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Abstract

We introduce a new5-parameter family of distributions, the Asymmetric Exponential Power (AEP),
able to cope with asymmetries and leptokurtosis and at the same time allowing for a continuous variation
from non-normality to normality.

We prove that the Maximum Likelihood (ML) estimates of the AEP parameters are consistent on the
whole parameter space, and when sufficiently large values ofthe shape parameters are considered, they
are also asymptotically efficient and normal. We derive the Fisher information matrix for the AEP and we
show that it can be continuously extended also to the region of small shape parameters. Through numerical
simulations, we find that this extension can be used to obtaina reliable value for the errors associated to
ML estimates also for samples of relatively small size (100 observations). Moreover we find that at this
sample size, the bias associated with ML estimates, although present, becomes negligible.

JEL codes: C13, C15, C16

Keywords: Maximum Likelihood estimation; Asymmetric Exponential Power Distribution; Information
Matrix

1 Introduction

Many empirical analyses of real data coming from a variety ofdifferent fields suggest that the assumption of
normality is quite often not tenable. Indeed, we observe empirical densities characterized by heavy tails as well
as by significant degree of asymmetry. For these situations it is important to build flexible statistical models
able to cope directly with skewness and leptokurtosis and, at the same time, to allow continuous variation
from non-normality to normality (cfr. among many others Huber (1981), Azzalini (1986) and Hampel et al.
(1986)).

Subbotin (1923) introduces the Exponential Power (EP) distribution characterized by a scale parameter
a > 0, a shape parameterb > 0 and a location parameterm and whose density reads

fEP(x; b, a,m) =
1

2ab1/bΓ(1/b + 1)
e−

1
b | x−m

a |b (1)

whereΓ(x) is the Gamma function. The Gaussian is obtained whenb = 2 while whenb < 2 the distributions
are heavy-tailed: the lower is the shape parameterb, the fatter are the density tails. This model has been
studied by many scholar: cfr. among others Box (1953), Turner (1960) and Vianelli (1963). Inferential
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aspects of the EP distribution in a Maximum Likelihood framework have been studied in Agró (1995) and
Capobianco (2000).

In order to deal with both fat tails and skewness Azzalini (1986) presents the skewed exponential power
(SEP) distribution

fSEP(x; b, a,m, λ) = 2 Φ(sign(z) |z|b/2 λ
√

2/b) fEP(x; b, a,m) (2)

wherez = (x −m)/a , a > 0 andb > 0, −∞ < m < ∞, −∞ < x < ∞, −∞ < λ < ∞ andΦ is the
normal distribution function. It easy to see thefSEP reduces tofEP whenλ = 0 while the normal case is
obtained when(λ, b) = (0, 2). The Maximum Likelihood inference problem for this distribution is discussed
in details in DiCiccio and Monti (2004).

To tackle in an alternative way the presence of heavy tails and skewness, in the present paper we propose
a new5-parameters family of distributions, the Asymmetric Exponential Power distributions (AEP), charac-
terized by two positive shape parametersbl andbr, describing the tail behavior in the upper and lower tail,
respectively, two positive scale parametersal andar and one location parameterm, whose density reads

fAEP(x;p) =
1

C
e
−

„

1
bl

˛

˛

˛

x−m
al

˛

˛

˛

bl
θ(m−x)+ 1

br

˛

˛

˛

x−m
ar

˛

˛

˛

br
θ(x−m)

«

(3)

wherep = (bl, br, al, ar,m), θ(x) is the Heaviside theta function and using the definition

Ak(x) = x
k+1

x
−1 Γ

(

k + 1

x

)

(4)

the normalization constantC reads

C = alA0(bl) + arA0(br) .

The meanµAEP of the AEP distribution is

µ = m+
1

C

(

a2
r A1(br) − a2

l A1(bl)
)

(5)

and for the varianceσ2
AEP one has

σ2
AEP =

a3
r

C
A2(br) +

a3
l

C
A2(bl) − (µ−mAEP)2 . (6)

The generich-th central momentMh can be formally expanded to read

Mh =

h
∑

q=0

(

h

q

)

1

Ch−q+1

(

aq+1
r Ah(br) + aq+1

l Ah(bl)
)

(

a2
r A1(br) − a2

l A1(bl)
)h−q

. (7)

The AEP reduces to the EP whenal = ar andbl = br.

The paper is organized as follows. In the next Section some theoretical results on the Maximum Likelihood
estimation of the AEP distribution are presented. In particular, in Section 2 we will derive the elements of the
Fisher’s Information matrix discussing its domain of definition; in Section 2.1 we will prove the consistency
of the estimator in the whole parameter space and we will discuss the asymptotic efficiency and normality
for the case in which both parametersbl andbr are greater than two and finally, in Section 2.2, we will show
that, for some estimator, the domain of definition of the Information matrix can be extended to the whole
parameter space. Finally, in Section 3, with the help of extensive numerical simulations, we will analyze the
bias of the ML estimators and their asymptotic behavior in the domain of the parameters space not covered by
the analytical results.
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Figure 1: Densities of the AEP(1,2,1,br) with br =
5, br = 1 andbr = 0.5.
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Figure 2: Densities of the AEP(1,0.5,ar,0.5) with
ar = 5, ar = 2 andar = 0.5

2 Maximum Likelihood Estimation

Consider a set of N observations{x1, . . . , xN} and assume that they are independently drawn from the AEP
distribution whose density is reported in (3). We are interested in the estimation ofp from that sample. The
Maximum Likelihood estimatêp0 is obtained maximizing the empirical likelihood

p̂ = arg max
p

N
∏

i=1

fAEP(xi;p0) (8)

or, equivalently, minimizing the negative log-likelihood, computed taking the logarithm of the likelihood
function and changing its sign

p̂ = arg min
p

N
∑

i=1

LAEP(xi;p0) where LAEP(x;p0) = − log fAEP(x;p0) . (9)

The Cramer-Rao lower bound for the estimates standard errorin the case of unbiased estimators is pro-
vided by the5 × 5 information matrixJ(p0), defined as the expected value of the cross-derivative

Ji,j(p0) = Ep0 [∂iLAEP(x;p0) ∂jLAEP(x;p0)] , (10)

whereEp0 [.] is the theoretical expectation computed under the hypotheses that the values of the distribution
parameter isp0 and where the indicesi andj runs over the five parameters(bl, br, al, ar,m). In the next
Sections we will show that, notwithstanding the presence offinite-sample biases, this matrix can be used to
characterize the statistical errors associated to ML estimates on a large part of the parameters space. The
elements ofJ for the AEP distribution are provided in the following

Theorem 2.1 (Information matrix of AEP density) The elements of the Fisher information matrixJ(p) of
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the Asymmetric Exponential Power distribution(3) are

Jblbl =
1

C
alB

′′
0 (bl) −

1

C2
a2
l (B

′
0(bl))

2 +
al
Cbl

B2(bl) −
2al
Cb2l

B1(bl) +
2al
Cb3l

B0(bl)

Jblbr = − 1

C2
alarB

′
0(bl)B

′
0(br)

Jblal
=

1

C
B′

0(bl) −
1

C2
alB0(bl)B

′
0(bl) −

1

C
B1(bl)

Jblar = − 1

C2
alB0(br)B

′
0(bl)

Jblm =
1

blC
(log bl − γ)

Jbrbr =
1

C
arB

′′
0 (br) −

1

C2
a2
r(B

′
0(br))

2 +
ar
Cbr

B2(br) −
2ar
Cb2r

B1(br) +
2ar
Cb3r

B0(br)

Jbral
= − 1

C2
arB0(bl)B

′
0(br)

Jbrar =
1

C
B′

0(br) −
1

C2
arB0(br)B

′
0(br) −

1

C
B1(br)

Jbrm = − 1

brC
(log br − γ)

Jalal
= − 1

C2
B2

0(bl) +

(

bl + 1

al

)

1

C
B0(bl)

Jalar = − 1

C2
B0(bl)B0(br)

Jalm = − bl
Cal

Jarar = − 1

C2
B2

0(br) +

(

br + 1

ar

)

1

C
B0(br)

Jarm =
br
Car

Jmm =
b
−1/bl+1
l

alC
Γ

(

2bl − 1

bl

)

+
b
−1/br+1
r

arC
Γ

(

2br − 1

br

)

(11)

whereγ is the Euler-Mascheroni constant and, for any integerk, it is

Bk(x) = x
1
x
−k

k
∑

h=0

(

k

h

)

logh x Γ(k−h)

(

1 +
1

x

)

, (12)

whereΓ(k) stands for thek-th derivative of the Gamma function.

Proof. See Appendix A.

Q.E.D.

In principle the elements of the inverse information matrixJ−1 can be straightforwardly obtained from
the expressions in (11). None of these elements, however, isidentically zero, nor any easy simplification
can be found. For these reasons, we decided not to report heretheir cumbersome expressions. In general,
for practical purposes, it is much more convenient to compute the elements ofJ and obtain the elements of
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J−1 by numerical inversion. The situation changes if one considers the original symmetric EP obtained when
al = ar = a andbl = br = b. For this case the information matrix has been originally derived in Agró (1995).
To ease the comparison of the general and the particular case, we report the result here using our notation.1

One has

Theorem 2.2 (Information matrix of EP density) Consider the Exponential Power distribution defined in
(1) for the set of parameters(b, a,m) . The Fisher information matrix̄J(b, a,m) defined as

J̄i,j(b, a,m) = Eb,a,m [∂iLEP(x; b, a,m) ∂jLEP(x; b, a,m)] , (13)

whereLEP(x; b, a,m) = − log fEP(x; b, a,m) is found to be



















1
b3

[ψ(1 + 1/b) + log b]2 + ψ′(1+1/b)
b3

(

1 + 1
b

)

− 1
b3

− 1
ab

[

log b+ ψ
(

1 + 1
b

)]

0

− 1
ab

[

log b+ ψ
(

1 + 1
b

)]

b
a2

0

0 0 b−2/b+1 Γ(2−1/b)
a2 Γ(1+1/b)



















(14)

and its inverse reads































b4

−b+(1+b)ψ′(1+ 1
b )

ab2[log b+ψ(1+ 1
b )]

−b+(1+b)ψ′(1+ 1
b )

0

ab2[log b+ψ(1+ 1
b )]

−b+(1+b)ψ′(1+ 1
b )

a2 [b(−1+log2 b)+(1+b)ψ′(1+ 1
b )+2bψ(1+ 1

b ) log b+bψ2(1+ 1
b )]

b [−b+(1+b) ψ′(1+ 1
b )]

0

0 0
a2b2/b−1 Γ(1+ 1

b )
Γ(2− 1

b )































(15)

Proof. SinceLEP(x; b, a,m) = LAEP(x; p̄) wherep̄ = (b, b, a, a,m), the elements of (14) can be easily
found using the results in Theorem 2.1. Consider for instance the shape parameterb. The derivative with
respect tob of LEP is the sum of the derivatives with respect tobl andbr of LAEP . In other terms, in computing
the elements of the Fisher information matrix for the EP distribution, one has to consider the substitution

∂

∂b
↔ ∂

∂bl
+

∂

∂br

so that, for instance,

J̄a,b(b, a,m) = E [∂aLEP ∂bLEP] = E [(∂blLAEP + ∂brLAEP) (∂alLAEP + ∂arLAEP)]

= Jal,bl(p̄) + Jal,br(p̄) + Jar ,bl(p̄) + Jar ,br(p̄) .

The other elements are obtained in analogous way.

Q.E.D.

1Notice that in Agró (1995) the element̄J−1
b,a of the inverse information matrix is mistakenly reported.
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2.1 Properties of the Estimators

We present now two theorems providing conditions for consistency, asymptotic normality and asymptotic
efficiency of the AEP maximum likelihood estimators. The behavior of the estimator is different whenever the
parameterm ought to be estimated or can be consider known. We analyze thetwo cases separately, starting
with the case of unknownm.

From the definition of AEP in (3) the parametersp = (bl, br, al, ar,m) belong to the open set

D = (0,+∞) × (0,+∞) × (0,+∞) × (0,+∞) × (−∞,+∞) .

Let p0 be the true parameters value, then

Theorem 2.3 (Consistency)For anyp0 ∈ D maximum likelihood estimator̂p is consistent, that iŝp con-
verges in probability to its true valuep0.

Proof. For anyp0 ∈ D there exists a compactP ⊂ D such that:

1. p0 ∈ P

2. ∀p 6= p0, p ∈ P, it is f(xi|p) 6= f(xi|p0)

3. ∀p ∈ P, log f(xi|p) is continuous

4. E[supP | log f(xi|p)|] <∞.

According to Theorem 2.5 in Newey and McFadden (1994) (Chapter 36 pag. 2131) these four conditions are
sufficient to prove the statement.

Q.E.D.

Furthermore the following theorem presents a set of assumptions that guarantees asymptotic normality
and efficiency of the Maximum Likelihood estimator.

Theorem 2.4 (Asymptotic Normality and Efficiency) If bl, br ≥ 2 there exists a solution̂p of the maximum
likelihood problem(9) that is asymptotically normal and efficient in the sense that

√
N(p̂− p0) converges in

distribution toN{0, [J(p)]−1}.

Proof. For the proof see Appendix B.

Q.E.D.

Analogous results were derived in Agró (1995) for the symmetric Exponential Power distribution (1). The
reason why the asymptotic efficiency and normality of the ML estimator is only derived for the case in which
bl, br ≥ 2 is due to the singular nature of the derivatives ofLAEP with respect to the parameterm. When this
parameter is considered known, the situation is much simpler. In this case the vector of unknown parameters
p = (bl, br, al, ar) belongs to the open set

D = (0,+∞) × (0,+∞) × (0,+∞) × (0,+∞) .

Let p0 be the true parameters value, then the following holds

Theorem 2.5 (Consistency, Asymptotic Normality and Efficiency) If m is known there exists a solution̂p
of the maximum likelihood problem(9) that converges in probability to its true valuep0; p̂ is also asymptoti-
cally normal and efficient in the sense that

√
N(p̂− p0) converges in distribution toN{0, [J(p)]−1}.
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Proof. The proof follows directly from the previous ones. Indeed whenm is known no discontinuities
in the derivatives of∂log f(xi|p)/∂pj emerge and hence the conditions required by Theorem 2.3 and by
Theorem 2.4 are always satisfied.

Q.E.D.

Basically, the previous Theorem guarantee that whenm is known, the maximum likelihood estimates of
p are consistent, asymptotically efficient and normal on the whole parameter space. Of course, the same thing
also applies to the symmetric EP density (Agró, 1995).

2.2 Extending the Fisher information matrix

FunctionBk(x) defined in (12) and all its derivatives are defined forx > 0 and for anyk. Consequently, all the
elements ofJ in (11), apart fromJmm, are defined on the whole parameter space. The latter element, on the
contrary, is only defined when bothbl andbr are greater than0.5. Whenbl or bl goes toward0.5, the gamma
function contained in that element encounters a pole so thatJmm diverges. Of course, this phenomenon does
not happen when the parameterm can be considered known. In that case, the4x4 Fisher matrix (upper left
block of J) is defined for any value ofbl andbr and, according to Theorem 2.5, this matrix can be used to
characterize the asymptotic error of the estimates over thewhole parameter space. The presence of a pole in
Jmm seems to suggest that for small value ofb, whenm is unknown, the Fisher information matrix cannot be
used to obtain a theoretical benchmark of the asymptotic errors involved in the ML estimation. It turns out
that this is not true. Indeed, the only estimates whose errordiverges ism̂.

Consider the symmetric case in (14). The Fisher matrixJ̄ has a block diagonal structure, so that the value
of the bottom right block,̄Jm,m, does not affect the computation of the inverse of the upper left block, which
contains the standard error of the estimatesâ andb̂ and their cross correlation. In this case, the fact thatm is
known or not, does not have any effect on the asymptotic errorof the estimates of the first two parameters.
Then, one can imagine that the Fisher information matrix canbe used to obtain a theoretical values forσb and
σa also forb < 0.5.

In the asymmetric case, the block-diagonal structure of theFisher information matrix disappears. The
fact thatm is known or that its value has to be estimated does have an effect on the elements of the inverse
information matrix associated with the standard error of the a’s andb’s estimates. In this case, whenbl or br
goes toward0.5, the elementJm,m diverges and correspondinglyJ−1

m,m goes to0. Nonetheless, in this limit,
the covariance terms ofJ−1 involving m tend to0 while the elements in the4x4 upper left block remains
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Figure 5: Rescaled standard error of the estimates of the parametera (top) andb (bottom) as a function of the
sample sizeN for the symmetric Subbotin distribution witha = 1,m = 0 and for different values ofb.

finite. More precisely, the4x4 upper-left block ofJ−1 is positive definite and is equal to the4x4 inverse Fisher
information matrix obtained in the case in whichm is known. Hence,J can be used to recover a theoretical
benchmark for the error of the estimatedb’s anda’s on the whole parameters space. To illustrate this behavior
the error on̂b and â estimated as the square root of the diagonal elements ofJ−1 are reported in Figure 3
and Figure 4, respectively. For comparisons, both the case with m known and unknown are considered, and
the associated element of the EP caseJ̄−1/2 is also reported. As can be clearly seen from the insets, when
b → 0.5 the element ofJ−1 for them unknown case are indistinguishable for the same elements computed
assumingm known. The same behavior can be observed also when only one parameter betweenbl andbr
converges to0.5.

What is the meaning of the inverse Fisher information matrixfor values ofb lower then0.5? Can we
exploit the continuation of the upper-left block ofJ−1 to investigate asymptotic efficiency and normality of
ML estimators also in the region of the parameter space whereb is low? Using extensive numerical simulations
we will try to answer these questions in the next Section.
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3 Numerical Analyses

The analyses of this section focus on two aspects of the ML estimation of the Symmetric and Asymmetric
Exponential power distribution. First, we analyze the presence of bias in the estimates. We know from
Theorem 2.3 that this bias progressively disappear when thesample becomes larger, but we are interested
in characterizing its magnitude for relatively small samples. Second, we address the issue of the estimate
errors, analyzing their behaviors for small samples and trying to describe their asymptotic dynamics. These
investigations are performed using numerical simulation.For a given set of parametersp0 we generate a large
number ofi.i.d. samples of sizeN then, for each parameterp, we compute the sample mean of the estimated
value

p̄(N ;p0) = EN [p̂|p0] , (16)

where the expectation is computed over all the generated samples, and the associated bias

p̃(N ;p0) = p̄(N ;p0) − p0 . (17)

This value is an estimate of the bias ofp̂ and in general, depends on the true value ofp0. Since the ML
estimates are consistent on the whole parameter space, we expect thatlimN→+∞ p̃(N ;p0) = 0. The second
measure that we consider is the sample variance of the estimated values of each parameter, that is

σ2
p(N ;p0) = EN

[

(p̂ − p̄)2|p0

]

. (18)

Notice that the previous two quantities together define the Root Mean Squared Error of the estimate

pRMSE(N ;p0) =
√

EN [(p̂− p0)2|p0] =
√

p̃2 + σ2
p . (19)

3.1 Symmetric Exponential Power distribution

Consider the symmetric Exponential Power distribution. InTable 6 we report the values of the bias and the
estimates standard deviation for the three parametersa, b andm computed using10, 000 independent samples
of sizeN , with N running from100 to 6400 and for different values ofb. Indeed for the present qualitative
discussion the value of the parametersa andm is essentially irrelevant and we fix their value to1 and0,
respectively. The values of the bias and the estimates standard deviation for the parametersa andb in the case
of m known are reported in Table 7.

Since we consider10000 replications, the standard error on the reported bias estimation is nothing but the
estimator standard deviation over

√
10, 000. The bias estimates which results two standard deviation away

from zero are reported in bold face in Tables 6 and 7. Looking at the first column of Table 6 for each estimate,
one observes that the ML estimates ofa andb are sometimes biased, while the estimated bias form is never
significantly different from zero. Notice that in all cases in which it is present, the bias seems to decrease
proportionally to1/N (for both known and unknownm). For the parametera the bias stops to be significantly
different from zero also for medium-sized samples (N around400) while for b it is in general significant until
largest sample sizes are reached. It is worthwhile to noticethat, when the parameterm is considered known,
the bias of the estimated values ofa andb tends to increase, irrespectively of the true value ofb.

Let us consider now the estimated standard errorsσp(N) in Table 6. The first thing to notice is that they
always are at least one order of magnitude greater that the estimated biases so that the contribution of the latter
to the estimates Root Mean Squared Error is in general negligible. This means that, for any practical purposes,
the ML estimates of the symmetric Power Exponential distribution can be consideredunbiased. This is also
true if one consider the case withm known, reported in Table 7. Indeed the values of the estimates standard
error are practically identical for the two cases with only acouple of exceptions whenN is small andb large.
In this cases (see, for example,N = 100 andb = 1.4) the standard error is much bigger when alsom has to
be estimated.
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Table 1: Extrapolated values for the asymptotic (largeN ) estimates standard errors together with the theoret-
ical Cramer-Rao values.

b a m
b σASY J−1 σASY J−1 σASY J−1

0.2 0.3012 0.3016 2.3418 2.3519 0.0186 -

0.4 0.6366 0.6400 1.7547 1.7489 0.1921 -

0.6 1.0105 1.0134 1.4849 1.4994 0.5628 0.4130

0.8 1.4024 1.4198 1.3550 1.3604 0.8499 0.8134

1.0 1.8608 1.8574 1.2654 1.2715 1.0041 1.0000

1.2 2.2602 2.3244 1.2100 1.2095 1.0808 1.0700

1.4 2.7697 2.8194 1.1550 1.1639 1.0912 1.0817

1.6 3.3065 3.3411 1.1195 1.1287 1.0762 1.0651

1.8 3.8407 3.8883 1.0928 1.1008 1.0480 1.0353

2.0 4.4819 4.4599 1.0900 1.0779 1.0036 1.0000

2.2 4.9894 5.0550 1.0536 1.0587 0.9674 0.9632

The second thing to notice is that the estimated standard errors seem to decrease with the inverse squared
root ofN . Indeed in Figure 5 we report for three different values ofb,

√
Nσa(N) and

√
Nσb(N), for m

unknown (left panels) and known (right panels). Notwithstanding the presence of noticeable small sample
effects, this product clearly converge toward an asymptotic value. Since the convergence is from above, the
efficiency of the estimator for small sample is lower than theCramer-Rao bound, implying a small sample
inefficiency. Notice, however, that this inefficiency is in general of modest size.

For the case of unknownm, in order to compare the asymptotic behavior of the Monte Carlo estimates of
the standard error with the theoretical prediction we consider the large samples limit

lim
N→∞

√
N σp(N ;p0) = σASY

p (p0) . (20)

We compute these values by extrapolating the3 observations relative to the largest values ofN estimating
with OLS the intercept of the following linear relation

√
Nσp ∼ α+ β

1

N
. (21)

The results for the different values ofb are reported in Table 1 together with the theoretical prediction obtained
from J̄−1 in (14). As expected, the agreement is extremely good, with discrepancies around0.5%, in the
region b ≥ 2 , where the Theorem 2.4 applies. In this region, indeed, Agr´o (1995) proves that the ML
estimators of the EP density are asymptotically efficient. The same degree of agreement, however, is also
observable in the region0.5 < b < 2, where the Fisher information matrix is defined but no theoretical results
guarantee the efficiency of the estimator for large samples.Moreover, quite surprising, the agreement remains
high, for thea andb estimators, also in the regionb < 0.5, where the Fisher information matrix cannot be
defined according to (13) but can be analytically continued,as discussed in Section 2.2.

In conclusions, the previous numerical investigation extends in many respect the analytical findings of the
existing literature. We have show that for the symmetric Exponential Power distribution
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Figure 6: Rescaled standard error of the estimator of the parametersal (top) andbl (bottom) as a function of
the sample sizeN , for the Asymmetric Subbotin distribution foral = ar = 1,m = 0 and different (but equal)
values ofbl andbr.

1. the ML estimators are in generalbiased. This bias, however, being very small can be safely ignored,at
least for samples with more than100 observations.

2. the ML estimators ofa, b andm are asymptotically efficient, independently of the value ofthe true
parameters and of the fact that the value ofm is known or unknown.

3. the continuation of the Fisher information matrix to the region withb < .5 can be used to obtain a
reliable measure of the error involved in the ML estimation of parametersa andb.

3.2 Asymmetric Exponential Power distribution

In this Section we extend the numerical analysis to the case of Asymmetric Exponential Power distribution.
For the sake of clarity, we split our analysis in two steps. First, we analyze the asymptotic behavior of the
ML estimates when the true parameters have symmetric values. Second, we comment on the observed effects
when different degrees of asymmetry characterize the true values of the shape parametersbl andbr.

In Table 8 we report the values of the bias and the estimates standard deviation for the five parameters
al, ar, bl, br andm computed using10, 000 independent samples of sizeN , with N running from100 to
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Table 2: Extrapolated values for the asymptotic (largeN ) estimates standard errors of the EP together with
the theoretical Cramer-Rao values.

σ
ASY

J
−1

σ
ASY

J
−1

σ
ASY

J
−1

(bl, br) bl br bl = br al ar al = ar m m

(0.4,0.4) 0.7181 0.7083 0.6907 2.1407 2.1628 2.1341 0.3740 -

(0.5,0.5) 0.9392 0.9565 0.9073 1.9636 1.9386 1.9199 0.5788 -

(0.75,0.75) 1.6974 1.6811 1.6114 1.6557 1.6755 1.6458 1.4214 1.1146

(1.5,1.5) 5.9582 6.0244 5.9308 3.2969 3.2845 3.2534 5.1804 5.1064

(2.5,2.5) 19.0743 18.7929 19.2629 7.9499 7.9109 8.0497 11.2056 11.3643

(bl, br) bl br bl br al ar al ar m m

(0.5,1.5) 0.8709 3.8556 0.8174 3.5742 2.1005 1.5258 2.0572 1.3205 0.8588 -

(0.5,2.5) 0.8802 7.2828 0.7991 6.9769 2.0958 1.4619 2.0710 1.1991 0.9164 -

(1.5,2.5) 6.8920 14.3902 6.7661 14.13454.1304 5.3853 4.0050 5.2242 7.1248 6.9119

6400, randomly generated from (3) considering different valuesfor the parametersbl = br. Again the exact
value of thea’s andm parameters is irrelevant for the present discussion and we set al = ar = 1 and
m = 0 for all simulations. As can be seen, the picture that emergesis identical to the symmetric case.
The bias is in general present for small samples, apart for the estimatem̂ which seems in general unbiased.
When present, the bias tends to decrease proportionally to1/N and, for the parametersal andar, as the
sample size increases it becomes statistically indistinguishable from zero. Notice that forN > 100, the
bias is always at least one order of magnitude smaller than the standard deviation. Consequently, also in
the case of Asymmetric Exponential Power distribution, when the true parameters are symmetric, and when
sufficiently large sample are considered, the ML estimates can be considered, for any practical purposes,
unbiased. Also the behavior of the estimates standard deviation is substantially identical to what observed
in the case of symmetric distribution. Indeed, the plots in Figure 6 (left panels) confirm that the rescaled
estimates

√
Nσp(N) whenN becomes large approach straight lines, so that the asymptotic efficiency is

apparent. However, the small sample effect seems to last a little longer: when one consider small values ofb
(see the top left panel in Figure 6) it is still noticeable forsample as large as1000 observations.

In Table 9 we report the values of the bias and the estimates standard deviation for the four parametersbl,
br, al andar, obtained with the MonteCarlo procedure illustrated above, in the case in which the parameterm
is assumed known. No large differences are observed in the behavior of biases and standard deviations with
respect to them unknown case. The general increase of the bias level, already observed for the symmetric
distribution, is still there. Concerning the estimates standard errors, notice that the right panels in Figure 6
display behavior similar to what observed in the left panels, confirming that the deviations from the Cramer-
Rao bound is essentially due to small sample effect. In the case ofm known these effect tend to disappear
completely whenN > 400.

In order to judge the reliability ofJ−1 in estimating the observed errors, we compute the asymptotic
values of the standard errorsσASY

p extrapolating the three estimates obtained with the largest samplesN =
1600, 3200, 6400 following the same procedure used above. The results are reported in Table 2 (upper part).
Again, the agreement between the values extrapolated from numerical simulations and the theoretical values
obtained from the inverse information matrixJ−1 is remarkably high: discrepancies are around1% both in
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Figure 7: Standard error of the estimator of the parametersal (top) andbl (bottom) as a function of the sample
sizeN for the Asymmetric Subbotin distribution for different values ofbl, br, al = ar = 1 andm = 0.

the region of high and lowb’s, confirming thatJ−1 can be used to obtain a value of the estimates’ standard
errors also in the region in which Theorem 2.4 does not apply.

Finally, we have explored the behavior of the ML estimators when the true values of the parametersbl and
br are different. Results are reported in Table 10 for a selection of different values of the two shape parameters.
The most noticeable effect of the introduction of asymmetryin the true values of parameters is an increase
in their biases. Also the ML estimates if the location parameterm result now biased and, especially for the
parameterb’s, the bias is still statistically different from zero alsofor relatively large samples (N = 6400).
However, when the sample size increases, the biases still decrease proportionally to1/N . At the same time,
the behavior of the estimates standard errorσp resembles the ones observed in the previous cases: as the plots
in Figure 7 show, the rescaled standard errors defined accordingly to (20) asymptotically approach stright lines
so that the ML estimators can be considered asymptotically efficient. The different asymptotic behaviors of
the bias and the standard error imply that for sufficiently large samples, the contribution of the former to the
estimates root Mean Squared Errors becomes negligible. Indeed, it is already the case for sample sizes around
100 observations. As in the symmetric case these results do not change whenm is known (cfr. Table 11).

We conclude the section on the numerical analysis with some brief comment on the technical aspects
of ML estimation. The solution of the problem in (8) is in general made difficult by the fact that both the
AEP and EP densities are not analytic functions. The situation becomes more severe when small values of

13



the shape parameterb are considered. In this case, the likelihood as a function ofthe location parameterm
possesses many local maxima on the observations which compose the samples. In order to overcome this
difficulties, the ML estimation presented above have been obtained with a three steps procedure: in each
case the negative likelihood minimization started with initial conditions obtained wth a simple method of
moments. Then a global minimization was performed in order to obtain a first ML estimate, which is later
refined performing several separate minimizations in the different intervals defined by successive observations
in the neighborhood of the first estimate. Even if this methodis not guaranteed to provide the global minimum,
we checked that in the whole range of parameters analyzed, discrepancies were always negligible.2 For further
details on the minimization methods utilized the reader is referred to Bottazzi (2004).

As already observed in Agró (1995) for the EP distribution,when the value of the shape parameterb is
large and the size of the sample relatively small, the minimization procedure can fail to converge. In the case
of Asymmetric Exponential Power distribution the situation is in general worsened especially when the shape
parametersbl andbr present largely different true values (see for exampleN = 100, bl = 0.5 andbr = 2.5 in
Table 8). The number of failures is reported in the columns “K” of the relevant Tables.

4 Empirical Applications

In the present section we test the ability of the Asymmetric Power Exponential to fit empirical distributions
obtained from different economic and financial datasets. Wecompare the AEP with the Skewed Exponential
Power (SEP), theα-Stable family and the Generalized Hyperbolic (GHYP) estimating their parameters via
maximum likelihood procedures (for parametrization and details on the SEP, theα-Stable and on the GHYP
see DiCiccio and Monti (2004), Nolan (1998) and McNeil et al.(2005) respectively). In order to evaluate the
accuracy of the agreement between the empirical observed distributions and the theoretical alternatives we
consider two complementary measures of goodness-of-fit, the Kolmogorov-SmirnovD and the Cramer-Von
MisesW2 defined as

D = sup
n

∣

∣

∣
FEmp(xn) − F Th(xn)

∣

∣

∣
W2 =

1

12n
+
∑

n

(

FEmp(xn) − F Th(xn)
)2

, (22)

whereFEmp andF Th stands for the empirical and theoretical distribution respectively. These two statistics
can be considered complementary as they capture somehow different effects. TheD statistics is indeed pro-
portional to the largest observed absolute deviation of thetheoretical form the empirical distribution while the
W2 is intended to account for their “average” discrepancy overthe entire sample.

Notice that the following discussion is not focused on assessing whether the deviation of the theoretical
models from actual data can be considered a significant signal of misspecification. rather, we are interested
to evaluate the relative abilities of the different families to properly describe the behavior of the empirical
distributions. Hence, all the figures associated with the different statistics should be regarded in comparative
and not absolute terms.

French Electricity Market

As a first application we analyze data from Powernext, the French power exchange. We consider a data set
containing the day-ahead electricity prices, in differenthours, from November 2001 to August 2006,3 and we
build the empirical distribution of the corresponding daily log returns. Then using the goodness-of-fit statistics
defined in equation (22) we investigate the ability of the four competing families to reproduce the observed
distributions. Results are reported in Table 3.

Two main evidences emerge from the reported figures. First, the AEP outperforms all the other distribu-
tions both in terms of the Kolmogorov-Smirnov and of the Cramer-Von Mises statistics. In particular, from
Table 3, it is clear that while the observed Kolmogorov-Smirnov statisticsD is, for the AEP, only slightly

2Observed discrepancies were generally due to the presence of several clustered observations
3These prices are fixed on day, separately for the 24 individual hours, for delivery on the same day or on the following.
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Table 3: Maximum likelihood estimates (standard errors in parenthesis) of the shape parameters,bl andbr,
of the AEP density together with the EDF goodness-of-fit statistics for four different families of distribution.
Data are daily log returns of electricity prices from the French power exchange, Powernext.

Goodness of fit - W2 Goodness of fit - D

Hour bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

10.00 a.m. 0.5650.022 0.8930.043 0.287 1.365 1.436 1.339 0.030 0.053 0.051 0.042

12.00 a.m. 0.6250.026 0.9850.051 0.155 0.253 0.644 0.390 0.022 0.024 0.036 0.032

2.00 p.m. 0.6000.024 0.9990.051 0.147 0.752 1.016 0.573 0.026 0.040 0.044 0.035

5.00 p.m. 0.5910.023 1.0030.051 0.193 0.592 0.774 0.847 0.027 0.036 0.037 0.042

8.00 p.m. 0.6500.027 0.9120.046 0.091 0.178 0.576 0.239 0.017 0.024 0.033 0.022

lower than the ones obtained for the other families the same appears not true in the case of the Cramer-Von
Mises test. Indeed, the values of theW2 statistic are dramatically lower for the AEP being always less than
half of the average of the other three. In order to provide a more revealing, albeit qualitative, assessment of
the relative ability of the different families in reproducing the empirical distribution we present, in Figure 8,
two plots, for the AEP and the GHYP respectively,4 of the function∆(x) defined as

∆(x) = FEmp(x) − F Th(x) . (23)

Deviations of∆(x) from the constant liney = 0 represent the local discrepancy between the theoretical an
the empirical distribution. This figure, while confirming inaccordance with formal tests the better fit of the
AEP, adds also some interesting insights: the AEP is clearlybetter in the whole central part of the distribution
and in its upper tail, while the opposite is true for the lowertail where the GHYP seems slightly preferable.

The second evidence emerging from Table 3 regards the difference between the estimated values of the
AEP shape parametersbl and br, which suggests the presence of substantial asymmetries inthe empirical
distribution of electricity price returns. This finding is not a peculiar feature of the French market but applies
to a number of different power exchanges, see Sapio (2008) for a broader analysis. As such, it provides a
potent, empirically based, case for the development of class of distributions able to cope at the same time with
fat tails and skewness.

To sum up, our evidence suggests that the AEP fits systematically better the skewed distribution function
of the log returns of French electricity prices presenting,at the same time, the lowest overall discrepancy and
the lowest maximum deviation from the corresponding empirical benchmark.

Exchange rates Market

As a second application we consider exchange rates data collected from FREDR©, a database of over 15,000
U.S. economic time series available at the Federal Reserve Bank of St. Louis. We select a dataset containing
5 different exchange rates and we focus on the most recent onethousand observations.5 We build empirical
distributions of the (log) differenced exchange rates series and, as we did in the previous section, we test the
relative ability of the4 families under investigation to fit their observed counterpart.

4For the sake of clarity we do not report the function∆(x) for theα-Stable and the SEP, since from Table 3 it is apparent that
their ability to fit the empirical distribution is substantially worse.

5The exchange rates analyzed are: U.S. Dollars to one Euro, U.S. Dollars to one U.K. Pound, Japanese Yen to one U.S. Dollar,
Singapore Dollars to one U.S. Dollars and Swiss Francs to oneU.S. Dollars. The time window goes from August 25, 2003 to August
14, 2007.

15



-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

∆
(x

)

x

AEP
GHYP

Figure 8: Deviations∆(x) of the AEP and of the
GHYP from the empirical distribution. Data are
daily log-returns of the French electricity price at
5 p.m.

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

-0.02 -0.015 -0.01 -0.005  0  0.005  0.01  0.015  0.02

∆
(x

)

x

AEP
GHYP

Figure 9: Deviations∆(x) of the AEP and of the
GHYP from the empirical distribution. Data are
daily log first difference of the exchange rate be-
tween US Dollar and Euro.

Table 4: Maximum likelihood estimates (standard errors in parenthesis) of the shape parameters of the AEP
density together with the EDF goodness-of-fit statistics for four different families of distribution. Data are
daily log first difference on different exchange rates. Source: FREDR© Federal Reserve Economic Data.

Goodness of fit - W2 Goodness of fit - D

Currencies bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

usd4eu 1.1930.127 1.5030.165 0.052 0.073 0.351 3.420 0.018 0.022 0.036 0.107

usd4uk 1.3850.172 1.6880.217 0.037 0.044 0.214 0.120 0.016 0.019 0.035 0.026

sz4usd 1.4550.163 1.3740.167 0.054 0.060 0.339 0.078 0.018 0.019 0.039 0.021

si4usd 1.1100.119 1.5300.153 0.038 0.033 0.066 2.798 0.020 0.016 0.020 0.088

jp4usd 1.1950.125 1.5410.176 0.019 0.029 0.141 0.703 0.014 0.018 0.032 0.059

Results of the goodness-of-fit test are reported in Table 4. Once again the AEP and the GHYP clearly show,
when compared with the other two families, a better ability to reproduce the empirical distributions with the
former displaying the best results in four out of five saple considered. To add further evidence, Figure 9
reports the function∆(x) for the exchange growth rates of U.S. Dollar vs. Euro: the difference between the
two families appears, if compared with Figure 8, rather mildeven if it is apparent the better capability of the
AEP to fit the extreme upper tail of the empirical distribution.

Stock Markets

As a last application we consider daily log returns of a sample of 30 stocks,15 from the London Stock
Exchange (LSE) and15 from the Milan Stock Exchange (MIB) chosen among the top onesin terms of capi-
talization and liquidity.6

The results of the goodness-of-fit tests performed using theD andW2 statistics is reported in Table 4. As
can be seen the obtained results are more ambiguous than in the previous two analyses on electricity power

6We use daily closing prices as retrieved from Bloomberg financial data service. The time window considered covers the period
between June 1998 and June 2002.
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Goodness of fit - W2 Goodness of fit - D

LSE bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

ARM 1.0760.092 0.8550.063 0.0666 0.0790 0.2042 0.4951 0.0287 0.0289 0.0392 0.0508

DXN 0.7180.053 1.2590.096 0.0336 0.0910 0.1605 0.2702 0.0203 0.0217 0.0374 0.0346

BG 1.1100.099 0.9830.081 0.0282 0.0253 0.1809 4.5531 0.0214 0.0225 0.0309 0.1173

BLT 1.3150.127 0.8960.069 0.0811 0.0517 0.0976 3.8995 0.0224 0.0258 0.0271 0.1190

ISY 0.7140.051 1.1250.084 0.0336 0.1666 0.2446 0.0665 0.0237 0.0333 0.0433 0.0247

CS 1.3880.137 0.9180.073 0.0652 0.0646 0.2244 1.6211 0.0385 0.0379 0.0453 0.0724

LGE 1.0810.092 0.8670.065 0.0714 0.0616 0.1896 0.0739 0.0385 0.0343 0.0342 0.0372

CNA 1.0470.089 0.8730.065 0.0589 0.0345 0.1680 1.8616 0.0318 0.0305 0.0367 0.0776

HSB 1.1430.105 1.0070.085 0.0544 0.0162 0.0864 0.3686 0.0203 0.0168 0.0202 0.0385

BT 1.1970.125 1.3280.134 0.0354 0.0454 0.1461 0.1509 0.0143 0.0179 0.0312 0.0282

TSC 1.1420.101 0.8950.069 0.0393 0.0358 0.2824 3.1644 0.0224 0.0258 0.0348 0.1043

SHE 1.3250.132 1.1880.124 0.0381 0.0283 0.0797 5.3933 0.0181 0.0184 0.0211 0.1163

BAR 1.0260.099 1.4470.138 0.0201 0.0265 0.1397 9.0418 0.0160 0.0174 0.0271 0.1721

BP 1.3590.130 0.9990.089 0.0232 0.0329 0.2276 4.2845 0.0145 0.0177 0.0341 0.1128

VOD 1.9880.253 1.2740.158 0.0625 0.0511 0.0789 0.6844 0.0215 0.0191 0.0271 0.0588

MIB30 bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

BIN 1.1040.096 0.9410.076 0.0406 0.0452 0.2742 0.2730 0.0295 0.0309 0.0369 0.0476

BUL 1.0230.092 1.0170.081 0.0802 0.0734 0.4221 0.1231 0.0283 0.0275 0.0490 0.0327

FNC 1.1760.119 1.1310.101 0.0387 0.0388 0.1364 0.0725 0.0217 0.0181 0.0297 0.0222

OL 0.9410.086 1.3540.118 0.0394 0.0605 0.1517 0.3213 0.0172 0.0208 0.0386 0.0396

ROL 0.8910.067 0.8410.062 0.0824 0.0493 0.1285 0.1381 0.0286 0.0294 0.0301 0.0310

SPM 1.0720.103 1.2110.110 0.0426 0.0222 0.1178 3.1962 0.0270 0.0228 0.0267 0.1066

UC 1.0020.083 0.9730.079 0.1182 0.0616 0.1077 0.1142 0.0371 0.0368 0.0393 0.0418

AUT 0.9590.074 0.7200.047 0.1204 0.0941 0.2442 12.5376 0.0397 0.0407 0.0467 0.1841

BPV 0.8640.063 0.7470.051 0.0822 0.1068 0.3362 0.1309 0.0344 0.0342 0.0491 0.0431

CAP 0.9540.077 0.8530.062 0.0642 0.0719 0.2164 1.1071 0.0265 0.0304 0.0467 0.0734

FI 0.8910.069 0.9150.069 0.0278 0.0183 0.1551 1.4545 0.0161 0.0161 0.0291 0.0731

MB 1.1310.100 0.9060.071 0.0271 0.0306 0.2008 0.0497 0.0208 0.0209 0.0276 0.0228

PRF 1.1910.107 0.8700.065 0.1571 0.0971 0.1570 0.7884 0.0427 0.0444 0.0480 0.0493

RI 1.1090.103 1.0240.085 0.0731 0.0594 0.1539 3.9919 0.0221 0.0222 0.0343 0.0943

STM 1.5110.197 1.4510.170 0.0471 0.0391 0.1112 0.0565 0.0162 0.0158 0.0243 0.0187
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Figure 10: Empirical log-return density together
with the AEP and the GHYP fits. Data are daily
log-returns of the INVENSYS PLC stock listed at
the London Stock Exchange.
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the GHYP from the empirical distribution. Data
are daily log-returns of the INVENSYS PLC stock
listed at the London Stock Exchange.∆(x) for the
symmetrized series.

prices and exchange rates. While also in this case the AEP andthe GHYP systematically outperform both
theα-Stable and the SEP, it seems less clear how to rank them in terms of their capability to fit the empirical
returns distributions. On the one hand, for the majority of the stocks, the Generalized Hyperbolic seems
better in approximating the overall shape of the empirical density, as witnessed by the lower values of theW2
statistic. On the other hand the highest observed deviationD is almost always lower for the AEP (cfr. again
Table 4). Hence one should be very cautious in ranking these two families, also because the respective values
of D andW2 are very close to each other.

We can however obtain interesting insights analyzing in depth the unique case in which the AEP appears
to performs substantially better than all the other three families, GHYP included: the stock price returns of
the INVENSYS PLC, a British company represented in the LSE bythe abbreviation ISY. It turns out that in
this case the log-returns observed present two peculiar features: they display a significant degree of skewness
and they include one rather anomalous observation in the upper tail, as can be seen from the empirical density
displayed in Figure 10 together with the AEP (thick solid line) and GHYP (dashed line) fits. The function
∆(x) reported in Figure 11 shows that the quality of the fit provided by the GHYP is remarkably worse than
the one obtained using the AEP.

The impression is that the concomitant presence of a significant degree of skewness and very few anoma-
lous observations negatively affects the ability of the GHYP to capture the observed distribution, notably
worsening its fit. To further investigate this impression, we run the following experiment. From the original
sample of the ISY stock returns we removed the top1% observations, thus inducing the original distribu-
tion to become more symmetric.7 Then we replicate the goodness-of-fit analysis. We obtain values of both
the Cramer-Von Mises and the Kolmogorov-Smirnov statistics that are very close to each other:0.0327 and
0.0224 respectively for the AEP and0.0351 and0.0186 for the GHYP. The fact that the discrepancy between
the two families is strongly reduced supports our conjecture that the GHYP appears less robust to the presence
in the data of skewness and anomalous observations.

5 Conclusions

This paper introduces a new family of distributions the Asymmetric Exponential Power (AEP) able to cope
with asymmetries and leptokurtosis and at the same time allowing for a continuous variation from non-

7Coherently the left and right estimated shape parameters ofthe AEP become more similar: on the symmetrized samplebl is
found to be1.029(0.099) while br is found equal to1.085(0.089).
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Table 5: Properties of the Maximum Likelihood estimator of the AEP parameters.

Theoretical Results Numerical Analysis
m known m unknown m known m unknown

bl ≥ 2, br ≥ 2

Consistent Consistent Biased∗ Biased∗

Asymp. Normal Asymp. Normal

Asymp. efficient Asymp. efficient Asymp. efficient Asymp. efficient

0.5 < bl < 2, 0.5 < br < 2

Consistent Consistent Biased∗ Biased∗

Asymp. Normal

Asymp. efficient J well defined Asymp. efficient Asymp. efficient

bl ≤ 0.5, br ≤ 0.5
Consistent Consistent Biased∗ Biased∗

Asymp. Normal

Asymp. efficient Asymp. efficient Asymp. efficient

∗ Bias contribution to RMSE is negligible for any practical application when the sample sizeN is greater than
100

normality to normality. In particular, we focus on the studyof the Maximum Likelihood estimation of the
AEP parameters, investigating the problem using both analytical and numerical methods.

We present a series of theorems on the consistency, asymptotic efficiency and asymptotic normality of the
ML estimator of the AEP parameters. They are basically an extension of results previously known for the
symmetric Exponential Power and prove that the estimators are consistent over the whole parameter space
while they are asymptotically efficient and normal only whenbl andbr are both greater or equal2 (cfr. Table 5
for a summary of these results). At the same time, however, wederive the Fisher information matrix of the
AEP, showing that is well defined in the parameter space wherebl andbr are grater than0.5. In this derivation
we reobtain the result for the symmetric EP as a special case,fixing a mistake present in previous discussion
of the issue (Agró, 1995). Furthermore, we prove that the Fisher information matrixJ can be continuously
extended to the whole parameter space. Indeed we show that even whenbl andbr are smaller than0.5 the
upper-left4x4 block of the inverse information matrix continues to be finite and positive definite. This suggest
that the information matrix can be used to obtain theoretical values for the estimates standard errors also when
the values of the shape parameters are less than.5. We prove this conjecture numerically: using extensive
Monte Carlo simulations we show that,first, ML estimators are always asymptotically efficient (i.e. scale
with

√
N ) even if, especially when strong asymmetric cases are analyzed, small sample effects are present

and,second, that the inverse information matrix provides accurate measures of the ML estimates also in the
region of the parameter space whereJ is defined via analytic continuation, that is wherebl, br < 0.5. The
numerical investigation of the asymtptotic behaviour of the ML estimators also shows that a bias is in general
present, but due to its negligible contribution to the Mean Squared Error of the estimates, it can safely be
ignored for any practical purpose even when the sample size is relatively small (cfr. again Table 5 for a
summary of the results).

In theory, two elements of the study of the inferential aspects of the AEP distribution are not discussed in
the present contribution and still need to be investigated:the behavior of the ML estimator for small sample
sizes and the characterization of the error associated withthe estimate of the location parameterm when
bl, br < 0.5. We did not pursue these issues here because we consider them, from a practical point of view,
of a secondary relevance. In all the application in which theuse of the AEP could result useful, one typically
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has at his disposal samples of several hundreds of observations and the shape paramatersb rarely take values
far below1.
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APPENDIX

A Appendix

Before deriving the information matrixJ for the AEP distribution let us solve the following useful integral

I lλ,k =

∫ m

−∞

dxf(x)

(

m− x

al

)λ(

log
x−m

al

)k

k ∈ N, λ ∈ R
+ . (24)

Substituting (3) in (24) and changing the variable tot = 1
bl

(

x−m
al

)bl
one obtains

I lλ,k =
al b

λ+1
bl

−1−k

l

C

∫ +∞

0
dt e−t t

λ+1
bl

−1
(log t+ log bl)

k (25)

that expanding the summation becomes

I lλ,k =
al b

λ+1
bl

−1−k

l

C

k
∑

h=0

(

k

h

)

logh bl

∫ +∞

0
dt e−t t

λ+1
bl

−1
logk−h t (26)

and finally

I lλ,k =
al b

λ+1
bl

−1−k

l

C

k
∑

h=0

(

k

h

)

logh bl Γ(k−h)

(

λ+ 1

bl

)

(27)

whereΓ(i) is thei − th derivative of the Gamma function and where we used ( cfr.Gradshteyn and Ryzhyk
(2000) eq. 4.358)

∫ +∞

0
dx logn x xv−1 e−x = Γ(n)(x) .

For instance, whenλ = bl we get

I lbl,k =
al
C

b
1
bl
−k

l

k
∑

h=0

(

k

h

)

logh bl Γ(k−h)

(

bl + 1

bl

)

=
al
C
Bk(bl) (28)

whereBk(x) is defined in (12). Whenλ = bl − 1 one has

I lbl−1,k =
al
C

b−kl

k
∑

h=0

(

k

h

)

logh bl Γ(k−h) (1) (29)

while whenλ = 2bl it is

I l2bl,k =
al
C

b
1
bl

+1−k

l

k
∑

h=0

(

k

h

)

logh bl Γ(k−h)

(

2bl + 1

bl

)

. (30)

and whenk = 0 andλ = h ∈ N it is

I lh,0 =
al
C
Ah(bl) (31)

whereAh(x) is defined in (4).
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Correspondingly

Irλ,k =

∫ +∞

m
dxf(x)

(

x−m

ar

)λ(

log
x−m

ar

)k

(32)

=
ar b

λ+1
br

−1−k
r

C

k
∑

h=0

(

k

h

)

logh br Γ(k−h)

(

λ+ 1

br

)

k ∈ N, λ ∈ R
+ (33)

We provide below preliminary calculations needed to derivethe Fisher information matrix J off(x; p̂). They
must be used in conjunction with equations (28), (29), (30) and (33) to obtain expressions in (11).
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)
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B Appendix

Consider a set of N observations{x1, . . . , xN} and assume that they are independently drawn from an AEP
distribution of unknown parametersp0. According to Lehmann (1983),the ML estimates of these parameters
p̂ obtained trough (8) are asymptotically normal and efficientif the following 4 regularity conditions apply:

A. there exists an open subset℘ of P containing the true parameter pointp0 such that for almost allx, the
densityfAEP(x|p) admits all third derivatives(∂3/∂ph∂pj∂pk)fAEP(x) for all p ∈ ℘ ;

B. the first and second logarithmic derivatives offAEP satisfy the equations

E

[

∂ log fAEP(x;p)

∂pj

]

= 0 ∀j (34)

and

Jjk(p) = Hjk(p) ∀j, k , (35)

where

Hjk(p) = E

[−∂2 log fAEP(x;p)

∂pj∂pk

]

. (36)

C. the elementsJhj(p) are finite and the matrixJ(p) is positive definite for allp in ℘;

D. there exists functionsMhjk such that
∣

∣

∣

∣

∂3

∂ph∂pj∂pk
log fAEP(x|p)

∣

∣

∣

∣

≤Mhjk(x) ∀p ∈ ℘ (37)

where

mhjk = Ep0
[Mhjk(x)] <∞ ∀h, j, k . (38)

Below we will prove that these four conditions are satisfied in the subset℘ = [2,+∞) × [2 + ∞) ×
(0,+∞) × (0,+∞) ⊂ D. In what follows we will denotefAEP simply byf , the meaning being understood.

A. Condition A. is always satisfied since any derivative offAEP present, at most, a single discontinuity in
correspondence ofx = m.

B. Since it is

E

[

∂ log f(x;p)

∂al

]

=

∫ +∞
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∣
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=
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C
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]
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the first part (Equation 34) of Condition B is satisfied. Moreover it is

In order to prove (35), notice that whenf(x;p) ∂log f(x;p)/∂pj are continuous functions, this equation
is a simple consequence of an integration by parts. Hence it remains to prove (35) only in those cases
where a derivative with respect to the parameterm is involved. One has
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and (35) is proved.

C. According to Theorem 2.1 the matrixJ exists and is positive definite forbl, br > .5. When one of these
two parameters moves toward the value.5 the elementJmm encounters a pole and the matrix is no longer
defined.

26



D. Consider the case whenph = pj = pk = m. It is easy to show that
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If one defines

Mmmm(x) =
(bl − 1)(bl − 2)
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(40)

it follows that
∣

∣

∣

∣

∂3

∂m3 log f(x|p)

∣

∣

∣

∣

≤Mmmm(x) ∀p ∈ ℘ .

Moreover, forbl, br > 2 it is E [Mmmm] < ∞. Using the same argument it is straightforward to prove
that whenbl, br > 2 condition D is satisfied also for all other cases.
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Table 6: Bias and Standard Deviation ofb̂, b̂, â and m̂ estimated on 10000 samples drawn from a Power
Exponential distribution.K is the number of times the ML procedure did not converge.

(b,a,m)=(0.4,1,0)
N b̃/b σb/b ã/a σa/a m̃ σm K

100 -0.018288 0.177637 -0.019566 0.178384 -0.000365 0.059433 0
200 -0.007221 0.118821 -0.008976 0.122441 -0.000642 0.035281 0
400 -0.004860 0.081781 -0.004822 0.086703 -0.000240 0.021029 0
800 -0.002362 0.057095 -0.002149 0.061403 -0.000071 0.012641 0
1600 -0.000950 0.040103 -0.000650 0.043213 -0.000054 0.007717 0
3200 -0.000500 0.028149 -0.000387 0.030772 -0.000060 0.004570 0
6400 -0.000710 0.019966 -0.000173 0.021858 0.000006 0.002715 0

(b,a,m)=(0.8,1,0)
N b̃/b σb/b ã/a σa/a m̃ σm K

100 0.024698 0.217721 -0.005042 0.141531 0.000457 0.102071 0
200 0.010619 0.137288 -0.002619 0.097276 -0.000158 0.068417 0
400 0.004350 0.091226 -0.001645 0.068244 0.000521 0.047679 0
800 0.002038 0.063613 -0.000996 0.047803 -0.000023 0.032717 0
1600 0.000972 0.044655 -0.000196 0.033742 0.000129 0.022560 0
3200 0.000426 0.031728 -0.000006 0.024025 -0.000123 0.015543 0
6400 0.000013 0.021858 -0.000119 0.016879 0.000014 0.010769 0

(b,a,m)=(1.4,1,0)
N b̃/b σb/b ã/a σa/a m̃ σm K

100 0.123678 5.325462 0.005878 0.125171 -0.001145 0.112919 0
200 0.030093 0.161387 0.002007 0.085312 0.000602 0.077747 0
400 0.013300 0.106216 0.000311 0.059140 0.000302 0.055068 0
800 0.006123 0.072968 0.000307 0.041433 0.000249 0.038259 0
1600 0.003050 0.050587 0.000355 0.028948 -0.000124 0.026960 0
3200 0.000927 0.035539 -0.000204 0.020489 0.000240 0.019192 0
6400 0.000280 0.024811 -0.000176 0.014431 0.000081 0.013594 0

(b,a,m)=(2.2,1,0)
N b̃/b σb/b ã/a σa/a m̃ σm K

100 0.491071 12.614268 0.012540 0.120088 -0.000602 0.099523 0
200 0.049846 0.194413 0.005017 0.078570 -0.000744 0.069450 0
400 0.024967 0.126713 0.003576 0.054255 -0.000774 0.047950 0
800 0.011329 0.084521 0.001311 0.037981 -0.000272 0.033816 0
1600 0.005102 0.058735 0.000547 0.026772 0.000015 0.023958 0
3200 0.002471 0.040739 0.000322 0.018683 0.000100 0.016927 0
6400 0.001520 0.028629 0.000298 0.013257 -0.000000 0.012098 0
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Table 7: Bias and Standard Deviation ofb̂, b̂, â and m̂ estimated on 10000 samples drawn from a Power
Exponential distribution whenm is known.K is the number of times the ML procedure did not converge.

(b,a)=(0.4,1)
N b̃/b σb/b ã/a σa/a K

100 0.040468 0.174889 0.018407 0.180738 0
200 0.018971 0.118363 0.007964 0.123157 0
400 0.008160 0.081851 0.003515 0.086975 0
800 0.004253 0.057183 0.002026 0.061492 0
1600 0.002472 0.040050 0.001478 0.043217 0
3200 0.001256 0.028099 0.000692 0.030777 0
6400 0.000170 0.019822 0.000363 0.021830 0

(b,a)=(0.8,1)
N b̃/b σb/b ã/a σa/a K

100 0.054497 0.207635 0.014160 0.138900 0
200 0.025469 0.134228 0.006792 0.096496 0
400 0.011932 0.090158 0.003114 0.068023 0
800 0.005788 0.063193 0.001341 0.047691 0
1600 0.002764 0.044496 0.000928 0.033709 0
3200 0.001323 0.031615 0.000552 0.024005 0
6400 0.000482 0.021620 0.000168 0.016814 0

(b,a)=(1.4,1)
N b̃/b σb/b ã/a σa/a K

100 0.074693 0.260163 0.013868 0.121101 0
200 0.033730 0.157512 0.006150 0.084261 0
400 0.015243 0.104988 0.002404 0.058833 0
800 0.007109 0.072519 0.001331 0.041282 0
1600 0.003590 0.050498 0.000879 0.028906 0
3200 0.001153 0.035471 0.000042 0.020489 0
6400 0.000381 0.024579 0.000057 0.014364 0

(b,a)=(2.2,1)
N b̃/b σb/b ã/a σa/a K

100 0.152469 5.046575 0.014395 0.113174 0
200 0.046257 0.187227 0.006733 0.077362 0
400 0.023759 0.124730 0.004466 0.053871 0
800 0.010726 0.083782 0.001735 0.037794 0
1600 0.004872 0.058559 0.000779 0.026715 0
3200 0.002375 0.040666 0.000445 0.018663 0
6400 0.001438 0.028421 0.000352 0.013206 0
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Table 8: Bias and Standard Deviation ofb̂l, b̂r, âl, âr andm̂ estimated on 10000 samples drawn from an Asymmetric Exponential Power distribution.K is the
number of times the ML procedure did not converge.

(bl,br,al,ar,m)=(0.5,0.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar m̃ σm K

100 0.026188 0.281091 0.020557 0.271076 0.014968 0.215253 0.014931 0.210935 0.003749 0.166962 1
200 0.012562 0.162519 0.012789 0.161660 0.005921 0.140722 0.006872 0.141735 0.000388 0.091752 0
400 0.007066 0.107014 0.005707 0.107006 0.001429 0.096847 0.003919 0.098412 0.000393 0.056794 0
800 0.003648 0.072630 0.003716 0.074012 0.001149 0.068157 0.002622 0.069134 -0.000345 0.034856 0
1600 0.001486 0.049725 0.000821 0.049235 0.000266 0.048057 0.001194 0.047838 0.000002 0.020220 1
3200 0.000433 0.034397 0.000309 0.034407 -0.000006 0.034113 0.000448 0.034070 -0.000090 0.012452 0
6400 0.000306 0.023751 0.000086 0.024056 0.000160 0.024499 0.000474 0.024146 0.000011 0.007887 0

(bl,br,al,ar,m)=(1.5,1.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar m̃ σm K

100 0.138699 0.707531 0.130697 0.830274 0.041225 0.376155 0.042109 0.371139 0.000928 0.553390 45
200 0.059863 0.364016 0.049007 0.350531 0.021834 0.255554 0.016018 0.252260 0.005378 0.385947 0
400 0.025145 0.226582 0.023601 0.224548 0.009361 0.176657 0.008696 0.177574 0.000974 0.274766 0
800 0.012233 0.154245 0.011369 0.153025 0.004094 0.124075 0.004513 0.124694 -0.000187 0.194852 0
1600 0.006437 0.106212 0.004958 0.104984 0.002698 0.087034 0.001332 0.086825 0.001153 0.137088 0
3200 0.002850 0.072848 0.002355 0.073090 0.001223 0.060221 0.000308 0.060127 0.000990 0.094983 0
6400 0.001065 0.050449 0.001670 0.050608 0.000367 0.041679 0.000469 0.041504 0.000036 0.065446 0

(bl,br,al,ar,m)=(2.5,2.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar m̃ σm K

100 0.216104 1.077383 0.194571 0.988308 0.052892 0.540990 0.051839 0.537115 0.001134 0.730692 357
200 0.105139 1.287989 0.096703 0.752724 0.032009 0.432849 0.036462 0.432766 -0.003785 0.593991 8
400 0.048444 0.382355 0.036445 0.375708 0.024977 0.345262 0.017779 0.342416 0.003945 0.477221 0
800 0.020174 0.270658 0.019085 0.269044 0.010986 0.262583 0.012462 0.262840 -0.001216 0.367170 0
1600 0.009100 0.192912 0.011360 0.191377 0.005337 0.193851 0.008018 0.193535 -0.001951 0.272406 0
3200 0.004226 0.136708 0.006990 0.134924 0.002167 0.140358 0.005429 0.139778 -0.002423 0.197663 0
6400 0.002709 0.095266 0.003138 0.094106 0.001603 0.098212 0.002417 0.097851 -0.000599 0.138287 0
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Table 9: Bias and Standard Deviation ofb̂l, b̂r, âl, âr andm̂ estimated on 10000 samples drawn from an AEP distribution with µ known.K is the number of
times the ML procedure did not converge.

(bl,br,al,ar,m)=(0.5,0.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar K

100 0.064224 0.215717 0.064604 0.216754 0.021229 0.198856 0.022081 0.197856 0
200 0.031114 0.138348 0.031988 0.138717 0.010393 0.137301 0.011382 0.139067 0
400 0.015344 0.094456 0.014446 0.093711 0.003460 0.095598 0.005939 0.097347 0
800 0.007962 0.065844 0.007348 0.065663 0.002087 0.067657 0.003570 0.068646 0
1600 0.003681 0.046000 0.003035 0.045963 0.000915 0.047896 0.001879 0.047672 0
3200 0.001620 0.032504 0.001368 0.032498 0.000343 0.034064 0.000780 0.034026 0
6400 0.000878 0.022711 0.000713 0.022942 0.000392 0.024454 0.000653 0.024135 0

(bl,br,al,ar,m)=(1.5,1.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar K

100 0.170308 0.909158 0.170702 1.173527 0.019263 0.142899 0.021168 0.141552 0
200 0.061326 0.216921 0.058578 0.209759 0.008688 0.095054 0.009503 0.094936 0
400 0.027404 0.134213 0.027293 0.134654 0.003746 0.066096 0.004358 0.066122 0
800 0.013651 0.091370 0.012676 0.091370 0.001609 0.046557 0.001857 0.046577 0
1600 0.006274 0.063041 0.006320 0.063171 0.000687 0.032683 0.000711 0.032923 0
3200 0.002594 0.044291 0.003323 0.044531 0.000038 0.023429 0.000279 0.023403 0
6400 0.001237 0.031043 0.001905 0.031479 0.000071 0.016446 0.000218 0.016504 0

(bl,br,al,ar,m)=(2.5,2.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar K

100 0.498902 3.420278 0.411656 2.536465 0.030263 0.148275 0.027090 0.147140 1
200 0.099737 0.381414 0.098326 0.430159 0.011924 0.094034 0.011169 0.093641 0
400 0.043165 0.175576 0.037703 0.172490 0.006442 0.063279 0.005061 0.063162 0
800 0.018806 0.116601 0.016616 0.113832 0.002202 0.044585 0.002169 0.044289 0
1600 0.008874 0.078796 0.009164 0.078615 0.001305 0.031190 0.001403 0.031516 0
3200 0.005009 0.054622 0.005034 0.054509 0.001012 0.022023 0.000987 0.021996 0
6400 0.002764 0.038202 0.002561 0.037959 0.000642 0.015458 0.000659 0.015617 0
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Table 10: Bias and Standard Deviation ofb̂l, b̂r, âl, âr andm̂ estimated on 10000 samples drawn from an Asymmetric Exponential Power distribution.K is
the number of times the ML procedure did not converge.

(bl,br,al,ar,m)=(0.5,1.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar m̃ σm K

100 0.016059 0.251608 0.066257 0.403796 0.026195 0.228994 -0.009739 0.216587 0.019185 0.191960 84
200 0.005344 0.147271 0.032755 0.232989 0.012207 0.154975 -0.003246 0.136095 0.006282 0.109004 3
400 0.002462 0.096266 0.016076 0.145892 0.006336 0.106578 -0.001011 0.088222 0.002936 0.066112 1
800 0.000016 0.064622 0.010703 0.098329 0.003381 0.074980 0.001126 0.059925 -0.000526 0.042494 0
1600 -0.000799 0.045051 0.006403 0.068035 0.002236 0.052221 0.000876 0.041374 -0.000907 0.027879 0
3200 -0.000847 0.031354 0.003399 0.047031 0.001514 0.036679 0.000320 0.028286 -0.000393 0.017856 0
6400 -0.000348 0.021951 0.001960 0.032511 0.000977 0.026344 0.000344 0.019415 -0.000313 0.011392 0

(bl,br,al,ar,m)=(0.5,2.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar m̃ σm K

100 0.022468 0.255162 0.101449 0.555071 0.020517 0.225258 -0.018580 0.219204 0.028914 0.196187 423
200 0.008303 0.149654 0.050432 0.287029 0.010281 0.153611 -0.004446 0.138285 0.010341 0.112153 7
400 0.004299 0.098062 0.020972 0.169655 0.005071 0.106479 -0.001899 0.086841 0.004974 0.067606 2
800 0.001987 0.065114 0.009224 0.111832 0.001813 0.074475 -0.001770 0.057358 0.002692 0.042156 0
1600 0.000572 0.044927 0.005221 0.077055 0.001262 0.052684 -0.000442 0.039397 0.001054 0.026905 0
3200 0.000452 0.031767 0.003277 0.053408 0.000906 0.036877 0.000328 0.027017 0.000215 0.018008 0
6400 0.000171 0.022005 0.001973 0.036795 0.000444 0.026330 0.000501 0.018571 -0.000034 0.011815 0

(bl,br,al,ar,m)=(1.5,2.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar m̃ σm K

100 0.172840 0.807995 0.163922 1.018400 0.083851 0.413484 -0.003162 0.479259 0.076579 0.635499 238
200 0.078985 0.394488 0.061394 0.510150 0.048404 0.297385 -0.008636 0.354509 0.050121 0.472570 3
400 0.038409 0.257181 0.019304 0.311780 0.027430 0.215093 -0.007662 0.262142 0.029973 0.352509 0
800 0.020593 0.175969 0.005227 0.211818 0.015980 0.153095 -0.007333 0.189167 0.019614 0.254872 0
1600 0.007903 0.119389 0.005257 0.146614 0.005724 0.105444 -0.001113 0.133336 0.006430 0.178423 0
3200 0.002899 0.083172 0.002837 0.103493 0.002151 0.074641 0.000119 0.095920 0.002139 0.127786 0
6400 0.001851 0.057875 0.001033 0.072014 0.001390 0.051602 -0.000185 0.066737 0.001534 0.088487 0
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Table 11: Bias and Standard Deviation ofb̂l, b̂r, âl, âr andm̂ estimated on 10000 samples drawn from an AEP distribution with µ known.K is the number of
times the ML procedure did not converge.

(bl,br,al,ar,m)=(0.5,1.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar K

100 0.053773 0.195910 0.125824 0.837937 0.008226 0.210580 0.019986 0.139315 0
200 0.025039 0.125204 0.051494 0.195526 0.004733 0.147089 0.009401 0.094616 0
400 0.011770 0.084416 0.024379 0.126572 0.002732 0.103001 0.004863 0.066439 0
800 0.005727 0.058028 0.011656 0.086037 0.000728 0.072828 0.001962 0.046634 0
1600 0.002342 0.041046 0.005938 0.060213 0.000719 0.051191 0.000677 0.032976 0
3200 0.000659 0.028824 0.003137 0.042609 0.000707 0.035983 0.000243 0.023462 0
6400 0.000484 0.020419 0.001537 0.029969 0.000432 0.025943 0.000128 0.016550 0

(bl,br,al,ar,m)=(0.5,2.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar K

100 0.049015 0.189674 0.228050 1.238896 0.000973 0.210265 0.022900 0.135733 0
200 0.023643 0.122868 0.072195 0.251545 0.000192 0.146596 0.010420 0.088294 0
400 0.011436 0.082733 0.031470 0.154247 0.000626 0.103198 0.005328 0.060806 0
800 0.005635 0.056868 0.014698 0.103640 -0.000054 0.073261 0.002103 0.042548 0
1600 0.002651 0.040238 0.007654 0.071829 0.000320 0.052042 0.001282 0.030253 0
3200 0.001697 0.028480 0.004188 0.050021 0.000367 0.036385 0.000941 0.021258 0
6400 0.000874 0.020158 0.002018 0.034866 0.000088 0.026084 0.000587 0.015053 0

(bl,br,al,ar,m)=(1.5,2.5,1,1,0)
N b̃l/bl σbl

/bl b̃r/br σbr
/br ãl/al σal

/al ãr/ar σar
/ar K

100 0.253803 4.212897 0.435188 2.473012 0.018725 0.138093 0.031128 0.152805 0
200 0.059715 0.209753 0.099552 0.367232 0.007405 0.092740 0.012295 0.097120 0
400 0.026696 0.130166 0.038787 0.174597 0.003372 0.064278 0.005117 0.065592 0
800 0.012453 0.088677 0.018056 0.115543 0.001334 0.044944 0.002241 0.045771 0
1600 0.006231 0.061846 0.009675 0.079525 0.000511 0.031555 0.001409 0.032307 0
3200 0.002890 0.042806 0.004814 0.055465 0.000249 0.022223 0.000740 0.022808 0
6400 0.001675 0.030318 0.002671 0.038534 0.000268 0.015741 0.000596 0.016006 0
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