theoretic models of electricity pools.
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