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Abstract

We introduce a nevi-parameter family of distributions, the Asymmetric Expotial Power (AEP),
able to cope with asymmetries and leptokurtosis and at time $isne allowing for a continuous variation
from non-normality to normality.

We prove that the Maximum Likelihood (ML) estimates of thePARarameters are consistent on the
whole parameter space, and when sufficiently large valugiseo§hape parameters are considered, they
are also asymptotically efficient and normal. We derive tise&r information matrix for the AEP and we
show that it can be continuously extended also to the redismall shape parameters. Through numerical
simulations, we find that this extension can be used to olata@liable value for the errors associated to
ML estimates also for samples of relatively small siZ#)( observations). Moreover we find that at this
sample size, the bias associated with ML estimates, althptegent, becomes negligible.

JEL codes: C13, C15, C16

Keywords: Maximum Likelihood estimation; Asymmetric Exponentialvirer Distribution; Information
Matrix

1 Introduction

Many empirical analyses of real data coming from a varietgifiérent fields suggest that the assumption of
normality is quite often not tenable. Indeed, we observeigoapdensities characterized by heavy tails as well
as by significant degree of asymmetry. For these situatioesmportant to build flexible statistical models
able to cope directly with skewness and leptokurtosis ahtheasame time, to allow continuous variation
from non-normality to normality (cfr. among many others ldu1981), Azzalini (1986) and Hampel et al.
(1986)).

Subbotin (1923) introduces the Exponential Power (EPYidigion characterized by a scale parameter
a > 0, a shape parametér> 0 and a location parameter and whose density reads

1 —m |
fEP(X;baa,Hl) = e_% ‘Xan)’)

~ 2abl/PT(1/b +1) @

wherel'(z) is the Gamma function. The Gaussian is obtained wher2 while whenb < 2 the distributions
are heavy-tailed: the lower is the shape paramitehe fatter are the density tails. This model has been
studied by many scholar: cfr. among others Box (1953), Tu(h®60) and Vianelli (1963). Inferential
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aspects of the EP distribution in a Maximum Likelihood fravoek have been studied in Agr6 (1995) and
Capobianco (2000).

In order to deal with both fat tails and skewness Azzalini8@Ppresents the skewed exponential power
(SEP) distribution

fsep(x;bya,m, \) = 2 O(sign(z) \z]b/Q A v/2/b) fgp(x;b,a,m) 2

wherez = (r —m)/a,a > 0andb > 0, —co < m < 00, —00 < = < 00, —00 < A < oo and® is the
normal distribution function. It easy to see tlfiegzp reduces tofz, when = 0 while the normal case is
obtained wheri\, b) = (0,2). The Maximum Likelihood inference problem for this distriton is discussed
in details in DiCiccio and Monti (2004).

To tackle in an alternative way the presence of heavy tailisskewness, in the present paper we propose
a newbs-parameters family of distributions, the Asymmetric Exgotial Power distributions (AEP), charac-
terized by two positive shape parametérandb,., describing the tail behavior in the upper and lower tail,
respectively, two positive scale parameteranda, and one location parameter, whose density reads

br

r—m r—m

b
! G(m—a:)-i—i

Jaer(z;P) = i €_<b_ll H(J:—m))

aj ar 3
- ®3)
wherep = (b, b, a;, a,,m), 6(z) is the Heaviside theta function and using the definition
; kE+1

Ap(z) = 251 r( - ) )
the normalization constat reads

C = ale(bl) + aer(br) .
The meanu,p of the AEP distribution is

1

p=m+ 5 (af A (by) — af As(br)) (5)

and for the variance?, one has
2 ay a? 2

Oxpp = el As(by) + Yol Ao (by) — (b — magp)” . (6)

The generidi-th central momeni/;,, can be formally expanded to read
h h 1 h
1 _
My =Y <q> (@ Ane) + 0 An)) (a2 A(by) — af Ax(b)" " ()

q=0
The AEP reduces to the EP when= «, andb; = b,..

The paper is organized as follows. In the next Section soswdiical results on the Maximum Likelihood
estimation of the AEP distribution are presented. In paldic in Section 2 we will derive the elements of the
Fisher's Information matrix discussing its domain of defom; in Section 2.1 we will prove the consistency
of the estimator in the whole parameter space and we wilugsthe asymptotic efficiency and normality
for the case in which both parametéysandb, are greater than two and finally, in Section 2.2, we will show
that, for some estimator, the domain of definition of the infation matrix can be extended to the whole
parameter space. Finally, in Section 3, with the help ofresite numerical simulations, we will analyze the
bias of the ML estimators and their asymptotic behavior emdbmain of the parameters space not covered by
the analytical results.
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Figure 1: Densities of the AEP(1,2b1) with b, = Figure 2: Densities of the AEP(1,045,0.5) with
5, b, = 1andb, = 0.5. ar = 5,a, = 2anda, = 0.5

2 Maximum Likelihood Estimation

Consider a set of N observatiofis, ...,z } and assume that they are independently drawn from the AEP
distribution whose density is reported in (3). We are irdtd in the estimation gb from that sample. The
Maximum Likelihood estimatg is obtained maximizing the empirical likelihood

N
b = argmax @1;[1 faer (i Po) (8)
or, equivalently, minimizing the negative log-likelihgodomputed taking the logarithm of the likelihood
function and changing its sign

N

p = arg msnz Lage(zi;po)  wWhere  Lygp(z;po) = —log faer(7; Po) - )
=1

The Cramer-Rao lower bound for the estimates standard iertbe case of unbiased estimators is pro-
vided by the5 x 5 information matrix.J(pg), defined as the expected value of the cross-derivative

Ji7j(p0) = Epo [aiLAEP($§ pO) 8j‘I/AE1>($§ pO)] ) (10)

whereE, [] is the theoretical expectation computed under the hypeghtist the values of the distribution
parameter i and where the indicesand j runs over the five parametetg, b,, a;, a,, m). In the next
Sections we will show that, notwithstanding the presencingde-sample biases, this matrix can be used to
characterize the statistical errors associated to ML egéisnon a large part of the parameters space. The
elements of/ for the AEP distribution are provided in the following

Theorem 2.1 (Information matrix of AEP density) The elements of the Fisher information matiiép) of



the Asymmetric Exponential Power distributi(8) are

1 al
Jblbl = EalBg(bl) CQ (Bo(bl)) + EBQ(bl) Cb2
T, = CQGlGrBo(bl)Bo(b )
1 1
Joa, = EBo(bl) CQQlBo(bl)Bo(bl) obib)
1
Jblar = CQCLZBO(bT)BO(bl)
1
Joym = bl—C(IOg b — )
1 1 ar 2a,
Jb7'br = EG’T‘B(,)/(b ) C2 T‘(BO(b )) + CbTBQ(bT) - Cb%
1
Jora = CgarBo(bl)Bo(b )
1 1
Ibpa, = EBO(b ) — 2 arBO(br)Bé(br) - EBl(br)
1
Jb7'm = —b C(log bT‘ - ry)
1 bp+1\ 1
Jazaz = _@Bg(bl) + ( ar ) EBO(bl)
1
Jalar = _@BO(bl)BO(bT)
by
Ja m = T A
! Cal
1 b +1\ 1
Jm-ar = _@Bo(br) + ( a ) EBO(bT)
b,
Ja-m -
! Ca,
L b (2= +b;1/”7'+1r 2b, — 1
mme alC bl arC br

where~ is the Euler-Mascheroni constant and, for any integeit is

1
_zk loo? 2 Tk=h) [ 1
x E <>ogxl +x )

wherel'(*) stands for thek-th derivative of the Gamma function.

Proof. See Appendix A.

Bi(by) + Cbg Bo(by)

(11)

(12)

Q.E.D.

In principle the elements of the inverse information matfix' can be straightforwardly obtained from
the expressions in (11). None of these elements, howevéateigically zero, nor any easy simplification

can be found. For these reasons, we decided not to reportherecumbersome expressions.

In general,

for practical purposes, it is much more convenient to comple elements of and obtain the elements of



J~! by numerical inversion. The situation changes if one cansithe original symmetric EP obtained when
a; = a, = a andb; = b, = b. For this case the information matrix has been originalijveel in Agro (1995).
To ease the comparison of the general and the particular w@seeport the result here using our notatton.
One has

Theorem 2.2 (Information matrix of EP density) Consider the Exponential Power distribution defined in
(1) for the set of parameter®, a, m) . The Fisher information matri¥ (b, a, m) defined as

jZ-J(b,a,m) = Ep.a,m [0iLep(2;b,a,m) 0jLep(x;b,a,m)] , (13)
whereLgp(z; b, a,m) = —log fep(x;b,a,m) is found to be
3 [0+ 1/0) +log bl + S (14 ) — 5 — 3 [logb+ 9 (1+§)] 0
—a5 [logb+v (1+7)] = 0
b—2/0+1 1(2—1/b)
L 0 0 2 T(1+1/6)
(14)
and its inverse reads
e at?[logb (1) .
—b+(1+b)y (1+1) —b+(1+b)y (1+1)
ab?[logb+y(1+1)] @ [b(—1+log? b)+(1+b)¢’ (143 ) +2byp (143 ) log b+by? (143 )] 0
—b+(1+b)y (1+1) b [—b+(1+b) v/ (1+1)]
a2b2/b—l F(l-}—l)
0 0 T
) - (19)

Proof. SinceLgp(x;b,a,m) = Lagp(z;p) Wherep = (b, b, a,a,m), the elements of (14) can be easily
found using the results in Theorem 2.1. Consider for ingahe shape parametér The derivative with
respect t@ of Lyp is the sum of the derivatives with respecbt@ndb, of L, . In other terms, in computing
the elements of the Fisher information matrix for the EPrittigtion, one has to consider the substitution

o0 0
ob ob;  0b,

so that, for instance,

Ja,b(b7 a, m) =E [aaLEP 8bLEP] =E [(ablLAEP + abTLAEP) (aalLAEP + am.LAEP)]
= Jazybl(f)) + Janbr (15) + Jar,bz (15) + Jar7b7" (I_)) .

The other elements are obtained in analogous way.

Q.E.D.

*Notice that in Agro (1995) the elemerdf . of the inverse information matrix is mistakenly reported.
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2.1 Properties of the Estimators

We present now two theorems providing conditions for caasisy, asymptotic normality and asymptotic
efficiency of the AEP maximum likelihood estimators. Thedebr of the estimator is different whenever the
parametern ought to be estimated or can be consider known. We analyzevtheases separately, starting
with the case of unknown.

From the definition of AEP in (3) the parameters= (b, b,, a;, a,, m) belong to the open set

D = (0, +00) x (0,400) x (0,400) x (0,+00) X (—00,+00) .
Let pg be the true parameters value, then

Theorem 2.3 (Consistency)For any pg € D maximum likelihood estimatgs is consistent, that i$ con-
verges in probability to its true valugg.

Proof. For anypg € D there exists a compa&t C D such that:
1. poeP

2. Vp # po, p € P, itis f(z;|p) # f(zi|po)

3. Vp € P,log f(x;|p) is continuous

4. E[supp |log f(zi|p)|] < occ.

According to Theorem 2.5 in Newey and McFadden (1994) (Ghag# pag. 2131) these four conditions are
sufficient to prove the statement.

Q.E.D.

Furthermore the following theorem presents a set of assangpthat guarantees asymptotic normality
and efficiency of the Maximum Likelihood estimator.

Theorem 2.4 (Asymptotic Normality and Efficiency) If b;, b, > 2 there exists a solutiop of the maximum
likelihood problem(9) that is asymptotically normal and efficient in the sense tHat(p — po) converges in
distribution toA{0, [J(p)] 1}

Proof. For the proof see Appendix B.
Q.E.D.

Analogous results were derived in Agr6 (1995) for the syrmim&xponential Power distribution (1). The
reason why the asymptotic efficiency and normality of the Mtireator is only derived for the case in which
b;, b, > 2 is due to the singular nature of the derivatived.qf,, with respect to the parameter. When this
parameter is considered known, the situation is much simpighis case the vector of unknown parameters
p = (b, by, a;, a,) belongs to the open set

D = (0,+00) x (0,400) x (0,400) x (0,+00) .
Let pg be the true parameters value, then the following holds

Theorem 2.5 (Consistency, Asymptotic Normality and Efficiacy) If m is known there exists a solutigh
of the maximum likelihood proble(f) that converges in probability to its true valgey; p is also asymptoti-
cally normal and efficient in the sense thalV (p — po) converges in distribution tav{0, [J(p)]~'}.

6
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Figure 3: Relative asymptotic errofb b/ /b for Figure 4: Asymptotic error Ja_l}a/f for

AEP(,b,1,1,0) as a function d@f. Both the case with AEP(®,0,1,1,0) as a function ofb. Both the
m known and unknown are displayed, together with case withm known and unknown are displayed,

the symmetric casél; bl/ 2 /b. together with the symmetric casg , 12

Proof. The proof follows directly from the previous ones. Indeedewlm is known no discontinuities
in the derivatives oblog f(x;|p)/0p; emerge and hence the conditions required by Theorem 2.3yand b
Theorem 2.4 are always satisfied.

Q.E.D.

Basically, the previous Theorem guarantee that wiheis known, the maximum likelihood estimates of
p are consistent, asymptotically efficient and normal on thelesparameter space. Of course, the same thing
also applies to the symmetric EP density (Agro, 1995).

2.2 Extending the Fisher information matrix

FunctionBy(z) defined in (12) and all its derivatives are definedifar 0 and for anyk. Consequently, all the
elements of/ in (11), apart fromJ,,,,,, are defined on the whole parameter space. The latter eleoretite
contrary, is only defined when bothandb, are greater thaf.5. Whenb, or b; goes toward.5, the gamma
function contained in that element encounters a pole safhatdiverges. Of course, this phenomenon does
not happen when the parametercan be considered known. In that case, 4ké Fisher matrix (upper left
block of J) is defined for any value df; andb, and, according to Theorem 2.5, this matrix can be used to
characterize the asymptotic error of the estimates ovewtiade parameter space. The presence of a pole in
Jmm S€ems to suggest that for small valué ofvhenm is unknown, the Fisher information matrix cannot be
used to obtain a theoretical benchmark of the asymptotar®involved in the ML estimation. It turns out
that this is not true. Indeed, the only estimates whose diverges isn.

Consider the symmetric case in (14). The Fisher maftrras a block diagonal structure, so that the value
of the bottom right blockjm,m, does not affect the computation of the inverse of the umfeblock, which
contains the standard error of the estimatesdb and their cross correlation. In this case, the fact thas
known or not, does not have any effect on the asymptotic @frthie estimates of the first two parameters.
Then, one can imagine that the Fisher information matrixteaosed to obtain a theoretical valuesdgrand
o, also forb < 0.5.

In the asymmetric case, the block-diagonal structure ofFisber information matrix disappears. The
fact thatm is known or that its value has to be estimated does have act effiethe elements of the inverse
information matrix associated with the standard error efidk andb’s estimates. In this case, whénor b,
goes toward).5, the element/,,, ,,, diverges and corresponding.%}m goes to0. Nonetheless, in this limit,
the covariance terms of ~! involving m tend to0 while the elements in théx4 upper left block remains

7
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Figure 5: Rescaled standard error of the estimates of ttaera (top) andb (bottom) as a function of the
sample sizéV for the symmetric Subbotin distribution with= 1, m = 0 and for different values df.

finite. More precisely, théx4 upper-left block of/~! is positive definite and is equal to the4 inverse Fisher
information matrix obtained in the case in whighis known. Hence,J can be used to recover a theoretical
benchmark for the error of the estimatiéslanda’s on the whole parameters space. To illustrate this behavio
the error onb anda estimated as the square root of the diagonal elements bfare reported in Figure 3
and Figure 4, respectively. For comparisons, both the cébermvknown and unknown are considered, and
the associated element of the EP cdsé/? is also reported. As can be clearly seen from the insets, when
b — 0.5 the element of/ ! for the m unknown case are indistinguishable for the same elementpwted
assumingmn known. The same behavior can be observed also when only sameger betweeh; and b,
converges td.5.

What is the meaning of the inverse Fisher information mdtixvalues ofb lower then0.5? Can we
exploit the continuation of the upper-left block #f ! to investigate asymptotic efficiency and normality of
ML estimators also in the region of the parameter space wiislew? Using extensive numerical simulations
we will try to answer these questions in the next Section.



3 Numerical Analyses

The analyses of this section focus on two aspects of the Mimason of the Symmetric and Asymmetric
Exponential power distribution. First, we analyze the prne® of bias in the estimates. We know from
Theorem 2.3 that this bias progressively disappear whesdhgle becomes larger, but we are interested
in characterizing its magnitude for relatively small sae®pl Second, we address the issue of the estimate
errors, analyzing their behaviors for small samples andgryo describe their asymptotic dynamics. These
investigations are performed using numerical simulatieor.a given set of parametgpg we generate a large
number ofi.i.d. samples of sizéV then, for each parametgr we compute the sample mean of the estimated
value

p(N;po) = En [PlPo] » (16)
where the expectation is computed over all the generategleajand the associated bias
p(N;po) = p(N;Po) — po - 7)

This value is an estimate of the biasfind in general, depends on the true valuggf Since the ML
estimates are consistent on the whole parameter space pasetékatimy_. ;- p(N;po) = 0. The second
measure that we consider is the sample variance of the @stindalues of each parameter, that is

o2(N;po) = En [(h — D)*|po] - (18)

Notice that the previous two quantities together define thetRlean Squared Error of the estimate

Pruse(N; po) = \/EN [(P —po)?|po] = \/P? + U% . (19)

3.1 Symmetric Exponential Power distribution

Consider the symmetric Exponential Power distributionTaible 6 we report the values of the bias and the
estimates standard deviation for the three parameiérandm computed usind0, 000 independent samples
of size N, with NV running from100 to 6400 and for different values df. Indeed for the present qualitative
discussion the value of the parameterandm is essentially irrelevant and we fix their value tand o0,
respectively. The values of the bias and the estimatesatduaigviation for the parameteisandb in the case

of m known are reported in Table 7.

Since we consider0000 replications, the standard error on the reported bias aitmis nothing but the
estimator standard deviation ovefl0,000. The bias estimates which results two standard deviaticay aw
from zero are reported in bold face in Tables 6 and 7. Lookirigefirst column of Table 6 for each estimate,
one observes that the ML estimatesaadndb are sometimes biased, while the estimated biagfis never
significantly different from zero. Notice that in all cas@eswhich it is present, the bias seems to decrease
proportionally tol /N (for both known and unknowm:). For the parameter the bias stops to be significantly
different from zero also for medium-sized sampldsground400) while for b it is in general significant until
largest sample sizes are reached. It is worthwhile to ntitiae when the parameter is considered known,
the bias of the estimated valuescodndb tends to increase, irrespectively of the true valué. of

Let us consider now the estimated standard emg(sV) in Table 6. The first thing to notice is that they
always are at least one order of magnitude greater that tinestsd biases so that the contribution of the latter
to the estimates Root Mean Squared Error is in general rieigligl his means that, for any practical purposes,
the ML estimates of the symmetric Power Exponential digtidim can be consideraghbiased This is also
true if one consider the case with known, reported in Table 7. Indeed the values of the esterstendard
error are practically identical for the two cases with onlyoaiple of exceptions wheN is small and large.

In this cases (see, for exampl¥, = 100 andb = 1.4) the standard error is much bigger when alsdas to
be estimated.



Table 1: Extrapolated values for the asymptotic (lakgeestimates standard errors together with the theoret-

ical Cramer-Rao values.
b a m

b O_ASY J—l O_ASY J—l O_ASY J—l

0.2 | 0.3012 0.3016| 2.3418 2.3519| 0.0186

0.4 | 0.6366 0.64001 1.7547 1.7489 0.1921

0.6 | 1.0105 1.0134| 1.4849 1.4994| 0.5628 0.4130

0.8 | 1.4024 1.4198 1.3550 1.3604| 0.8499 0.8134

1.0 | 1.8608 1.8574| 1.2654 1.2715| 1.0041 1.0000

1.2 | 2.2602 2.3244] 1.2100 1.2095 1.0808 1.0700

14| 27697 2.8194| 1.1550 1.1639| 1.0912 1.0817

1.6 | 3.3065 3.3411] 1.1195 1.1287| 1.0762 1.0651

1.8 | 3.8407 3.8883| 1.0928 1.1008| 1.0480 1.0353

2.0 | 4.4819 4.4599 1.0900 1.0779| 1.0036 1.0000

2.2 | 49894 5.0550( 1.0536 1.0587| 0.9674 0.9632

The second thing to notice is that the estimated standandseseem to decrease with the inverse squared
root of N. Indeed in Figure 5 we report for three different values,0f/No,(N) andv/Na,(N), for m
unknown (left panels) and known (right panels). Notwithsliag the presence of noticeable small sample
effects, this product clearly converge toward an asymptalue. Since the convergence is from above, the
efficiency of the estimator for small sample is lower than @ramer-Rao bound, implying a small sample
inefficiency. Notice, however, that this inefficiency is iergeral of modest size.

For the case of unknowm, in order to compare the asymptotic behavior of the MontddGzstimates of
the standard error with the theoretical prediction we adgrsihe large samples limit

lim VN o,(N;po) = a,°" (po) - (20)
N—oo
We compute these values by extrapolating 3habservations relative to the largest values\dofestimating
with OLS the intercept of the following linear relation

VN%~a+ﬁ% . (21)

The results for the different values ioére reported in Table 1 together with the theoretical ptemtiobtained
from J~! in (14). As expected, the agreement is extremely good, wébrepancies aroundl5%, in the
regionb > 2, where the Theorem 2.4 applies. In this region, indeed,0A#695) proves that the ML
estimators of the EP density are asymptotically efficienhe Fame degree of agreement, however, is also
observable in the regioh5 < b < 2, where the Fisher information matrix is defined but no thiécaeresults
guarantee the efficiency of the estimator for large sampeseover, quite surprising, the agreement remains
high, for thea andb estimators, also in the regidn< 0.5, where the Fisher information matrix cannot be
defined according to (13) but can be analytically contina@adjiscussed in Section 2.2.

In conclusions, the previous numerical investigation edtein many respect the analytical findings of the
existing literature. We have show that for the symmetricdhamtial Power distribution

10
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Figure 6: Rescaled standard error of the estimator of thenpaterss; (top) andb; (bottom) as a function of
the sample siz&/, for the Asymmetric Subbotin distribution fay = a,, = 1, m = 0 and different (but equal)
values oft; andb,..

1. the ML estimators are in genetahsed This bias, however, being very small can be safely ignaaed,
least for samples with more thdf0 observations.

2. the ML estimators of,, b andm are asymptotically efficient, independently of the valuehsf true
parameters and of the fact that the valuerois known or unknown.

3. the continuation of the Fisher information matrix to tlegion withb < .5 can be used to obtain a
reliable measure of the error involved in the ML estimatidparameters andb.

3.2 Asymmetric Exponential Power distribution

In this Section we extend the numerical analysis to the chgesymmetric Exponential Power distribution.
For the sake of clarity, we split our analysis in two stepgsti-iwe analyze the asymptotic behavior of the
ML estimates when the true parameters have symmetric veBezopnd, we comment on the observed effects
when different degrees of asymmetry characterize the s of the shape parametérsandb,..

In Table 8 we report the values of the bias and the estimatesiatd deviation for the five parameters
ay, ar, b, b, andm computed using 0, 000 independent samples of si2é, with N running from100 to
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Table 2: Extrapolated values for the asymptotic (lalgeestimates standard errors of the EP together with
the theoretical Cramer-Rao values.

oASY Jfl oASY J—l oASY Jfl

(bi, br) b br by = br a; ar a; = ar m m

(0.4,0.4) 0.7181 0.7083 0.6907 2.1407 2.1628 2.1341 0.3740

(0.5,0.5) 0.9392 0.9565 0.9073 1.9636 1.9386 1.9199 0.5788
(0.75,0.75)| 1.6974 1.6811 1.6114 1.6557 1.6755 1.6458 1.4214 1.1146

(1.5,1.5) 5.9582 6.0244 5.9308 3.2969 3.2845 3.2534 5.1804 5.1064

(2.5,2.5) | 19.0743 18.7929 19.2629 7.9499 7.9109 8.0497 11.2056 11.3643

(be, br) b br b by a ar a ar m m

(0.5,1.5) 0.8709 3.8556 0.8174 3.5742 2.1005 1.5258 2.0572 1.3205 0.8588

(0.5,2.5) 0.8802 7.2828 0.7991 6.9769 2.0958 1.4619 2.0710 1.1991 0.9164

(1.5,2.5) 6.8920 14.3902 6.7661 14.13454.1304 5.3853 4.0050 5.2242 7.1248 6.9119

6400, randomly generated from (3) considering different valisegshe parameterg, = b,.. Again the exact
value of thea’s and m parameters is irrelevant for the present discussion andetve;s= a, = 1 and

m = 0 for all simulations. As can be seen, the picture that emeigésdentical to the symmetric case.
The bias is in general present for small samples, apart éoegtimaten which seems in general unbiased.
When present, the bias tends to decrease proportionally Xoand, for the parameterg anda,, as the
sample size increases it becomes statistically indisishgiole from zero. Notice that faW > 100, the
bias is always at least one order of magnitude smaller tharstdindard deviation. Consequently, also in
the case of Asymmetric Exponential Power distribution, witee true parameters are symmetric, and when
sufficiently large sample are considered, the ML estimates iz considered, for any practical purposes,
unbiased Also the behavior of the estimates standard deviation bistamtially identical to what observed
in the case of symmetric distribution. Indeed, the plots iguke 6 (left panels) confirm that the rescaled
estimatesx/ﬁo—p(N) when N becomes large approach straight lines, so that the asyimgtficiency is
apparent. However, the small sample effect seems to lateddinger: when one consider small values of
(see the top left panel in Figure 6) it is still noticeable $ample as large d$)00 observations.

In Table 9 we report the values of the bias and the estimatesiatd deviation for the four parametérs
b, a; anda,., obtained with the MonteCarlo procedure illustrated abavéhe case in which the parameter
is assumed known. No large differences are observed in thevie of biases and standard deviations with
respect to then unknown case. The general increase of the bias level, glalaserved for the symmetric
distribution, is still there. Concerning the estimateqidtad errors, notice that the right panels in Figure 6
display behavior similar to what observed in the left panetmfirming that the deviations from the Cramer-
Rao bound is essentially due to small sample effect. In tlke ofm known these effect tend to disappear
completely whenV > 400.

In order to judge the reliability off ~! in estimating the observed errors, we compute the asyraptoti
values of the standard errosg®" extrapolating the three estimates obtained with the lag@splesN =
1600, 3200, 6400 following the same procedure used above. The results aceteepin Table 2 (upper part).
Again, the agreement between the values extrapolated ftomerical simulations and the theoretical values
obtained from the inverse information mattix ! is remarkably high: discrepancies are aroufifl both in
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Figure 7: Standard error of the estimator of the parameigitsp) andb; (bottom) as a function of the sample
size N for the Asymmetric Subbotin distribution for different uak ofb;, b, a; = a,, = 1 andm = 0.

the region of high and low’s, confirming that/~! can be used to obtain a value of the estimates’ standard
errors also in the region in which Theorem 2.4 does not apply.

Finally, we have explored the behavior of the ML estimatohemthe true values of the parametigrand
b, are different. Results are reported in Table 10 for a seledf different values of the two shape parameters.
The most noticeable effect of the introduction of asymmeétrthe true values of parameters is an increase
in their biases. Also the ML estimates if the location pareene: result now biased and, especially for the
parametep’s, the bias is still statistically different from zero aléwr relatively large samples\ = 6400).
However, when the sample size increases, the biases stidate proportionally to/N. At the same time,
the behavior of the estimates standard esrpresembles the ones observed in the previous cases: asthe plo
in Figure 7 show, the rescaled standard errors defined dngbrdo (20) asymptotically approach stright lines
so that the ML estimators can be considered asymptoticfiyient. The different asymptotic behaviors of
the bias and the standard error imply that for sufficienttgdasamples, the contribution of the former to the
estimates root Mean Squared Errors becomes negligibleethdt is already the case for sample sizes around
100 observations. As in the symmetric case these results ddwaoge whemn is known (cfr. Table 11).

We conclude the section on the numerical analysis with sorigé tomment on the technical aspects
of ML estimation. The solution of the problem in (8) is in gealemade difficult by the fact that both the
AEP and EP densities are not analytic functions. The sdnaliecomes more severe when small values of
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the shape parametérare considered. In this case, the likelihood as a functioth@focation parameten
possesses many local maxima on the observations which s@rthe samples. In order to overcome this
difficulties, the ML estimation presented above have bednibd with a three steps procedure: in each
case the negative likelihood minimization started withi@hiconditions obtained wth a simple method of
moments. Then a global minimization was performed in ordeshitain a first ML estimate, which is later
refined performing several separate minimizations in tfferéint intervals defined by successive observations
in the neighborhood of the first estimate. Even if this metisatht guaranteed to provide the global minimum,
we checked that in the whole range of parameters analyzsategiancies were always negligiBI&or further
details on the minimization methods utilized the readeeisired to Bottazzi (2004).

As already observed in Agrd (1995) for the EP distributianen the value of the shape paraméiés
large and the size of the sample relatively small, the mizétion procedure can fail to converge. In the case
of Asymmetric Exponential Power distribution the situatie in general worsened especially when the shape
parameter$; andb, present largely different true values (see for exaniple- 100, b, = 0.5 andb, = 2.5in
Table 8). The number of failures is reported in the columnsdkthe relevant Tables.

4 Empirical Applications

In the present section we test the ability of the Asymmetdw& Exponential to fit empirical distributions
obtained from different economic and financial datasets.civiepare the AEP with the Skewed Exponential
Power (SEP), the-Stable family and the Generalized Hyperbolic (GHYP) eating their parameters via
maximum likelihood procedures (for parametrization anthidkeon the SEP, tha-Stable and on the GHYP
see DiCiccio and Monti (2004), Nolan (1998) and McNeil ef(aD05) respectively). In order to evaluate the
accuracy of the agreement between the empirical obsergtdbdiions and the theoretical alternatives we
consider two complementary measures of goodness-ofditKthmogorov-SmirnovD and the Cramer-Von
MisesW2 defined as

1
D:stllp FEmP () — FTh(z,,) W2 = Tom

(PP - F)) L (@2)

n
where FP™P and FT" stands for the empirical and theoretical distribution ezsipely. These two statistics
can be considered complementary as they capture somehenedifeffects. The statistics is indeed pro-
portional to the largest observed absolute deviation oftteeretical form the empirical distribution while the
W2 is intended to account for their “average” discrepancy dherentire sample.

Notice that the following discussion is not focused on asiggswhether the deviation of the theoretical
models from actual data can be considered a significantIsigmaisspecification. rather, we are interested
to evaluate the relative abilities of the different fanslito properly describe the behavior of the empirical
distributions. Hence, all the figures associated with tlfferdint statistics should be regarded in comparative
and not absolute terms.

French Electricity Market

As a first application we analyze data from Powernext, thedtrgpower exchange. We consider a data set
containing the day-ahead electricity prices, in differentirs, from November 2001 to August 20Dénd we
build the empirical distribution of the corresponding glddlg returns. Then using the goodness-of-fit statistics
defined in equation (22) we investigate the ability of therfoompeting families to reproduce the observed
distributions. Results are reported in Table 3.

Two main evidences emerge from the reported figures. HrstAEP outperforms all the other distribu-
tions both in terms of the Kolmogorov-Smirnov and of the Ceaivion Mises statistics. In particular, from
Table 3, it is clear that while the observed Kolmogorov-Swmr statisticsD is, for the AEP, only slightly

20Observed discrepancies were generally due to the preséseearal clustered observations
3These prices are fixed on day, separately for the 24 indiVtuuars, for delivery on the same day or on the following.
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Table 3: Maximum likelihood estimates (standard errorsdrepthesis) of the shape parametérandb,.,
of the AEP density together with the EDF goodness-of-fitigtias for four different families of distribution.
Data are daily log returns of electricity prices from thertaie power exchange, Powernext.

Goodness of fit - W2 Goodness of fit - D

Hour by b AEP GHYP Stable SEP| AEP GHYP Stable SEP

10.00 a.m.  0.566022 0.8930.043 | 0.287 1.365 1.436 1.339 0.030 0.053 0.051 0.042
12.00 a.m. 0.62bo26 0.9850.0s1 | 0.155 0.253 0.644 0.39Q 0.022 0.024 0.036  0.032
2.00 p.m. 0.60@.024 0.9990.0s1 | 0.147 0.752 1.016 0.573 0.026 0.040 0.044 0.035
5.00 p.m.  0.59bo23 1.0030.0s1 | 0.193 0.592 0.774 0.847 0.027 0.036 0.037 0.042

8.00 p.m.  0.65@.027 0.9120.046 | 0.091 0.178 0.576  0.239 0.017 0.024 0.033 0.022

lower than the ones obtained for the other families the sggpears not true in the case of the Cramer-Von
Mises test. Indeed, the values of tHé2 statistic are dramatically lower for the AEP being alwayssléhan
half of the average of the other three. In order to provide aemevealing, albeit qualitative, assessment of
the relative ability of the different families in reproduagi the empirical distribution we present, in Figure 8,
two plots, for the AEP and the GHYP respectivélgf the functionA(z) defined as

A(z) = FEmP(g) — FTh(g) | (23)

Deviations ofA(x) from the constant ling = 0 represent the local discrepancy between the theoretical an
the empirical distribution. This figure, while confirming &ecordance with formal tests the better fit of the
AEP, adds also some interesting insights: the AEP is cldeatier in the whole central part of the distribution
and in its upper tail, while the opposite is true for the lowarwhere the GHYP seems slightly preferable.

The second evidence emerging from Table 3 regards the dfitfer between the estimated values of the
AEP shape parametebs andb,., which suggests the presence of substantial asymmetritsge impirical
distribution of electricity price returns. This finding istra peculiar feature of the French market but applies
to a number of different power exchanges, see Sapio (2008) bvoader analysis. As such, it provides a
potent, empirically based, case for the development of@édistributions able to cope at the same time with
fat tails and skewness.

To sum up, our evidence suggests that the AEP fits systerhatiedter the skewed distribution function
of the log returns of French electricity prices presentatghe same time, the lowest overall discrepancy and
the lowest maximum deviation from the corresponding erogifboenchmark.

Exchange rates Market

As a second application we consider exchange rates dattemll from FRE®, a database of over 15,000
U.S. economic time series available at the Federal Reseaam& 8f St. Louis. We select a dataset containing
5 different exchange rates and we focus on the most recerthonsand observatiofsWe build empirical
distributions of the (log) differenced exchange ratesesesind, as we did in the previous section, we test the
relative ability of the4 families under investigation to fit their observed coungetp

“For the sake of clarity we do not report the functidriz) for the a-Stable and the SEP, since from Table 3 it is apparent that
their ability to fit the empirical distribution is substaaity worse.

5The exchange rates analyzed are: U.S. Dollars to one Eug,Dallars to one U.K. Pound, Japanese Yen to one U.S. Dollar,
Singapore Dollars to one U.S. Dollars and Swiss Francs tdJo8eDollars. The time window goes from August 25, 2003 to éstg
14, 2007.
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Figure 8: DeviationsA(z) of the AEP and of the Figure 9: DeviationsA(x) of the AEP and of the
GHYP from the empirical distribution. Data are GHYP from the empirical distribution. Data are
daily log-returns of the French electricity price at daily log first difference of the exchange rate be-
5 p.m. tween US Dollar and Euro.

Table 4. Maximum likelihood estimates (standard errorsarepthesis) of the shape parameters of the AEP
density together with the EDF goodness-of-fit statistiasféor different families of distribution. Data are
daily log first difference on different exchange rates. 8euFRED® Federal Reserve Economic Data.

Goodness of fit - W2 Goodness of fit- D

Currencies by b, AEP GHYP Stable SEP| AEP GHYP Stable SEP

usd4eu 1.198127 1.5030165 | 0.052 0.073 0.351 3.42Q 0.018 0.022 0.036  0.107

usd4uk 1.385.172  1.6880217 | 0.037 0.044 0.214 0.12¢0 0.016 0.019 0.035 0.026

sz4usd 1.455163 1.3740167 | 0.054  0.060 0.339 0.07§ 0.018 0.019 0.039 0.021

si4usd 1.11@.119 1.5300153 | 0.038 0.033 0.066 2.798| 0.020 0.016 0.020 0.088

jp4usd 1.19%.125 1.541o0a17s | 0.019 0.029 0.141 0.703 0.014 0.018 0.032  0.059

Results of the goodness-of-fit test are reported in Tablewe@gain the AEP and the GHYP clearly show,
when compared with the other two families, a better abilityeproduce the empirical distributions with the
former displaying the best results in four out of five saplesidered. To add further evidence, Figure 9
reports the functiom\ (z) for the exchange growth rates of U.S. Dollar vs. Euro: théedéhce between the
two families appears, if compared with Figure 8, rather raildn if it is apparent the better capability of the
AEP to fit the extreme upper tail of the empirical distributio

Stock Markets

As a last application we consider daily log returns of a samydl30 stocks, 15 from the London Stock
Exchange (LSE) andl5 from the Milan Stock Exchange (MIB) chosen among the top émésrms of capi-
talization and liquidity?

The results of the goodness-of-fit tests performed usingtaadV2 statistics is reported in Table 4. As
can be seen the obtained results are more ambiguous tham metfious two analyses on electricity power

®We use daily closing prices as retrieved from Bloomberg firrdata service. The time window considered covers thiager
between June 1998 and June 2002.
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Goodness of fit - W2 Goodness of fit - D

LSE by b AEP GHYP  Stable SEP AEP GHYP  Stable SEP

ARM  1.0760092 0.8550063 | 0.0666 0.0790 0.2042  0.4951 0.0287 0.0289 0.0392 0.0508
DXN  0.71800s3 1.2590.006 | 0.0336 0.0910 0.1605 0.2702 0.0203 0.0217 0.0374 0.0346
BG 1.1100099 0.9830.081 | 0.0282 0.0253 0.1809 4.5531| 0.0214 0.0225 0.0309 0.1173
BLT 1.3150127 0.8960060 | 0.0811 0.0517 0.0976  3.8995| 0.0224 0.0258 0.0271 0.1190
ISY 0.7140051  1.1250084 | 0.0336 0.1666 0.2446  0.0665 0.0237 0.0333 0.0433 0.0247
CS 1.38&.137  0.9180073 | 0.0652 0.0646 0.2244  1.6211| 0.0385 0.0379 0.0453 0.0724
LGE 1.0810.002 0.8670065 | 0.0714 0.0616 0.1896 0.0739| 0.0385 0.0343 0.0342 0.0372
CNA  1.0470089 0.8730.0es | 0.0589 0.0345 0.1680 1.8616| 0.0318 0.0305 0.0367 0.0776
HSB 1.143.105 1.0070.08s | 0.0544 0.0162 0.0864 0.3686| 0.0203 0.0168 0.0202 0.0385
BT 1.1970125 1.3280.34 | 0.0354 0.0454 0.1461 0.1509 0.0143 0.0179 0.0312 0.0282
TSC 1142101 0.8950069 | 0.0393 0.0358 0.2824  3.1644| 0.0224 0.0258 0.0348 0.1043
SHE 1.32%.132 1.1880124 | 0.0381 0.0283 0.0797 5.3933| 0.0181 0.0184 0.0211 0.1163
BAR 1.0260.009 1.4470138 | 0.0201 0.0265 0.1397 9.0418 0.0160 0.0174 0.0271 0.1721
BP 1.35%.130 0.999.080 | 0.0232 0.0329 0.2276  4.2845 0.0145 0.0177 0.0341 0.1128
VOD  1.98802s3 1.2740158 | 0.0625 0.0511 0.0789 0.6844| 0.0215 0.0191 0.0271 0.0588

MIB30 by b: AEP GHYP  Stable SEP AEP GHYP  Stable SEP

BIN 1.1040006 0.9410076 | 0.0406 0.0452 0.2742 0.2730 0.0295 0.0309 0.0369 0.0476
BUL 1.0230.002 1.0170081 | 0.0802 0.0734 0.4221 0.1231| 0.0283 0.0275 0.0490 0.0327
FNC 1.1760119 1.13l1o101 | 0.0387 0.0388 0.1364 0.0725 0.0217 0.0181 0.0297 0.0222
oL 0.9410086 1.3540118 | 0.0394 0.0605 0.1517 0.3213 0.0172 0.0208 0.0386 0.0396
ROL 0.8910.067 0.8410.0e2 | 0.0824 0.0493 0.1285 0.1381| 0.0286 0.0294 0.0301 0.0310
SPM 1.072.103 1.2110110 | 0.0426 0.0222 0.1178  3.1962| 0.0270 0.0228 0.0267 0.1066
ucC 1.0020.083 0.9730079 | 0.1182 0.0616 0.1077 0.1142| 0.0371 0.0368 0.0393 0.0418
AUT 0.9590.074 0.7200.047 | 0.1204 0.0941 0.2442 12.5376/ 0.0397 0.0407 0.0467 0.1841
BPV 0.8640.063 0.74700s51 | 0.0822 0.1068 0.3362 0.1309 0.0344 0.0342 0.0491 0.0431
CAP 0.9540.077 0.8530.062 | 0.0642 0.0719 0.2164 1.1071 0.0265 0.0304 0.0467 0.0734
Fl 0.8910069 0.9150060 | 0.0278 0.0183 0.1551  1.4545| 0.0161 0.0161 0.0291 0.0731
MB 1.1310100 0.9060071 | 0.0271 0.0306 0.2008 0.0497| 0.0208 0.0209 0.0276 0.0228
PRF 1.191107 0.87000es | 0.1571 0.0971 0.1570 0.7884| 0.0427 0.0444 0.0480 0.0493
RI 1.1090.103 1.0240.08s | 0.0731 0.0594 0.1539 3.9919| 0.0221 0.0222 0.0343 0.0943
ST™M 15110197 1.4510170 | 0.0471 0.0391 0.1112 0.0565| 0.0162 0.0158 0.0243 0.0187
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Figure 10: Empirical log-return density together Figure 11: DeviationsA(z) of the AEP and of

with the AEP and the GHYP fits. Data are daily the GHYP from the empirical distribution. Data

log-returns of the INVENSYS PLC stock listed at are daily log-returns of the INVENSYS PLC stock

the London Stock Exchange. listed at the London Stock Exchanga(z) for the
symmetrized series.

prices and exchange rates. While also in this case the AERha@n@HYP systematically outperform both
the a-Stable and the SEP, it seems less clear how to rank thermirs t&frtheir capability to fit the empirical
returns distributions. On the one hand, for the majorityhaf stocks, the Generalized Hyperbolic seems
better in approximating the overall shape of the empiriegisity, as witnessed by the lower values of ifie
statistic. On the other hand the highest observed devidiigmalmost always lower for the AEP (cfr. again
Table 4). Hence one should be very cautious in ranking thesdamilies, also because the respective values
of D andWW2 are very close to each other.

We can however obtain interesting insights analyzing irtldépe unique case in which the AEP appears
to performs substantially better than all the other threeilfas, GHYP included: the stock price returns of
the INVENSYS PLC, a British company represented in the LSEhayabbreviation ISY. It turns out that in
this case the log-returns observed present two peculiaurtsa they display a significant degree of skewness
and they include one rather anomalous observation in therupjh, as can be seen from the empirical density
displayed in Figure 10 together with the AEP (thick solicelirand GHYP (dashed line) fits. The function
A(x) reported in Figure 11 shows that the quality of the fit prodity the GHYP is remarkably worse than
the one obtained using the AEP.

The impression is that the concomitant presence of a signifidegree of skewness and very few anoma-
lous observations negatively affects the ability of the GHd capture the observed distribution, notably
worsening its fit. To further investigate this impressiorg mn the following experiment. From the original
sample of the ISY stock returns we removed the 18p observations, thus inducing the original distribu-
tion to become more symmetricThen we replicate the goodness-of-fit analysis. We obtainegaof both
the Cramer-Von Mises and the Kolmogorov-Smirnov stasistitat are very close to each oth€r0327 and
0.0224 respectively for the AEP an@l0351 and0.0186 for the GHYP. The fact that the discrepancy between
the two families is strongly reduced supports our conjexthat the GHYP appears less robust to the presence
in the data of skewness and anomalous observations.

5 Conclusions

This paper introduces a new family of distributions the Asyetric Exponential Power (AEP) able to cope
with asymmetries and leptokurtosis and at the same timavialip for a continuous variation from non-

"Coherently the left and right estimated shape parametetiseoREP become more similar: on the symmetrized sarbple
found to bel.029(0.099) while b, is found equal td .085(0.089).
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Table 5: Properties of the Maximum Likelihood estimatortaf AEP parameters.

Theoretical Results Numerical Analysis
m known m unknown m known m unknown
Consistent Consistent Biased Biased

Asymp. Normal  Asymp. Normal

Asymp. efficient Asymp. efficient Asymp. efficient Asymp. efficient

Consistent Consistent Biased Biased

05<b; <2,05<b,<2
Asymp. Normal

Asymp. efficient J well defined | Asymp. efficient Asymp. efficient

Consistent Consistent Biased Biased

b1 <0.5,b, <0.5
Asymp. Normal

Asymp. efficient Asymp. efficient Asymp. efficient

* Bias contribution to RMSE is negligible for any practicapfipation when the sample siZé is greater than
100

normality to normality. In particular, we focus on the stuafythe Maximum Likelihood estimation of the
AEP parameters, investigating the problem using both &nalyand numerical methods.

We present a series of theorems on the consistency, asyorgffatiency and asymptotic normality of the
ML estimator of the AEP parameters. They are basically aaresion of results previously known for the
symmetric Exponential Power and prove that the estimat@<ansistent over the whole parameter space
while they are asymptotically efficient and normal only wihgandb, are both greater or equalcfr. Table 5
for a summary of these results). At the same time, howevederige the Fisher information matrix of the
AEP, showing that is well defined in the parameter space whenedb, are grater thaf.5. In this derivation
we reobtain the result for the symmetric EP as a special fas®y a mistake present in previous discussion
of the issue (Agr6, 1995). Furthermore, we prove that tlehé&i information matrix/ can be continuously
extended to the whole parameter space. Indeed we show #xatwend;, andb, are smaller tha.5 the
upper-left4x4 block of the inverse information matrix continues to be &rdhd positive definite. This suggest
that the information matrix can be used to obtain theorktialues for the estimates standard errors also when
the values of the shape parameters are less.thawe prove this conjecture numerically: using extensive
Monte Carlo simulations we show thdirst, ML estimators are always asymptotically efficient (i.ealsc
with v/N) even if, especially when strong asymmetric cases are zemlysmall sample effects are present
and, secongd that the inverse information matrix provides accurate suezs of the ML estimates also in the
region of the parameter space wherés defined via analytic continuation, that is wheéyeb, < 0.5. The
numerical investigation of the asymtptotic behaviour @ ML estimators also shows that a bias is in general
present, but due to its negligible contribution to the Meguaed Error of the estimates, it can safely be
ignored for any practical purpose even when the sample sizelatively small (cfr. again Table 5 for a
summary of the results).

In theory, two elements of the study of the inferential agpetthe AEP distribution are not discussed in
the present contribution and still need to be investigatld:behavior of the ML estimator for small sample
sizes and the characterization of the error associated tivittestimate of the location parameterwhen
b;, b, < 0.5. We did not pursue these issues here because we considerfthera practical point of view,
of a secondary relevance. In all the application in whichube of the AEP could result useful, one typically
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has at his disposal samples of several hundreds of obsersaind the shape paramaterarely take values
far belowl.
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APPENDIX

A Appendix
Before deriving the information matrix for the AEP distribution let us solve the following usefutégral
m m—z\* z—m\*
I =/ dx f(z) < ) (log > keNXeR". (24)
’ —00 aj ap

b
Substituting (3) in (24) and changing the variable te b—ll (x‘m> " one obtains

aj
Al
by
a; bl

I = c

dte "t (logt+logby) (25)
0

that expanding the summation becomes

AL gk

b" "k o A1
=0 S (5 jogny, / dt et ¢ logh (26)

C h 0
h=0
and finally

A+l g
oo ab ! Zk: B\ 1oehp p-m (A1 27)
Ak C = \h & o by

whereI'® is thei — th derivative of the Gamma function and where we used ( cfr.&mmyn and Ryzhyk
(2000) eq. 4.358)

+o00
/ dz log"z z°~ e =T (1)
0

For instance, when = b; we get

k

a; ok k _ b+1 a
L= El b Z <h> log" b, T4~h) (lb_l> — El By () (28)
h=0

whereBy,(x) is defined in (12). When = b; — 1 one has

k
a; . _ k _
I{)l_Lk:é Iy <h> log" b; TR (1) (29)
h=0

while when\ = 2b; it is

k

L1k k 2%, + 1
Lo =4k logh b D=0 (2L 2 30

and whenk = 0and)\ = h € Nitis
Io=% A0 31
ho = & Anlr) (31)

where Ay (x) is defined in (4).
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Correspondingly

. 400 Tr—m A r—m k
n, - daf@) (2= log (32)
A+1 k
_ Li ") loghb, W (2EL) e Ny e r? (33)
o C h=0 h & Or br ,

We provide below preliminary calculations needed to detfieeFisher information matrix J of(x; p). They
must be used in conjunction with equations (28), (29), (3@) @3) to obtain expressions in (11).

x;lmD H(m—ﬂc)>2 —

b

b
log

+oo 1 1|lz—m
Jblbz :/_ d.%'f(.%',p) < aalB(/)(bl) + <_§ a

2
_ @ _ 20 2 4

r—m

J /+°°d F(a:p) 1 Bl(b) + 1]z—m|™ 1 x—mbll x—m ( )
= xf(x; —a - |— — 0 m—x
by by . P C 1P\l blg a bl a g ay
1 , 1|z —m|” 1|z —ml|> T—m _aay
ECLTBO(Z)T) + —g a—r + b_T, a lOg ar 9(.17—7’)’1,) = C2 BO(bl)BO(b ) .
J /+°°d F@:p) 1 Bl (b)) Llz—m|”" 1|z mbl1 r—m o )
o = T —a — 0 m—x
buas oo P oo bl2 aj by | & ay

1 z—m|" 1 a o 1
< cDolbr) o 0(m — 56)) CBé(bz) o2 Bo(bi) By (br) — lIbl,l
+oo Llz—m|" 1]z—m|” r—m
= d : —a;B)(b — - 1 f(m —
Jblar /Oo :L‘f(l‘, ) (Ca’l 0( l) + ( bl2 al bl al Og al ') (m x))
1 z—m|’ aj
( EBO(bT) ol i O(x — m)) =2 By(by)By(by)
S L ] B B e e R e e |
bym — - Tj\T; P Cal o\Yl blg a bl a 0og a m-—x
1|z—m|"? 1|z —ml|r 1,
( a_l ” O(m —x) — Cl_r o Ox—m) | = a_lIbl_l’l

too 1 , Llz—m|" 1 |z—m|” T—m ’
Jbo"bo" = dl‘f(:ﬂ, p) EarBo(br) + _b_2 a— b_ log a 9(56 — m) =
2
ar al 9 1, 2 2
= By (by) — o2 (By(br))” + +a b2 — bQIbT 1+ bglbr,

23



oo 1|z—ml| 1|z—ml| r—m
Iora, = /_Oo dz f(z; p) (CarBé(br) + ( @ a a r log ar ‘ 0(x —m)
1 r—m br a,
& Balbr) | 0l = m) | =~ 25 Bu(b) By)
Do = [ awseim) ( gorBho0 + (g [T "Lz g 2= e - m)
bra, — - X xa p CaT‘ o\Yr b% a, br a, Og a, €T m
1 z—m|” 1 Gy 1.
( EBO(br) - a O(x — m)) = C B(/)(br) T2 Bo(by) B(/)(br) T Ibr,l
+oo . 1, 1lz—ml" 1 |z—m|” r—m
Jbrm = - d.%'f(.%', p) EarBo(br) + _@ B b_r a, log . 9(1‘ - m)
1 |z—m|"? 1|z —ml|r™ 1
— O(m—x) — — 0(xz — =——1
( a a (m — ) . . (x —m) . br—1,1
+oo 1 z—m|" ’ 1, b+1
Jalal = . dxf(xa p) EBO(bl) - a H(m - CC) 2 BO(bl) CL—ZQ Ibl,O
+oo 1 z—m|? 1 z—m|’
Tuoe = [ daf(ep) (5300)1)— - 9<m—x>> (5300)» =] b m)
1
= —02 Bo(bl) By(by) .
+o0 1|z—m|2t 1|z—ml|> !
Jazm = /_Oo dmf(:v,p) (a_l a a(m - x) - a_r a 9($ - m)
1 z—ml? b
<630(bl) — ” O(m — :U)) = _a_lg Iy 10 -
+oo 1 z—ml|’ 1, be+1
Jaya, = /Oo dx f(x;p) ( ¢ Bolbr) = |=—| Oz~ m)) =~z Bolbr) + a2 I o -
+oo 1|z—m|? ! 1|z—ml|> !
Jom= | daf(ap) (a 2 m—a) - — | e —m)
1 z—ml|’ by .
(530(1%) ol s 0(z — m)) =2 Iy 10 -
+oo 1|z—ml[o! 1]z—m|>} ?
Tom = | dof(aip) o b(m —z) — — ba—m)| =
—00 aj aj Ay Ay

1
= I o+ =I5 ..
alz 2b;—2,0 a% 2br-—2,0
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B Appendix

Consider a set of N observatiofs, . .

.,xn} and assume that they are independently drawn from an AEP

distribution of unknown parameters). According to Lehmann (1983),the ML estimates of thesermatars
p obtained trough (8) are asymptotically normal and efficiktite following 4 regularity conditions apply:

A. there exists an open subgef P containing the true parameter poimg such that for almost alt, the
density f1ur (z|p) admits all third derivative$o® /9p,dp;0pi) faee(z) forallp € o ;

B. the first and second logarithmic derivativesfqf,, satisfy the equations

apj
and
where
—0? log faer (55; p)]
H; =E ) 36
C. the elementd},;(p) are finite and the matriX (p) is positive definite for alp in g;
D. there exists functions/;, ;;, such that
33
—1 < My,; 7
where
Mpjk = Epo[Mpjr(x)] < oo Vh,j k . (38)

Below we will prove that these four conditions are satisfiedhie subsep = [2,4+00) x [2 + o0) X
(0,+00) x (0,400) C D. In what follows we will denotef,r Simply by f, the meaning being understood.

A. Condition A. is always satisfied since any derivativefafzp present, at most, a single discontinuity in

correspondence af = m.

B. Sinceitis

01 : +oo 1 - 1 1

p| PR [ dapaip) | - gBatt) + | e<m—x>] =~ L Bolb)+ 5 Bo(b) =0
. +o0 o |br

p | PSR [ g | - gt + [T e<x—m>] =~ L Bo(br ) 5 Bobr) = 0

dlog f(z;p)] [T ' 1, Llz—m|" 1|z—m" xr—m
E [T} = /_Oo dz f(x; p) —EalBo(bl)+ (@ | “nla log ” '

a2
O(m — 56)] = lC [(bg(bz) = DL+ 1/b) + (1 + 1/6)T(1 +1/b) + (1 + 1/b)+

— log(b)I'(1 + 1/by)

— (1 +1/b)0(1 + 1/bl)} =0 .
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1 br

1
_EarB()(br) + <b—2

'
1/b,—2
b/t

r—m x

0 T; oo
o {81 ga];f ,P)} :/_OO daf (5 p)

1
ar by

—m

Qr

by

log r-m

T

O(x — m)] = QT [(log(br) — D)1+ 1/b;) + (1 + 1/b,)T(1 + 1/b, )+

+T(1 4 1/b,) —log(b)T(1 + 1/b,) — (1 + 1/b,)T(1 4 1/,

1
z—ml| 1

5 [moga{?ﬁﬂ?;P)} _ /+°° dof (: p) [;_ll

[e.e]

a
_1p (b — 1) + 15 (b, —1) =0
= o bol o Dol =U.

the first part (Equation 34) of Condition B is satisfied. Mareoit is

)| =0

)

In order to prove (35), notice that wheftz; p) dlog f(x;p)/0p; are continuous functions, this equation
is a simple consequence of an integration by parts. Henamiains to prove (35) only in those cases

where a derivative with respect to the parametes involved. One has

bi—1

oo 1 |z—m r—m 1
wn= [ dof@ [ s IR e U @] yra =
oo 1 |z—ml|r! r—m 1
Hp,m = / dxf(x) [ — log ‘ Oz —m)| = ——1I 11 =Jom
- ar ar Qr Qy
+00 bl T —m bl—l bl l
+o0 b le —m br—1 b
Hym=— d . O(x — N -]
arm /OO zf(x) [ 2| o (z —m) 2 l-10= Jom
+eo bl—l x—mbliz b, —1 x_mbr72
Hom = O(m —a) + = Oz —m)| =
mm /oo 1’f(1‘) [ 012 a (m 1’) + CL% @ (.%' m)
b —1 by —1
=2 Iy 2 ——5Tb—20 = Jmm

l T

and (35) is proved.

C. According to Theorem 2.1 the matrikexists and is positive definite foy, b, > .5. When one of these
two parameters moves toward the valt¢he element/,,,,,, encounters a pole and the matrix is no longer

defined.
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D. Consider the case whei = p; = p;, = m. Itis easy to show that

> b — 1)(b —2) |z —m |23

5 log f(z|p) = b )gl ) o(m — )
om a; a -

(br —1)(by —2) |z —m br=3
— " o O(z —m)
If one defines
M (z) = (by—1)(by —2) |z —m b—3 N (by —1)(by —2) |z —m br—3 o0
mmm a? ay a% a,

it follows that

03
' om3

10gf(w|p)‘ < Mpmm(z) Ypep.

Moreover, forb;, b, > 2itis E [M,,n] < oco. Using the same argument it is straightforward to prove
that whenb;, b, > 2 condition D is satisfied also for all other cases.
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Table 6: Bias and Standard Deviation ZofB, a andrm estimated on 10000 samples drawn from a Power
Exponential distributionX is the number of times the ML procedure did not converge.

(b,a,m)=(0.4,1,0)

N b/b ou/b aja ca/a m Om K
100 | -0.018288 0.177637  -0.019566 0.178384 -0.000365  0.059433 0
200 | -0.007221 0.118821  -0.008976 0.122441 -0.000642  0.035281 0
400 | -0.004860 0.081781  -0.004822 0.086703 -0.000240  0.021029 0
800 | -0.002362 0.057095  -0.002149 0.061403 -0.000071  0.012641 0
1600 | -0.000950 0.040103 -0.000650  0.043213 -0.000054  0.007717 0
3200 | -0.000500  0.028149 -0.000387  0.030772 -0.000060  0.004570 0
6400 | -0.000710  0.019966 -0.000173  0.021858 0.000006  0.002715 0
(b,a,m)=(0.8,1,0)
N b/b ob/b ala oaa m Om K
100 | 0.024698 0.217721  -0.005042 0.141531 0.000457  0.102071 0
200 | 0.010619 0.137288  -0.002619 0.097276 -0.000158  0.068417 0
400 | 0.004350 0.091226  -0.001645 0.068244 0.000521  0.047679 0
800 | 0.002038 0.063613  -0.000996 0.047803 -0.000023  0.032717 0
1600 | 0.000972 0.044655 -0.000196  0.033742 0.000129  0.022560 0
3200 | 0.000426  0.031728 -0.000006  0.024025 -0.000123  0.015543 0
6400 | 0.000013  0.021858 -0.000119  0.016879 0.000014  0.010769 0
(b,a,m)=(1.4,1,0)
N b/b ob/b a/a oa/a m Om K
100 | 0.123678 5.325462 0.005878 0.125171 -0.001145  0.112919 0
200 | 0.030093 0.161387 0.002007 0.085312 0.000602  0.077747 0
400 | 0.013300 0.106216 0.000311  0.059140 0.000302  0.055068 0
800 | 0.006123 0.072968 0.000307  0.041433 0.000249  0.038259 0
1600 | 0.003050 0.050587 0.000355  0.028948 -0.000124  0.026960 0
3200 | 0.000927 0.035539 -0.000204  0.020489 0.000240  0.019192 0
6400 | 0.000280  0.024811 -0.000176  0.014431 0.000081  0.013594 0
(b,a,m)=(2.2,1,0)
N b/b ou/b aja ca/a m Om K
100 | 0.491071 12.614268  0.012540 0.120088 -0.000602  0.099523 0
200 | 0.049846 0.194413 0.005017 0.078570 -0.000744  0.069450 0
400 | 0.024967 0.126713 0.003576 0.054255 -0.000774  0.047950 0
800 | 0.011329 0.084521  0.001311 0.037981 -0.000272  0.033816 0
1600 | 0.005102  0.058735  0.000547 0.026772 0.000015  0.023958 0
3200 | 0.002471  0.040739 0.000322  0.018683 0.000100  0.016927 0
6400 | 0.001520  0.028629 0.000298  0.013257 -0.000000 0.012098 0
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Table 7: Bias and Standard Deviation ZofB, a andrm estimated on 10000 samples drawn from a Power
Exponential distribution whem is known. K is the number of times the ML procedure did not converge.

(b,a)=(0.4,1)

N b/b ou/b aja oa/a K

100 | 0.040468 0.174889 0.018407 0.180738
200 | 0.018971 0.118363 0.007964 0.123157
400 | 0.008160 0.081851 0.003515 0.086975
800 | 0.004253 0.057183 0.002026 0.061492
1600 | 0.002472 0.040050 0.001478 0.043217
3200 | 0.001256 0.028099 0.000692 0.030777
6400 | 0.000170 0.019822 0.000363 0.021830 0

[cNeoNoNolNoNo]

(b,a)=(0.8,1)

N b/b ob/b ija oa/a K

100 | 0.054497 0.207635 0.014160 0.138900
200 | 0.025469 0.134228 0.006792 0.096496
400 | 0.011932 0.090158 0.003114 0.068023
800 | 0.005788 0.063193 0.001341 0.047691
1600 | 0.002764 0.044496 0.000928 0.033709

3200 | 0.001323 0.031615 0.000552 0.024005
6400 | 0.000482 0.021620 0.000168 0.016814 0

[eNeoNeNeNoNo)

(b,a)=(1.4,1)

N b/b ob/b ija oa/a K

100 | 0.074693 0.260163 0.013868 0.121101
200 | 0.033730 0.157512 0.006150 0.084261
400 | 0.015243 0.104988 0.002404 0.058833
800 | 0.007109 0.072519 0.001331 0.041282
1600 | 0.003590 0.050498 0.000879 0.028906
3200 | 0.001153 0.035471 0.000042 0.020489
6400 | 0.000381 0.024579 0.000057 0.014364 0

[eNeoNeoNeNoNo]

(b,a)=(2.2,1)

N b/b ou/b aja ca/a K

100 | 0.152469 5.046575 0.014395 0.113174
200 | 0.046257 0.187227 0.006733 0.077362
400 | 0.023759 0.124730 0.004466 0.053871
800 | 0.010726 0.083782 0.001735 0.037794
1600 | 0.004872 0.058559 0.000779 0.026715
3200 | 0.002375 0.040666 0.000445 0.018663
6400 | 0.001438 0.028421 0.000352 0.013206

[eNeoNeoNeoNoNoNe]
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Table 8: Bias and Standard Deviationigfb,, d;, @, andr estimated on 10000 samples drawn from an Asymmetric Expiahé&ower distribution X is the
number of times the ML procedure did not converge.

(b1, by,a1,2,,m)=(0.5,0.5,1,1,0)

N by /by o, /bi br /by oy, /br a/a Oa, /i ar/ar Ca,./ar m Om K
100 | 0.026188 0.281091 0.020557 0.271076 0.014968 0.215253 0.014931 0.210935 0.003749 0.166962 1
200 | 0.012562 0.162519 0.012789 0.161660 0.005921 0.140722 0.006872 0.141735 0.000388 0.091752 0
400 | 0.007066 0.107014 0.005707 0.107006 0.001429 0.096847 0.003919 0.098412 0.000393 0.056794 0
800 | 0.003648 0.072630 0.003716 0.074012 0.001149 0.068157 0.002622 0.069134 -0.000345 0.034856 0

1600 | 0.001486 0.049725 0.000821 0.049235 0.000266  0.048057 0.001194 0.047838 0.000002 0.020220 1

3200 | 0.000433 0.034397 0.000309 0.034407 -0.000006 0.034113 000448 0.034070 -0.000090 0.012452 0

6400 | 0.000306 0.023751 0.000086 0.024056 0.000160 0.024499 0047/@ 0.024146 0.000011 0.007887 0
(by,by,ay,a,,m)=(1.5,1.5,1,1,0)

N l;l/bl O'bl/bl b;/br U'by-/b'r dl/al aal/al a}/ar aar/ar m Om K
100 | 0.138699 0.707531 0.130697 0.830274 0.041225 0.376155 0.042109 0.371139 0.000928 0.553390 45
200 | 0.059863 0.364016 0.049007 0.350531 0.021834 0.255554 0.016018 0.252260 0.005378 0.385947 0
400 | 0.025145 0.226582 0.023601 0.224548 0.009361 0.176657 0.008696 0.177574 0.000974 0.274766 0
800 | 0.012233 0.154245 0.011369 0.153025 0.004094 0.124075 0.004513 0.124694 -0.000187 0.194852 0

1600 | 0.006437 0.106212 0.004958 0.104984 0.002698 0.087034 0.001332 0.086825 0.001153 0.137088 0

3200 | 0.002850 0.072848 0.002355 0.073090 0.001223 0.060221 0.000308 0.060127 0.000990 94983 0

6400 | 0.001065 0.050449 0.001670 0.050608 0.000367 0.041679 0.000469 0.041504 0.000036 65416 0
(by,br,a5,a,,m)=(2.5,2.5,1,1,0)

N l;l/bz oy, /by b}/br ob,./br ai/a Oay /a1 ar/ar Ca,/ar m Om K
100 | 0.216104 1.077383 0.194571 0.988308 0.052892 0.540990 0.051839 0.537115 0.001134 0.730692 357
200 | 0.105139 1.287989 0.096703 0.752724 0.032009 0.432849 0.036462 0.432766 -0.003785 0.593991 8
400 | 0.048444 0.382355 0.036445 0.375708 0.024977 0.345262 0.017779 0.342416 0.003945 0.477221 0
800 | 0.020174 0.270658 0.019085 0.269044 0.010986 0.262583 0.012462 0.262840 -0.001216 0.367170 0
1600 | 0.009100 0.192912 0.011360 0.191377 0.005337 0.193851 0.008018 0.193535 -0.001951 0.272406 0

3200 | 0.004226 0.136708 0.006990 0.134924 0.002167 0.140358 0.005429 0.139778 -0.002423 0.197663 0
6400 | 0.002709 0.095266 0.003138 0.094106 0.001603 0.098212 0.002417 0.097851 -0.000599 0.138287 0
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Table 9: Bias and Standard Deviation&p,fl;r, a;, a, andm estimated on 10000 samples drawn from an AEP distributiagh pknown. K is the number of
times the ML procedure did not converge.

(b1, by,a1,3,,m)=(0.5,0.5,1,1,0)

N b~l/bz Ubl/bl bf,»/b»,- Ob,. /br dz/al O'al/al aﬂ-/ar Oa, /a,» K
100 | 0.064224 0.215717 0.064604 0.216754 0.021229 0.198856 0.022081 0.197856 0
200 | 0.031114 0.138348 0.031988 0.138717 0.010393 0.137301 0.011382 0.139067 0
400 | 0.015344 0.094456 0.014446 0.093711 0.003460 0.095598 0.005939 0.097347 0
800 | 0.007962 0.065844 0.007348 0.065663 0.002087 0.067657 0.003570 0.068646 0
1600 | 0.003681 0.046000 0.003035 0.045963 0.000915 0.047896 0.001879 0.047672 0
3200 | 0.001620 0.032504 0.001368 0.032498 0.000343 0.034064 0.000780 0.034026 0
6400 | 0.000878 0.022711 0.000713 0.022942 0.000392 0.024454 0.000653 0.024135 0
(by,by,a;,a,,m)=(1.5,1.5,1,1,0)
N l;l/bl sz/bl b~'r/b'r ob,./br ai/a Ual/al ar/ar Ta,./ar K
100 | 0.170308 0.909158 0.170702 1.173527 0.019263 0.142899 0.021168 0.141552 0
200 | 0.061326 0.216921 0.058578 0.209759 0.008688 0.095054 0.009503 0.094936 0
400 | 0.027404 0.134213 0.027293 0.134654 0.003746 0.066096 0.004358 0.066122 0
800 | 0.013651 0.091370 0.012676 0.091370 0.001609 0.046557 0.001857 0.046577 0
1600 | 0.006274 0.063041 0.006320 0.063171 0.000687 0.032683 0.000711 0.032923 0
3200 | 0.002594 0.044291 0.003323 0.044531 0.000038 0.023429 0.000279 0.023403 0
6400 | 0.001237 0.031043 0.001905 0.031479 0.000071 0.016446 0.000218 0.016504 0

(by,by,a5,a,,m)=(2.5,2.5,1,1,0)

N b~l/bz Ubl/bl bf,»/b»,- Ob,. /br dz/al O'al/al aﬂ-/ar Oa, /a,» K

100 | 0.498902 3.420278 0.411656 2.536465 0.030263 0.148275 0.027090 0.147140
200 | 0.099737 0.381414 0.098326 0.430159 0.011924 0.094034 0.011169 0.093641
400 | 0.043165 0.175576 0.037703 0.172490 0.006442 0.063279 0.005061 0.063162
800 | 0.018806 0.116601 0.016616 0.113832 0.002202 0.044585 0.002169 0.044289
1600 | 0.008874 0.078796 0.009164 0.078615 0.001305 0.031190 0.001403 0.031516
3200 | 0.005009 0.054622 0.005034 0.054509 0.001012 0.022023 0.000987 0.021996
6400 | 0.002764 0.038202 0.002561 0.037959 0.000642 0.015458 0.000659 0.015617
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Table 10: Bias and Standard Deviationbpfb,, a;, @, ands estimated on 10000 samples drawn from an Asymmetric Exgiahétower distribution.X is
the number of times the ML procedure did not converge.

(b1, by,a1,2,,m)=(0.5,1.5,1,1,0)

N bi /by ow, /by by./b ob,./br ai/a Oay /i ar/ar Ca,/ar m Om K
100 | 0.016059 0.251608 0.066257 0.403796 0.026195 0.228994 -0.009739 0.216587 0.019185 0.191960 84
200 0.005344 0.147271 0.032755 0.232989 0.012207 0.154975 -0.003246 0.136095 0.006282 0.109004 3
400 | 0.002462 0.096266 0.016076 0.145892 0.006336 0.106578 -0.001011 0.088222 0.002936 0.066112 1
800 | 0.000016 0.064622 0.010703 0.098329 0.003381 0.074980 0.001126 0.059925 -0.000526 0.042494 0
1600 | -0.000799 0.045051 0.006403 0.068035 0.002236 0.052221 0.000876 0.041374 -0.000907 0.027879 0
3200 | -0.000847 0.031354 0.003399 0.047031 0.001514 0.036679 0.000320 0.028286 -0.000393 0.017856 0
6400 | -0.000348 0.021951 0.001960 0.032511 0.000977 0.026344 0.000344 0.019415 -0.000313 0.011392 0
(by,by,ay,a,,m)=(0.5,2.5,1,1,0)
N l;l/bl Ubl/bl b;/br O'bT/b'r dl/al aal/al a}/ar aar/ar m Om K
100 | 0.022468 0.255162 0.101449 0.555071 0.020517 0.225258 -0.018580 0.219204 0.028914 0.196187 423
200 | 0.008303 0.149654 0.050432 0.287029 0.010281 0.153611 -0.004446 0.138285 0.010341 0.112153 7
400 | 0.004299 0.098062 0.020972 0.169655 0.005071 0.106479 -0.001899 0.086841 0.004974 0.067606 2
800 0.001987 0.065114 0.009224 0.111832 0.001813 0.074475 -0.001770 0.057358 0.002692 0.042156 0
1600 | 0.000572  0.044927 0.005221 0.077055 0.001262 0.052684 -0.000442 0.039397 0.001054 0.026905 0
3200 | 0.000452 0.031767 0.003277 0.053408 0.000906 0.036877 0.000328 0.027017 0.000215 0.018008 0
6400 | 0.000171 0.022005 0.001973 0.036795 0.000444 0.026330 0.000501 0.018571 -0.000034011815 0
(by,br,a5,a,,m)=(1.5,2.5,1,1,0)
N bi /by ow, /b b,./b, b, /br arfay T ar/ar Oa,/ar m Om K
100 | 0.172840 0.807995 0.163922 1.018400 0.083851 0.413484 -0.003162 0.479259 0.076579 0.635499 238
200 | 0.078985 0.394488 0.061394 0.510150 0.048404 0.297385 -0.008636 0.354509 0.050121 0.472570 3
400 0.038409 0.257181 0.019304 0.311780 0.027430 0.215093 -0.007662 0.262142 0.029973 0.352509 0
800 | 0.020593 0.175969 0.005227 0.211818 0.015980 0.153095 -0.007333 0.189167 0.019614 0.254872 0
1600 | 0.007903 0.119389 0.005257 0.146614 0.005724 0.105444 -0.001113 0.133336 0.006430 0.178423 0
3200 | 0.002899 0.083172 0.002837 0.103493 0.002151 0.074641 0.000119 0.095920 0.002139 0.127786 0
6400 | 0.001851 0.057875 0.001033 0.072014 0.001390 0.051602 -0.000185 0.066737 0.001534 0.088487 0
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Table 11: Bias and Standard DeviationtfET, ay, a, andm estimated on 10000 samples drawn from an AEP distributidh pknown. K is the number of
times the ML procedure did not converge.

(b1, by,a1,3,,m)=(0.5,1.5,1,1,0)

N bi /by ab, /b by /br o, /br ar/a 0a,/ar ar/ar Oa,./ar K
100 | 0.053773 0.195910 0.125824 0.837937 0.008226 0.210580 0.019986 0.139315 0
200 | 0.025039 0.125204 0.051494 0.195526 0.004733 0.147089 0.009401 0.094616 0
400 | 0.011770 0.084416 0.024379 0.126572 0.002732 0.103001 0.004863 0.066439 0
800 | 0.005727 0.058028 0.011656 0.086037 0.000728 0.072828 0.001962 0.046634 0

1600 | 0.002342 0.041046 0.005938 0.060213 0.000719 0.051191 0.000677 0.032976 0

3200 | 0.000659 0.028824 0.003137 0.042609 0.000707 0.035983 0.000243 0.023462 0

6400 | 0.000484 0.020419 0.001537 0.029969 0.000432 0.025943 0.000128 0.016550 0
(by,by,a;,a,,m)=(0.5,2.5,1,1,0)

N b~l/bl Ubl/bl b;/br U'by-/b'r dl/al aal/al a}/ar Uar/ar K
100 | 0.049015 0.189674 0.228050 1.238896 0.000973 0.210265 0.022900 0.135733 0
200 | 0.023643 0.122868 0.072195 0.251545 0.000192 0.146596 0.010420 0.088294 0
400 | 0.011436 0.082733 0.031470 0.154247 0.000626 0.103198 0.005328 0.060806 0
800 | 0.005635 0.056868 0.014698 0.103640 -0.000054 0.073261 0.002103 0.042548 0

1600 | 0.002651 0.040238 0.007654 0.071829 0.000320 0.052042 0.001282 0.030253 0

3200 | 0.001697 0.028480 0.004188 0.050021 0.000367 0.036385 0.000941 0.021258 0

6400 | 0.000874 0.020158 0.002018 0.034866 0.000088 0.026084 0.000587 0.015053 0
(by,b:,a5,a,,m)=(1.5,2.5,1,1,0)

N b1 /by ab, /b by /br ob,./br ar/a 0a,/ar ar/ar Oa,./ar K
100 | 0.253803 4.212897 0.435188 2.473012 0.018725 0.138093 0.031128 0.152805 0
200 | 0.059715 0.209753 0.099552 0.367232 0.007405 0.092740 0.012295 0.097120 0
400 | 0.026696 0.130166 0.038787 0.174597 0.003372 0.064278 0.005117 0.065592 0
800 | 0.012453 0.088677 0.018056 0.115543 0.001334 0.044944 0.002241 0.045771 0

1600 | 0.006231 0.061846 0.009675 0.079525 0.000511 0.031555 0.001409 0.032307 0
3200 | 0.002890 0.042806 0.004814 0.055465 0.000249 0.022223 0.000740 0.022808 0
6400 | 0.001675 0.030318 0.002671 0.038534 0.000268 0.015741 0.000596 0.016006 0



