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1 Introduction

A variety of important issues on industrial dynamics and business cycle analysis can be ad-
dressed by means of factor analysis. Because of their own nature, factor models focus on the
few driving forces underlying the dynamics of the economy, sectors and firms. Indeed, each
economic series of interest is represented as the sum of a common component, driven by the
non observable economy-wide factors, and an idiosyncratic component, which is peculiar to
each series and vanishes via aggregation. Moreover, this kind of model allows using large cross-
sections of time series, thereby taking into account as much information as possible. Finally,
the whole dataset can be broken up into smaller subsamples - e.g. sectoral or country-specific
- in order to carry out a factor analysis on each of the subsamples and compare the results
across different subsets. This work gives a contribution in this sense and, more generally, in
the sense of investigating the strength of comovements in the economy and give some insights
about the nature of the shocks at the root of these comovements.

This paper is in the spirit of the work by Forni and Reichlin [1998], who apply a dynamic
factor model à la Sargent and Sims [1977] for studying the dynamics of output and produc-
tivity in US manufacturing. To our knowledge, no other works apply dynamic factor analysis
to firm-level data, which have the advantage of being by and large less difficult to measure
than macro variables. However, our study is not limited to the manufacturing sector, being
our wider samples composed by 660 firms (when analyzing sales data) and 355 firms (when
analyzing investments data) belonging to all sectors of the US economy. Moreover, we use
about 20 years of quarterly data, from 1984 to 2005. Besides, the most important difference is
in the model itself: we apply the Generalized Dynamic Factor Model (GDFM) by Forni et al.
[2000], which allows for a limited amount of cross-sectional correlation across idiosyncratic
components. Indeed, we believe that the assumption of mutual orthogonality of idiosyncratic
components might be too restrictive when dealing with balance-sheet data relative to sales
and investments. Finally, we improve on the heuristic procedure for determining the number
of common factors by implementing the information criterion recently proposed by Hallin and
Liška [2007], which indicates the minimum number of common dynamic factors to include in
the model.

The main contribution of this work consists in sheding some light on the nature of cyclical
economic fluctuations, which is accomplished by tackling a variety of issues all at once. Firstly,
we want to assess the stochastic dimension of firm growth. In other words, we want to
determine the number of deep forces leading this economic phenomenon, i.e. the number of
non observable factors common to the whole economy which lead the process of firm growth and
output fluctuations, from a microeconomic and macroeconomic point of view respectively. The
Hallin-Liška criterion indicates the existence of just one dynamic common factor driving sales
and one dynamic common factor driving investments at the economy-wide level. Secondly, we
investigate the nature of these main forces. Then, we estimate the common component and
the idiosyncratic component of growth and investments, and assess their relative importance
by means of a straightforward variance decomposition. Finally, we investigate the patterns of
the common component both at the economy-wide level and at the sectoral level by means of
spectral analysis.
We address the problem of whether sectoral shocks may produce fluctuations at business
cycle frequencies for the whole economy in two ways. In the first place, we compare the
economy-wide dynamic common factor with the main sectoral factors coming out from the
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factor decomposition run sector by sector. Secondly, we study the spectral densities of the
common component of output and investment series retrieved at the economy level and at the
sectoral level. Indeed, it seems there is just one main force governing the economy as a whole
and each of the sectors, by the meaning that the many sectoral factors ultimately resemble
the the dynamic common factor of the economy, although the issue regarding the nature of
the latter deserves further investigation.
Finally, we obtain information with regard to the features of positive and negative comove-
ments in the economy. We run this kind of analysis both at firm level, both on firms belonging
to the same sector and on firms belonging to different sectors, and at sectoral level. In the
first case, the evidence relative to output is consistent with the existence of some sort of com-
petition mechanism and selection process which gets more stringent in the short run. In the
second case, we check which sectors comove positively and which negatively, and at which
frequencies. The spectral analysis of sectoral comovements, when applied to investments, pro-
vides information on the mapping of capital flows in the economy. On the other hand, the
study of comovements in sales, assuming output as a crude proxy of employment, detects job
flows.

Let us spend some words on the motivation underlying the choice of adopting a dynamic factor
approach. In a nutshell, by reducing the dimension of the problem under study it combines
the virtues of panel data techniques and VAR models. On this, Reichlin [2002] states:

“Modern macroeconomic theory is based on the representative agent assumption,
but macroeconomic empirics is mostly based on aggregate data. What is the cost
of simplicity, i.e. are we losing valuable information by working with econometrics
models containing few aggregate variables? How detailed do our models have to be
to have a chance to provide the essential information on the macroeconomy? To
try to answer these questions there is a need to develop econometric models which
(a) are able to handle the analysis of many time series by reducing the number
of the essential parameters to estimate; (b) can provide an answer on what is the
relevant stochastic dimension of a large economy, i.e. on how many aggregate
shocks are needed to study the macroeconomy which emerges from the behavior of
many agents; (c) can help us identifying these (possibly few) shocks and studying
the propagation mechanism through agents or through geographical space. This
is what will help to bridge the gap between purely time series studies and the
cross-sectional approach.”

Indeed, the dynamic factor approach presents basically three big advantages with respect to
the traditional VAR models (see Forni et al. [2007]):

• it allows dealing with much larger datasets, virtually infinite, i.e. a wider information
set, virtually the whole economy;

• it does not need to impose any restriction in order to disentangle the common part and
the idiosyncratic part of each series in the sample;

• it needs only a few identification restrictions for the structural shocks, being their number
very small and equal to the number of underlying common factors, while in VAR models
the number of structural shocks equals the number of series in the dataset.
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Ultimately, dynamic factor models allow for an easier economic interpretation. Moreover, they
do not suffer from two shortcomings of the VAR approach, i.e. the sensitivity to the choice
of the variables to include in the analysis and the substantial arbitrarity of the identification
restrictions. In this work we remain relatively agnostic and refrain from imposing any kind
of theory-driven structure to achieve identification of the shocks, although a simple DSGE
model would serve the purpose of offering a theoretical framework for our empirical analysis.
However, we find the other arguments to be convincing enough for adopting the dynamic
factor approach in order to empirically ground our economic research.
The novelty of our study with respect to the factor models literature stands in the use of the
GDFM to investigate industrial dynamics issues and for business cycle analysis. The GDFM
generalizes on the one hand the dynamic factor model proposed by Sargent and Sims [1977]
and Geweke [1977] by allowing for mildly correlated idiosyncratic components; on the other
hand the approximate factor model by Chamberlain [1983] and Chamberlain and Rothschild
[1983] which is static. Indeed, static principal components along the lines of Stock and Watson
[2002] are actually used in many of the works extracting common factors from large cross-
sections (e.g. Marcellino et al. [2003], Beck et al. [2006], Eickmeier and Breitung [2006]),
exceptions being for example Giannone et al. [2004], Giannone et al. [2002], and Sala [2002]1.
The key difference between the GDFM approach and the static principal component method
is that the latter gives a static representation of the dynamic model, one shock and its lags
being treated as many different shocks. In the GDFM, on the opposite, the time element is
introduced in full into the analysis, the focus of the estimation being on the dynamic common
factors rather than on their static counterparts.

The paper is structured as follows. In the following section we outline the GDFM and the
estimation procedure. In section 3 we present the COMPUSTAT data and the deflators we
use for building the dataset for the empirical analysis. For determining the number of factors
to include in the model, in section 4 we apply on all our samples and subsamples both the
criterion by Hallin and Liška and a heuristic procedure. In section 5 we retrieve the dynamic
common factors and compare the main economy-wide factor to the sectoral ones. In section
6 we estimate the common and the idiosyncratic component of each series and study their
spectral profile and their cospectra. Section 7 concludes and proposes complementary analyses
and empirical applications.

2 The Model

We denote as xt = (x1t . . . xNt)
′ an N -dimensional vector process. Each of the series is station-

ary and second order moments γik = E[xitx
′
it−k] exist finite for all i and k. In the Generalized

Dynamic Factor Model (GDFM), as proposed by Forni et al. [2000], it is assumed that each
series xit can be written as the sum of two mutually orthogonal unobservable components,
the common component χit and the idiosyncratic component ξit. The common component is
driven by a small number q of dynamic common factors or shocks ujt with j = 1, . . . , q, which
are loaded with possibly different coefficients and lags. Formally:

xit = χit + ξit =
∑

bij(L)ujt + ξit i = 1, . . . , N j = 1′ . . . , q (1)

1Recent works on dynamic factor models within a Bayesian framework are, among others, Kose et al. [2003],
Canova et al. [2007], Ciccarelli and Mojon [2005].
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The q-dimensional vector process ut = (u1t . . . uqt)
′ is an orthonormal white noise. The N -

dimensional vector process ξt = (ξ1t . . . ξNt)
′ has zero mean and is stationary. Moreover, ξit is

orthogonal to ujt−k for all k, i and j. The polynomials in the lag operator bi1(L) . . . biq(L) are
square-summable, two-sided filters in principle of infinte order.
We denote the spectral density matrices of the common part and the idiosyncratic part respec-
tively as Σχ(θ) and Σξ(θ), with θ ∈ [−π, +π]. Finally, we assume that the eigenvalues of Σχ(θ)
diverge almost everywhere while the largest eigenvalue of Σξ(θ) is bounded as the number of
series goes to infinity. This last condition, in other words, relaxes the assumption of mutual
orthogonality of idiosyncratic components by allowing for a limited amount of cross-sectional
correlation.

The estimation of the model follows the procedure proposed in Forni et al. [2000]. Firstly,
the spectral density matrix of xt, Σ̂x(θ), is estimated by applying the Fourier transform to
the sample covariance matrices Γ̂k (hereafter, all “hatted” symbols denote estimated values).
Then the dynamic principal component decomposition is applied, thereby selecting the first q
largest eigenvalues of Σ̂x(θ) and the corresponding eigenvectors (p1(θ), . . . , pq(θ)). From such
eigenvectors we can build the corresponding filters using the inverse Fourier transform:

p̃j(L) =
1

2π

+∞
∑

k=−∞

[
∫ π

−π

pj(θ)e
iθkdθ

]

Lk (2)

The factor space is the minimal closed subspace that contains the q largest dynamic principal
components: U = span {p̃j(L)xt , j = 1 . . . q}; and the common part is just the projection of
xt onto the factor space. Given the orthonormality of the dynamic eigenvectors the following
holds:

xt =

[

N
∑

j=1

p̃†j(L)p̃j(L)

]

xt

where with p† we mean the transposed and complex conjugate of p. Finally, since by assump-
tion the common and the idiosyncratic part are orthogonal, we have:

χt =

[

q
∑

j=1

p̃†j(L)p̃j(L)

]

xt ≡ K(L)xt (3)

We then obtain the idiosyncratic component simply as difference between the original series
xt and χt.
Note that the filter K(L) is two-sided and in principle is also of infinite order, but for t ≤ 0
and t ≥ T we do not have observations for xt, hence we need to truncate the filter. Such
operation will cause the loss of part of the variance of χt even for N, T → ∞ so we must
concentrate only on the central part of xt. In practice this implies the choice of a truncation
lag MT such that consistency of all the estimates is preserved2; this is ensured provided that
MT → ∞ and MT /T → 0 as T → ∞ (we choose MT ∼ [

√
T/2]).

The estimated filter that in practice we use is:

K̂(L) =
1

2MT + 1

MT
∑

k=−MT

[

MF
∑

h=−MF

(

q
∑

j=1

p†j(θh)pj(θh)

)

eikθh

]

Lk (4)

2See Forni et al. [2000] for a detailed discussion of the problem. Moreover, estimations of the common
component at the beginning and at the end of the sample are not reliable, thus such method is useless for
prediction while it is good for structural analysis as it is in our case.
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where θh = 2πh/(2MF +1) are the 2MF +1 points for which the spectral density is estimated
(we take MF = 10).

A number of studies compare the one-sided estimation of the GDFM by Forni et al. [2005] with
the dynamic factor model estimated by static principal components à la Stock and Watson
[2002]3: the evidence is mixed. We choose to carry out our analysis by estimating dynamic
principal components rather than static principal components because the first exploit the
information contained in lagged covariance matrices, while the static method makes use of
contemporaneous covariances only. Indeed, while less sophisticated estimation procedures
may turn helpful in those contexts where computational simplicity plays a role, when we come
to structural analysis it becomes crucial to tell what the dynamic factors are rather than
estimating the corresponding static factors, the dynamic factors being the primitive shocks
which get then transmitted to the whole economy.

3 The Data

For the empirical analysis we use COMPUSTAT quarterly data relative to sales, by means of
which we intend to proxy firm size, and investments of US firms. The whole COMPUSTAT
database contains data on about 10,000 actively traded U.S. companies, standardized by
specific data item definition and by financial statement in order to allow for intertemporal
and inter-firm comparison. Given the large amount of data at our disposal, we can exclude
from the analysis all those series presenting problems concerning missing values in the period
under analysis. Moreover, we do not replace abnormal values because we cannot exclude their
structural nature: for example, in the case of investment, they may be due to lumpiness.
Therefore, the database we use is not affected by any arbitrary manipulation. What follows
is the COMPUSTAT definition of sales and investments:

• Sales: this item represents gross sales (the amount of actual billings to customers for
regular sales completed during the period) reduced by cash discounts, trade discounts,
and returned sales and allowances for which credit is given to customers. The result is
the amount of money received from the normal operations of the business (i.e. those
expected to generate revenue for the life of the company).

• Capital expenditures: this item represents cash outflow or funds used for additions to the
company’s property, plant, and equipment, excluding amounts arising from acquisitions.

We do not consider those firms which have been affected at any point in the considered time
span by any merger or acquisition or any kind of accounting changes, as well as those data
which present discrepancies with respect to the standard definition (see Appendix A for a
detailed description of how the data are built from balance-sheet items and a list of possible
anomalies). The firms surviving the above selection have been grouped into two distinct
datasets: the dataset for sales goes from the second quarter 1985 to the first quarter 2005 - 80
observations in total - and includes 57 firms; the dataset for investments goes from 1984 first
quarter to 2005 first quarter - 85 observations in total - and includes 355 firms. The difference
in the number of firms in the two samples is due to the fact that often, while the investment
time series is long enough, the sales time series is too short for the same firm, so we had to
drop those firms from the sales sample. However, since the cross dimension plays a crucial

3See for example Boivin and Ng [2005], Kapetanios and Marcellino [2004], D’Agostino and Giannone [2006].

5



role for the consistency results of the dynamic factor model we use, we run the analysis on a
wider sales dataset as well, including 660 firms. In this latter dataset those firms experiencing
significant mergers or acquisitions, whereby the effects on the prior year’s sales constitute 50%
or more of the reported sales for that year, are not included. Running the analysis on two
sales datasets, i.e. the cleanest possible and the widest possible, ensures the accuracy of the
results because both quality and quantity of the data are taken into account.
We are interested in inter-sectoral comparisons too. Therefore, we break up the two big
samples into sectoral subsamples and apply the GDFM to the more numerous subsets. For the
definition of sectors we follow the North American Industrial Classification System (NAICS),
introduced in 1997, which is more disaggregated than the Standard Industrial Classification
(SIC) and better designed. Moreover, it is more detailed on key sectors belonging to services
and IT4. Table 1 summarizes the composition of the two bigger samples representing the whole
economy at the 3-digit level for sales and investments.
We focus on the following four sectors, identified on the basis of the 3-digit NAICS code, which
include a sufficient number of firms for applying the GDFM:

• Utilities (NAICS code: 221—): 109 firms in the sales subsample, investment subsample
too small;

• Computer and electronic product manufacturing (NAICS code: 334—): 89 firms in the
sales subsample, investments subsample too small;

• Chemical manufacturing (NAICS code: 325—): 80 firms in the sales subsample, 37 firms
in the investments subsample;

• Machinery manufacturing (NAICS code: 333—): 61 firms in the sales subsample, in-
vestments subsample too small.

The raw data are deflated by means of the deflator series published by the U.S. Department of
Labor - Bureau of Labor Statistics (BLS). For deflating capital expenditure series we use the
Producer Price Index Finished Goods - Capital Equipment with base year 1982. For deflating
output series, we use the Producer Price Index Revision - Current Series, which are NAICS-
based sectoral deflators. According to the definition, they “reflect price movements for the
net output of producers [...]. To the extent possible, prices used in constructing the indexes
are the actual revenue or net transaction prices producers receive for sales of their outputs
[...]. The PPI is meant to measure changes in prices received by domestic producers, import
products are not priced in the survey”. We are able to match firms and deflators with a good
deal of accuracy, being the great majority of the codes at the 6-digit level. In some cases,
for instance in the case of big enterprises active in more than one sector or when the 6-digit
NAICS code deflator is not available, we take deflators relative to wider industry definitions,
keeping the 3-digit level as the maximum limit for aggregation.
Series are seasonally adjusted by a simple moving average method, again aiming at manipulat-
ing the raw data as less as possible (see Appendix B for details). Finally, series are differenced
in order to get stationarity and standardized, so that ultimately we work with rates of growth.

4Those firms belonging to some very recent niches, as the “Dot-com” enterprises in the computer manufac-
turing sector, are absent in our dataset.
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3-digit Classification Sales Investments
NAICS No. of Percentage No. of Percentage
code firms firms

111 Crop Production 0 0 2 0.56%
211 Oil and gas extraction 0 0 11 3.10%
212 Mining (except oil and gas) 8 1.21% 4 1.13%
213 Mining support activities 0 0 5 1.41%
221 Utilities 109 16.52% 9 2.54%
237 Heavy and Civil Engineering Construction 0 0 5 1.41%
311 Food manufacturing 21 3.18% 15 4.23%
312 Beverage and tobacco product manufacturing 7 1.06% 3 0.85%
313 Textile mills 3 0.45% 2 0.56%
314 Textile product mills 2 0.30% 2 0.56%
315 Apparel manufacturing 13 1.97% 1 0.28%
316 Leather and allied product manufacturing 10 1.52% 2 0.56%
321 Wood product manufacturing 6 0.91% 4 1.13%
322 Paper manufacturing 23 3.48% 17 4.79%
323 Printing and related support activities 9 1.36% 5 1.41%
324 Petroleum and coal products manufacturing 14 2.12% 7 1.97%
325 Chemical manufacturing 80 12.12% 37 10.42%
326 Plastics and rubber products mfg 16 2.42% 7 1.97%
327 Nonmetallic mineral product mfg 13 1.97% 6 1.69%
331 Primary metal manufacturing 15 2.27% 6 1.69%
332 Fabricated metal product mfg 35 5.30% 13 3.66%
333 Machinery manufacturing 61 9.24% 18 5.07%
334 Computer and electronic product mfg 89 13.48% 32 9.01%
335 Elec equip, appliance, and component mfg 32 4.85% 13 3.66%
336 Transportation equipment mfg 30 4.55% 14 3.94%
337 Furniture and related product mfg 11 1.67% 4 1.13%
339 Miscellaneous manufacturing 33 5.00% 8 2.25%
423 Merchant Wholesalers, Durable Goods 0 0 11 3.10%
424 Merchant Wholesalers, Nondurable Goods 0 0 8 2.25%
441 Motor vehicle and parts dealers 0 0 1 0.28%
442 Furniture and home furnishing stores 0 0 1 0.28%
444 Building material & garden equipment & supply dealers 0 0 1 0.28%
445 Food and beverage stores 0 0 7 1.97%
446 Health and personal care stores 0 0 3 0.85%
448 Clothing and clothing accessories stores 0 0 6 1.69%
452 General merchandise stores 0 0 5 1.41%
454 Nonstore retailers 0 0 1 0.28%
481 Air transportation 0 0 3 0.85%
482 Rail transportation 8 1.21% 5 1.41%
483 Water transportation 0 0 1 0.28%
484 Truck transportation 0 0 2 0.56%
492 Couriers and messengers 0 0 1 0.28%
511 Publishing industries (except internet) 12 1.82% 7 1.97%
515 Broadcasting (except internet) 0 0 1 0.28%
517 Telecommunications 0 0 3 0.85%
522 Credit Intermediation and Related Activities 0 0 3 0.85%
523 Finance 0 0 2 0.56%
524 Insurance carriers & related activities 0 0 3 0.85%
531 Real Estate 0 0 1 0.28%
532 Rental and leasing services 0 0 3 0.85%
533 Lessors of Nonfinancial Intangible Assets 0 0 1 0.28%
541 Professional and technical services 0 0 6 1.69%
561 Administrative and support services 0 0 3 0.85%
621 Ambulatory Health Care Services 0 0 1 0.28%
713 Amusement, Gambling, and Recreation Industries 0 0 1 0.28%
721 Accommodation 0 0 3 0.85%
722 Food Services and Drinking Places 0 0 6 1.69%
999 Unclassified 0 0 3 0.85%

Table 1: Firms included in the analysis disaggregated at the 3-digit level.
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4 Determining the Number of Factors

Firstly, we verify that our dataset does fulfill GDFM assumptions on the eigenvalues of the
spectral density matrix of xt. According to Brillinger [1981], we define the variance explained
by the ith dynamic factor, associated to the ith largest eigenvalue λi(θ) of Σ̂x(θ), as:

EVi =

∫ θ∗

−θ∗
λi(θ)dθ

∑N
j=1

∫ θ∗

−θ∗
λj(θ)dθ

θ∗ = π, π/2, π/4, π/6 (5)

We require that, as N −→ ∞:






EVi −→ ∞ for i = 1, . . . , q

∃ M ∈ R
+ s.t. EVi ≤ M for i = q + 1

(6)

Indeed, this is the case for all samples. Figure 1 shows the explained variance and the cu-
mulated explained variance computed in [−π, +π] relative to the first eigenvalues for the 660
firms sales sample. These plots are built for n = 50, . . . , 660: starting from including just the
firms belonging to the first sector listed in table 1 we compute the variance explained by the
first eigenvectors and the cumulated explained variance. Then, at each step we add all the
firms belonging to the following sector and re-compute the quantities.

50 660
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

n ≤ N

 

 

factor1
factor2
factor3
factor4
factor5
factor6
factor7

(a) Explained variance

50 250 450 660
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n≤N

(b) Cumulated explained variance

Figure 1: Explained variance and cumulated explained variance by the first eigenvalues for
the sales sample, 660 firms.

Moreover, we compute the explained variance and the cumulated explained variance relative
to the first q eigenvectors also in the narrower frequency bands [−π/2, +π/2] (horizon longer
than one year), [−π/4, +π/4] (horizon longer than two years) and [−π/6, +π/6] (horizon
longer than three years). Results are shown in tables 2 and 3: the bulk of the variance in
sales data is generally concentrated in the [−π/2, +π/2] frequency band except for the smaller
economy-wide sample and the chemical industry, which are the only cases in which the variance
explained by the first q eigenvalues decreases when we compute it only for periods longer than
1 year. On the opposite, the bulk of the variance in investments data is at higher frequencies:
the amount of cumulated explained variance systematically decreases when we narrow the
band keeping just lower frequencies.
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Note that the first eigenvalue is actually much larger than all the others at all frequencies and
presents no big jumps between adjacent frequencies. This suggests the presence of at least
one common dynamic factor that explains most of the variance and has the same economic
interpretation for all frequencies. Plots for sectors look as those in figure 2, except for the
utilities sector where the first and the second eigenvalue are closer to each other. The peak at
π/2 in the plots might be partly due to some residual seasonality that has not been washed
away by the deseasonalization operated univariately on the original data.

0  π/6 π/4 π/2 π
0.05

0.1

0.15

0.2

(a) Sales, 660 firms

0  π/6 π/4 π/2 π
0.05

0.1

0.15

0.2

0.25

(b) Investments, 355 firms

Figure 2: Largest eigenvalues (frequencies on the horizontal axis).

However, we do not rely only on the intuition coming from the graphs for determining the
number of factors to include in the model. We implement two complementary procedures by
applying on the one hand the Hallin and Liška [2007] information criterion for determining
the minimum number of common factors, and on the other hand a heuristic procedure still
based on the variance explained by the eigenvalues.

The criterion by Hallin and Liška exploits the relation in the GDFM between the number of
common factors and the number of diverging eigenvalues of the spectral density matrix of the
observations. We choose the logarithmic form of the covariogram-smoothing version of the
criterion, since Hallin and Liška maintain that this form has better finite sample performance
than the non-logarithmic one. For given N and T , it consists in choosing the number of factors
q̂T
N so to minimize the following:

IC(qT
N) = log

[

1

N

N
∑

i=q+1

1

2MT + 1

MF
∑

h=−MF

λi(θh)

]

+ qT
Ncp(N, T ), 0 ≤ qT

N ≤ qmax ≤ N (7)

where θh, MT and MF are defined as in (4) and p(N, T ) is a penalty function satisfying

lim
N→∞

p(N, T ) = 0 and lim
N→∞

Np(N, T ) = ∞. (8)

In principle, the maximum number of factors allowed qmax is the number of series in the
dataset. Therefore, the penalty function should be large enough to avoid overestimation of
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q, but at the same time it should not overpenalize. Multiplying the penalty function by a
constant c is a way to tune the penalizing power of p(N, T )5.
Hallin and Liška propose an automatic procedure for selecting q̂ which basically explores the
behavior of the variance of each qT

N for the whole region of values of the constant c for N and
T going to infinity. What we seek is the first stability region compatible with q̂T

N < N .
We build output plots (selected examples are in figure 3) by setting qmax = 20, however results
are robust to variations in qmax. In these charts, the solid line indicates the value of qT

N that
minimizes IC(q) for a given c and for the entire sample, while the dashed line measures (for
the same c) the instability of qT

N when considering different subsamples, i.e. different n < N .
Roughly speaking, a dashed line approximating zero means that the value q suggested by the
solid line is not biased by the sample dimension. In other words, the chosen q̂ corresponds to
the second zero-level interval of the dashed line corresponding to a plateau of the solid line,
the first one being always associated to qmax and thus not indicative. We apply the the Hallin-
Liška criterion on all the samples on different frequency bands, i.e. [−π, +π], [−π/2, +π/2],
[−π/4, +π/4], and [−π/6, +π/6], in order to tell whether the estimated number of dynamic
factors varies when taking into account different horizons: results are summarized in table 2.
Indeed, as a general result sectoral common shocks are detected in the short run while in the
long run the criterion indicates the existence of either less sector-specific factors or none at
all. This is particularly evident when considering sales data in the chemicals sectors, whose
plot is reported in figure 3 as an example. At longer horizons (i.e in the [−π/6, +π/6] and
[−π/4, +π/4] frequency bands) the big economy-wide sales sample appears to be driven by
one common dynamic factor, while the small sales sample and the sample for investments do
not show any common factor. At higher frequencies, the Hallin-Liška criterion indicates the
existence of one common factor for all the samples except the utilities industry, which is driven
by two common dynamic factors.
These results point in the direction of the existence of (at most) one economy-wide shock at
business cycle frequencies, which can be related to specific sectoral dynamics excluding the
chemical industry, this latter possibly coming into play only at horizons shorter than 2 years.
However, it could still be the case that the sectoral-specific factors and the economy-wide
factor are ultimately the same: this point will be investigated in the next section. Finally,
we compute the average variance of each series’ common part over the total variance, which
is one since data are standardized, giving also its standard deviation and its maximum and
minimum values: this latter statistic in particular answers the question of why on average the
variance of χ̂it is lower than the variance explained by the corresponding dynamic common
factors. The heterogeneity of the series influences this result, since the variance of χ̂it is an
average over the sample while the eigenvalues give a global and more reliable information.
Moreover, we might interpret the variance explained by the first q dynamic common factors
as a potential value reachable at the cost of including more and more lags to each dynamic
common factor, trading off model parsimony and explanatory power.

5We use p(N, T ) = min(N, M2

T , M
−1/2

T T 1/2) log(min[N, M2

T , M
−1/2

T T 1/2]).
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Figure 3: Selected Hallin-Liška criterion plots for sales data.
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Sample No. Estimated q Variance explained by Average variance of χ̂it over total
of the first q factors
series in in in in in in in in in [−π, π] in [−π/2, π/2]

[−π, π] [−π
2
, π

2
] [−π

4
, π

4
] [−π

6
, π

6
] [−π, π] [−π

2
, π

2
] [−π

4
, π

4
] [−π

6
, π

6
] av std max min av std max min

Sales 57 1 1 0 0 17% 17% na na 24% 17% 77% 3% 8% 10% 50% 0.5%

660 1 1 1 1 14% 15% 13% 14% 21% 17% 98% 1% 7% 7% 51% 0.2%

Sales 81 1 1 0 0 16% 15% na na 23% 17% 83% 3% 6% 4% 22% 0.4%
Chemicals
Sales 109 2 2 1 1 40% 43% 28% 27% 50% 21% 95% 6% 11% 7% 36% 0.4%
Utilities
Sales 89 1 1 1 1 16% 19% 24% 24% 22% 16% 79% 1% 13% 16% 77% 0.3%
Electronics
Sales 61 1 1 1 1 16% 17% 19% 20% 22% 14% 67% 5% 9% 8% 48% 0.5%
Machinery
Investments 355 1 1 0 0 15% 13% na na 18% 13% 68% 1% 6% 4% 25% 0.1%

Investments 37 1 1 0 0 23% 21% na na 26% 19% 71% 2% 8% 5% 20% 1%
Chemicals

Table 2: Factor decomposition according to the Hallin-Liška criterion.
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Actually, the number of common dynamic factors suggested by the Hallin-Liška criterion is
precisely the minimum number of factors required to satisfy the hypotheses of the model. As
explained in Forni et al. [2000], including more dynamic common factors has asymptotically
no consequences. Indeed, the criterion detects the number of dynamic factors q which satisfies
the GDFM assumption requiring the variance explained by these q factors to diverge for N
diverging. Adding more factors whose explained variance is bounded for N going to infinity
yields then asymptotically the same result, the overall explained variance being diverging
as well. Therefore, besides using the Hallin-Liška information criterion for determining the
number of dynamic common factors, we are allowed to implement a complementary heuristic
procedure which takes into account the amount of explained variance relative to the first q
eigenvalues. Indeed, economic considerations might call for more than one common dynamic
factor: different shocks could relate to the demand side, to the supply side (e.g. productivity
or labor supply shocks), to monetary policy, to stock prices, to external developments (e.g. oil
prices, exchange rate movements, fluctuations in world trade), etc.
In line with the literature, we aim at explaining at least 30% of the variance6, hence we check
how many dynamic common factors are necessary in order to fulfill the objective. As shown
in table 3, from two to four dynamic factors are needed.

5 Retrieving the dynamic common factors

One might ask whether the first (or unique) dynamic common factor detected by the Hallin-Li
ška criterion is actually the same across all sectors and the economy as a whole, or we are
ultimately dealing with sectoral factors, each one different from the economy-wide dynamic
common factor. To answer this question, we first estimate the dynamic common factors and
then compare them across samples.
We can easily recover the dynamic factors ut once we obtain the dynamic eigenvectors of the
spectral density matrix. Indeed the space spanned by the dynamic principal components coin-
cides with the space spanned by the dynamic factors. The q largest eigenvectors, p1(θ) . . . pq(θ),
generate the two-sided filter:

p̃j(L) =

MT
∑

k=−MT

cjkL
k for j = 1, . . . , q

cjk =
1

2(2MF + 1)

MF
∑

h=−MF

pj(θh)e
ikθh θ ∈ [−π, +π]

where θh is defined as in (4). Note that, as explained in section 2, in principle p̃j(L) is an
infinite order filter, but in practice we truncate it at lag MT . Moreover, given that we have
only an estimation of the spectral density matrix, the Fourier coefficients cjk are computed
only for a finite number of frequencies. The dynamic principal components are then obtained
just by applying these filters to the original series and we identify them with the dynamic
factors:

ujt = p̃j(L)xt for j = 1, . . . , q

In figure 4 we plot the first dynamic factor relative to the overall economy (solid line) against
the first sectoral dynamic factor estimated by applying the GDFM to one sector at a time

6We do not consider a higher threshold because our data are highly disaggregated. See Forni and Reichlin
[1998].
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Sample No. Variance explained Average variance of χ̂it over total
of q by the first q factors
series in in in [−π, π] in [−π/2, π/2]

[−π, π] [−π/2, π/2] av std max min av std max min

Sales 57 3 37% 37% 19% 12% 65% 2% 51% 16% 95% 21%

660 3 31% 31% 15% 10% 82% 1% 44% 20% 99% 7%

Sales 81 3 34% 35% 16% 10% 43% 3% 49% 18% 99% 15%
Chemicals
Sales 109 2 43% 40% 11% 7% 36% 0.4% 50% 21% 95% 6%
Utilities
Sales 89 3 39% 35% 24% 19% 90% 2% 48% 18% 93% 8%
Electronics
Sales 61 3 38% 37% 20% 14% 79% 4% 51% 17% 90% 21%
Machinery
Investments 355 4 34% 35% 18% 9% 72% 4% 45% 18% 94% 10%

Investments 37 2 31% 34% 13% 5% 20% 2% 39% 15% 69% 15%
Chemicals

Table 3: Factor decomposition according to the heuristic procedure.
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[−π, π] [−π/6, π/6]
Sample explanatory t-value R2 explanatory t-value R2

variable variable

Sales vt+6 -6.7557 0.33288 vt+2 10.379 0.61935
Utilities
Sales vt 7.0106 0.39674 vt 35.849 0.99286
Electronics
Sales vt−3 10.921 0.66121 no comm. no comm. no comm.
Chemicals factors factors factors
Sales vt−1 6.5346 0.48239 vt 12.511 0.78364
Machinery
Investments vt 7.4695 0.71711 no comm. no comm. no comm.
Chemicals 7.6643 0.72884 factors factors factors

Table 4: Regression results. Dependent variable ut: economy-wide factor, explanatory variable
vt+k: sectoral factor.

(dashed line), computed between −π and π. In general, sectoral common factors look smoother
than the economy-wide common factor, especially in the case of investments. Note that the
peaks around 1996-1997 and 2001 in the macroeconomic common factor for sales are present
also in the factors relative to the electronics industry and the utilities sector, respectively.
However, since the dynamic factors are identified up to a dynamic rotation (or Blaschke
matrix)7, the relative timing of these peaks cannot be assessed precisely.

To investigate the stochastic dimension of the phenomenon, we run pairwise regressions of the
economy-wide factor against leads and lags of sectoral factors, computed in both [−π/6, +π/6]
and [−π, +π]. In each regression we take as sole regressor the coincident value or one lead or
lag of the first sectoral factor, up to the 8th, so that we take into account correlations up to
the correlation of the 4th lead of one factor with the 4th lag of the other. Table 4 summarizes
the results for the regressions yielding the highest R2 among the 17 regressions relative to the
same sector. Note that the R2 is generally fairly high, while the coefficients, although highly
significant, are not reported since they have no informative power, the dynamic common
factors being identified only up to a dynamic rotation.
This high correlation suggests the idea of the dynamic factors being actually just the same
one for all sectors. Indeed, it seems there is one macroeconomic common factor which reflects
into sectors, thereby inducing sectoral factors which closely resemble the economy-wide factor
itself. The issue of the nature of the factor, however, deserves further investigation, although
the 0.99 R2 of the regression of the economy-wide factor on the electronics factor in the long
run is a particularly striking insight about the nature of the economy-wide factor itself.

7See Forni et al. [2007].

15



1987 1990 1993 1996 1999 2002
−20

−10

0

10

20

30

 

 

global factor
sectoral factor

(a) Utilities - sales

1987 1990 1993 1996 1999 2002
−20

−10

0

10

20

30

 

 

global factor
sectoral factor

(b) Electronics - sales

1987 1990 1993 1996 1999 2002
−20

−10

0

10

20

30

 

 

global factor
sectoral factor

(c) Chemicals - sales

1987 1990 1993 1996 1999 2002
−20

−10

0

10

20

30

 

 

global factor
sectoral factor

(d) Machinery - sales

1985 1988 1991 1994 1997 2000 2003
−25

−20

−15

−10

−5

0

5

10

15

 

 

global factor

sectoral factor

(e) Chemicals - investments

Figure 4: Economy-wide dynamic common factor (solid line) and sectoral common factor
(dashed line).
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6 Common and Idiosyncratic Components

Spectral densities

Typically, the common component and the idiosyncratic component of the series present dif-
ferent spectral densities: low frequencies are more important in the common part, higher
frequencies in the idiosyncratic part. Long run movements of the economy as a whole reflect
into that part of firm growth which by definition is linked to the deep driving forces of the
economy, while short run phenomena in the life of the firm are likely to be idiosyncratic to the
firm itself. Finally, factors affecting firm growth may be classified at a third intermediate level,
the sectoral level, when they influence more than one firm but their effects do not overcome
the borders of a specific industry.
To check whether our data obey this rule, in figure 5 we have plotted the average spectral
density of the common component obtained by including one dynamic common factor for
frequencies belonging to [−π, +π] (charts obtained by including more common factors and/or
keeping narrower frequency bands do not provide additional information). We have grouped
the common components estimated on all the firms of the economy according to the sector
they belong to. Note that the obtained common components relate to only macroeconomic
common factors since the influence of sectoral shocks vanishes via aggregation of sectors.
Despite aggregation, however, different sectors still look different: indeed, two distinct patterns
are detectable. In the electronics and machinery sectors the spectral density of the common
component takes high values at business cycle frequencies and decreases more and more going
towards one year; the chemicals and utilities spectral densities, on the opposite, take higher
values the shorter the horizon. In other words, the bulk of sectoral comovements lies either
at high or at low frequencies depending on the sector, the electronics and machinery sectors
being more long-run driven and the chemicals and utilities sectors more short-run driven. As
for the average spectral density of investments common parts, very high frequencies look more
important than business cycle and long run frequencies. The spectral density for the chemical
sector closely resembles the spectral density for the whole sample, meaning that comovements
in investments are important in the short run also at a sectoral level.
In a nutshell, on sales data the results of the empirical analysis are consistent with the idea that
macroeconomic common factors, leaving aside their specific nature, relative importance and
interpretation, do affect firm growth at business cycle frequencies, but the relative importance
of low frequencies versus high frequencies varies across sectors. Unfortunately we do not have
a true sectoral disaggregation for investment data, where the bulk of comovements at least at
the aggregate level and for the chemical sector is at short horizons, possibly shorter than one
year.
The time domain counterpart of the average common component for sales data, computed
with one dynamic common factor, is plotted in figure 6 (dashed line), together with the series
of average sales (solid line): the average common component tracks the average sales very
closely, this indicating that comovements play indeed a major role in sales dynamics.

Finally, we estimated the common component of the sales and investment series only on the
firms belonging to some sector. As expected, the common component in this case weights on
average more than the common component estimated on all the firms of the economy since
it captures not only what is common to the whole economy but also what is common only
to the firms belonging to the same industry. Moreover, the common component estimated on
the sectors is better estimated because homogeneity inside sectors is of course higher than in
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Figure 5: Average spectral densities of the common component by sector.
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Figure 6: Solid line: average sales. Dashed line: χt with 1 factor.

the economy as a whole. However, the correspondent spectral densities have the same shape
than those plotted in figure 5. This is consistent with the idea that nothing related to the
sectoral level has ultimately a strong effect on the overall economy, at least at business cycle
frequencies, in which case we should see some discrepancies between the spectral densities
computed with the two approaches.

Cospectra

Besides the analysis of the spectral density of the common component, it is interesting to
check how common components comove with each other. Focusing on comovements involving
only the common component of the series adds value to the mere analysis of comovements
among the series of output and investments as such. Indeed, by taking into account only the
part of the series which is linked to the deep structure of the economy, we do not run the risk
of interpreting as structural those comovements which are not.
The cospectrum sij(θ), relative to the common parts of series i and series j, is defined as the
real part of the element of the spectral density matrix corresponding to series i and series j. We
follow the approach proposed by Forni and Reichlin [1998] for measuring positive and negative
comovements. Firstly, the cospectrum is decomposed into the sum of a positive cospectrum
and a negative cospectrum, defined respectively as:

sij(θ)+ = [sij(θ) + |sij(θ)|]/2 (9)

and
sij(θ)− = [sij(θ) − |sij(θ)|]/2 (10)

with θ ∈ [−π, +π]. Secondly, a synthetic measure is computed:

S(θ) = −
∑

ij sij(θ)−
∑

ij sij(θ)+

. (11)

A value of S(θ) close to 1 at a given frequency indicates strong negative comovements, while
a value close to 0 indicates that positive comovements are important.
As shown in figure 7, where the quantity S(θ) has been plotted for the biggest samples of sales
and investments, the pattern of comovements is pretty different between output and invest-
ment series. Firms’ sales definitely comove more positively in the long run, i.e. for periods
longer than three years. In the medium and short run, however, they comove negatively, and
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the shorter the period the more negatively they comove. This is reasonable: while in the long
run every firm will be influenced by the economic conjuncture, thereby homogenizing its per-
formance to the general boom or slowdown of the economy, in the medium run and especially
in the short run the mechanism of competition and the process of selection play the major role.
In the short run, the struggle for market shares by definition causes negative comovements on
sales. The plot of S(θ) for investment series, instead, looks pretty much the opposite. Firms’
investment behavior is extremely homogeneous in the short run, while it becomes more and
more heterogeneous the longer the period. The peak of negative comovements in investment
series corresponds to a 3 year period. A tentative interpretation of this finding relies in the
monetary policy transmission mechanism, which is effective in bringing all the way down to
firms each movement in interest rates, which ultimately affects investments. In the short run,
every firm will be affected in the same way by monetary policy. On the other hand, investment
decisions in the long run are inherent to the firm itself, depending on a number of factors as the
attitude of the owner, in the case of a small firm, or the strategic decisions of the management
in the case of a big company. This is consistent with the results of the analysis of the spectral
density of the investments common component, which takes higher values in the short run.
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Figure 7: Behavior of S(θ) for the whole economy.

Plots relative to sectoral subsamples are shown in figure 8 for both output and investments:
they have been built by taking the correspondent off-diagonal elements of the spectral density
matrix, which in turn has been computed including one dynamic common factor (plots for
the three-factor case look alike). The plots for sales include the usual four sectors: utilities
(solid line), chemicals (dashed line), electronics (dotted line) and machinery (dashed-dotted
line). The plots for investments include the following 3-digit sectors, which are the most
numerous in the investments sample: food manufacturing (NAICS 311), paper manufacturing
(NAICS 322), chemicals (NAICS 325), machinery (NAICS 333), and electronics (NAICS 334).
The pattern of comovements across firms belonging to the same industry does not diverge
substantially from that of comovements across firms from all sectors, this supporting the idea
of a unique deep force in the economy as a whole acting into sectors in a qualitatively similar
manner. However note the presence of moderate negative comovements in investments also in
the short run when taking into account only firms belonging to the same sector.
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Figure 8: Behavior of S(θ) by sector.

Finally, we investigate reallocation effects and capital flows across different sectors. We have
computed the quantity S(θ) by taking into account two sectors at a time, thereby considering
the correspondent entries of the spectral density matrix. The first plot of figure 9 summarizes
reallocation effects, which we measure by means of negative comovements of the common
components of output series across sectors, while the seco shows capital flows, approximated
by negative comovements of the common part of investment series across sectors. Again,
we plot only the results obtained with one dynamic common factor. Reallocation effects are
systematically more important in the short run, i.e. from one to two years, than in the long
run. The relative importance of reallocation effects, however, varies depending on the two
sectors we are considering, and on the frequency. Interestingly, job flows from and to the
chemical industry are the more important at all frequencies, although lines tend to overlap
each other in the very short run. However, this is likely to be a spurious result simply due to
the fact that the chemical sector is the less prompt in reacting to the cycle, given the timing of
plant building and R&D in chemicals and the magnitude of related investments. Finally, flows
between the utility sector and the machinery industry are in general the most rare, especially
in the short run.
The picture on capital flows is not as clear as on job flows. The pattern of comovement of inter-
sectoral investments overall resembles the pattern of comovement of inter-firm investments, i.e.
there are no preferential ways for inter-sectoral capital flows. Indeed, lines in the correspondent
plot in figure 9 represent comovements across the five sectors considered for the intra-sector
comovements and do not allow to detect any prominent direction.

7 Conclusions and further research

This work is an application of the Generalized Dynamic Factor Model to the study of industrial
dynamics and the business cycle. In particular, we have analyzed output growth from a
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Figure 9: Behavior of S(θ) for sales (reallocation effects) and for investments (capital flows).

dynamic factor perspective, thereby aiming at disentangling that part of the phenomenon
which is due to economy-wide shocks from that component which is idiosyncratic to each
firm. We have used sales and investments quarterly series belonging to the COMPUSTAT
database and covering the last 20 years. Thanks to the characteristics of the GDFM, we
have been able to use extremely wide cross-sections, up to 660 series, and decompose them in
sectoral subsamples, still about ten times wider than those used for traditional VAR analysis.
As for the choice of the number of dynamic common factors to include in the model, con-
sistently with the preliminary graphical analysis of the eigenvalues, the Hallin-Liška criterion
indicates for all samples but the utilities sector just one dynamic common factor, explaining
from 14% to 23% of the variance (considering all frequencies) depending on the sample. How-
ever, it is necessary to include up to three and four dynamic common factors if we aim at
explaining at least 30% of the variance, for sales data and investments data respectively. A
comparative analysis on the sectoral factors and the economy-wide factor suggests that we
might ultimately deal with a unique driving force which could have no sectoral origin or just
being linked only to some of the sectors of the economy, e.g. the electronics sector.
The results of the spectral analysis of the common component at the economy level are con-
sistent with the idea that macroeconomic dynamic common factors do drive firm growth at
business cycle frequencies. At the sectoral level, however, the bulk of comovements across
firms may be at higher frequencies, as it is for the utilities and chemicals sectors.
Finally, we analyzed comovements across common components, detecting two opposite pat-
terns in sales and investments. While sales comove strongly negatively in the short run and
more positively in the long run, investments comove more negatively in the long run and
strongly positively in the short run.

The main direction for further research is the identification and interpretation of the dynamic
common factors, going beyond the distinction between common and idiosyncratic components
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and studying the building blocks of the common component itself. Note however that the
model representation that we used in this work is not fundamental. As explained in Lippi and
Reichlin [1994], nonfundamentalness poses a serious problem concerning the identification of
economically sensible impulse-response functions associated to each shock ut. Thus, before
any identification strategy is proposed the problem of nonfundamentalness has to be solved,
for example by adopting the alternative one-sided representation of the GDFM. Moreover, a
challenging issue consists in extending the model in order to allow for structural breaks with
respect to factor loadings or variance of the shocks.
In order to identify the dynamic shocks, further utilization of microdata is advisable, if not
necessary, in order to take into account more different dimensions of the firm itself in addition
to sales and investments, as R&D expenditure, inventories, and so on. At the same time, by
exploiting the factor approach for the study of the firm, we would be able to disentangle the
component of growth linked to external factors or related to the firm itself as a complex entity
from the component concerning some specific inner function or division.
Finally, a natural extension of the present work would be an application of the GDFM on
Euro-Area company data, e.g. the AMADEUS database. In this case one could investigate
cross-country differences in shocks and shock transmission, assessing the issue of how much
heterogeneity is due to asymmetric shocks and how important are country-specific shocks in
the euro area. Indeed, investigating the strength of comovements within the monetary union,
including the question of whether business cycle comovements have possibly increased over
time, would help to understand to what extent “one policy fits all”.
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Appendix A

What follows is drawn from the COMPUSTAT User’s Guide.

Sales (data2 )
This item includes:

1. Advertising companies’ net sales and commissions earned

2. Airline companies’ transportation related revenues including passenger, cargo, mail, charter, and other

3. Any revenue source expected to continue for the life of the company

4. Banks and savings and loans’ interest income and fee revenue

5. Banks’ total current operating revenue and net pretax profit or loss on securities sold or redeemed

6. Broadcasting companies’ net of agency commissions

7. Commissions

8. Equity in earnings/losses even if negative for real estate investment trusts and investors

9. Finance companies’ earned insurance premiums and interest income. Finance companies’ sales are
counted only after net losses on factored receivables purchased are deducted from Sales - Net

10. Franchise operations’ franchise and license fees and sales

11. Hospitals’ sales net of provision for contractual allowances (sometimes includes doubtful accounts)

12. Income derived from equipment rental considered part of operating revenue

13. Installment sales

14. Leasing companies’ rental or leased income

15. Life insurance and property and casualty companies’ net sales in total income

16. Management fees

17. Net sales of tobacco, oil, rubber, and liquor companies’ after deducting excise taxes

18. Oil and extractive companies’ mineral royalty income

19. Operative builders’ interest income from mortgage banking subsidiaries

20. Other operating revenue

21. Reimbursements for out of pocket expenses reported on the Income Statement

22. Rental income, if included by the company in Sales

23. Research and development companies’ equity income from research and development joint ventures
(when reported as operating income) and government grant income

24. Retail companies’ finance charge revenues

25. Retail companies’ sales of leased departments when corresponding costs are not available but are in-
cluded in expenses

26. Royalty income and/or management fees when considered as part of operating income (such as, oil
companies, extractive industries, publishing companies)

27. Security brokers’ other income

28. Shipping companies’ operating differential subsidies and income on reserve fund securities shown sepa-
rately

29. Utilities’ net sales total current operating revenue

This item excludes:

1. Broadcasting companies’ agency commissions
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2. Casinos’ promotional allowances

3. Cost of delivery expenses for paper mills

4. Discontinued operations

5. Equity in earnings of unconsolidated subsidiaries

6. Excise taxes excluded from Sales (Net)

7. Gain on sale of securities or fixed assets

8. Interest income

9. Nonoperating income

10. Other income

11. Provision for contractual allowances for hospitals

12. Rental income

Capital Expenditures (data90 )
This item includes:

1. Any items included in property, plant and equipment on the Balance Sheet

2. Expenditures for capital leases

3. Increase in funds for construction

4. Increase in Leaseback Transactions

5. Logging roads and timber

6. Reclassification of inventory to property, plant, and equipment

This item excludes:

1. Capital expenditures of discontinued operations

2. Changes in property, plant, and equipment resulting from foreign currency fluctuations when listed
separately

3. Decreases in funds for construction presented as a use of funds

4. Deposits on property, plant and equipment

5. Net assets of businesses acquired

6. Property, plant, and equipment of acquired companies

7. Property, plant and equipment for real estate investment trusts

8. Software costs (unless included in property, plant and equipment on the Balance Sheet)

This item is not available for banks.
Data reflects year-to-date figures for each quarter.

What follows is the list of data anomalies causing a firm to be dropped from the databases used for the analysis:

• Data reflects an acquisition (purchase and/or pooling)

• Data reflects an accounting change

• Reflects fresh-start accounting upon emerging from Chapter 11 bankruptcy

• Excludes discontinued operations

• Includes excise taxes

• Includes other income/excludes some operating revenue

• Includes sales of leased departments
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• Some or all data is not available because of a fiscal year change

• Some or all data is not available because the company has been in operation less than one year or
presents more than or less than 12 months of data in their statements

• Includes six months of a merger or acquisition

• Includes nine months of a merger or acquisition

• Includes 12 months of a merger or acquisition

• Excludes six months of discontinued operations

• Excludes nine months of discontinued operations

• Excludes 12 months of discontinued operations

Appendix B

To seasonally adjust our dataset we used a multiplicative method based on the ratio between
the original series yt and its centered moving average, defined as:

zt =
1

4

(

1

2
yt+2 + yt+1 + yt + yt−1 +

1

2
yt−2

)

First of all we take the ratio τt = yt/zt from which we compute the seasonal indices iq. Each
of them is computed as the average of τt using observations only for the quarter q. We then
adjust the indices so that they multiply to one; this is done by computing the seasonal factors
as the ratio of the seasonal index to the geometric mean of the indices:

sq =
iq

(i1i2i3i4)1/4

The interpretation is that the original series is sj percent higher in quarter j relative to the
adjusted series, which is finally computed as the ratio between yt and the seasonal factors.
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