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1 Introduction

A lot of information on the processes of firm growth can be obtained by studying serial
correlation in growth rates. At first glance, it allows us to directly observe the evolution of
industries by better understanding patterns of year-on-year growth at the firm-level. Such
research may have policy implications if, for example, it is desirable to prevent large firms
from experiencing cumulative growth, or if one should want to investigate the ability of small
firms to generate durable employment, i.e. jobs that have not disappeared by the following
year.

Another more subtle motivation for studying serial correlation is that it allows us to judge
between theories by comparing the hypothetical predictions with the empirically-observed
regularities. First of all, if it were observed to be significant, the existence of serial correlation
would lead us to reject Gibrats law of proportionate effect and the associated stochastic models
of industry evolution. This strand of the literature treats firm growth as a purely stochastic
phenomenon in which a firm’s size at any time is simply the product of previous growth shocks.
Following Sutton (1997), we define the size of a firm at time ¢ by z;, and represent growth by
the random variable ¢; (i.e. the ‘proportionate effect’) to obtain:

Ty — Tp—1 = & Ty—1

whence:
= (14+e)ri1 =xo(1+e1)(1+e2)...(1+¢&) (1)

According to equation (1), a firm’s size can be seen as the simple multiplication of independent
growth shocks. This simple model has become a popular benchmark for modelling industrial
evolution because, among other properties, it is able to generate the observed log-normal firm-
size distribution, and also the proposition that expected growth is independent of size does
find empirical support (roughly speaking). However, such a model would be inappropriate
if the assumption of serial independence of growth rates does not find reasonable empirical
support.

Second, the notion of a firm- or industry-specific ‘optimal size” and the related ‘adjustment
cost” hypothesis of firm growth can be rejected by looking at the characteristics of serial
growth correlation. The traditional, static representation of the firm considered it as having
an ‘optimal size’ determined in a trade-off between production technology and decreasing
returns to bureaucratization. This conceptualization of firms having an ‘optimal size’ was
then extended to the case of growing firms. According to this approach, firms have a target
size that they tend towards, but the existence of non-linear adjustment costs prohibits them
from instantly attaining their ideal size. Instead, they grow gradually by equating at the
margin the gains from having a larger size and the costs of growing. If this theory is to be
believed, we should expect to find a positive autocorrelation in growth rates as firms approach
their ‘optimal size’. However, in reality we do not always observe positive autocorrelation in
annual growth rates which leads us to doubt the validity of this theory.

Third, looking at autocorrelation statistics will allow us to judge between the different
models that attempt to explain the heavy-tailed distribution of annual firm growth rates. The
explanation offered by Bottazzi and Secchi (2006) hinges on the notion of increasing returns in
the growth process, which would lead us to expect positive autocorrelation in annual growth
rates. The explanation offered by Coad (2006a), however, considers that firms grow by the
addition of lumpy resources. It follows from the discrete and interdependent nature of these
resources that the required additions in any one year are occasionally rather large. In this
case, we would expect a negative autocorrelation of annual growth rates.



Another motivation for this study is to observe what happens to those firms that grow
extremely fast. Indeed, a robust ‘stylised fact’ that has emerged only recently is that annual
firm growth rates distributions are remarkably fat-tailed and can be approximated by the
Laplace distribution (Stanley et al. 1996, Bottazzi and Secchi 2003, Bottazzi et al. 2005,
Bottazzi et al. 2006). A considerable proportion of employment creation takes place within
just a handful of fast-growing firms. Conventional regression techniques that focus on what
happens to the ‘average firm’, and that dismiss extreme events as ‘outliers’, may thus be
inappropriate. In this study we therefore include semi-parametric regression techniques (i.e.
quantile regression) to tackle this issue.

This paper provides several novel results. In particular, we observe that autocorrelation
dynamics vary with firm size, such that whilst large firms experience positive feedback in
year-to-year growth rates, the growth of smaller firms is marked by an erratic, ‘start-and-stop’
dynamics. Indeed, small and large firms appear to operate on different ‘frequencies’. For
those small firms that experience extreme growth in one year, significant negative correlation
indicates that they are quite unlikely to repeat this performance in the following year. Larger
firms undergoing extreme growth events, however, do not experience such strong negative
autocorrelation.

Section 2 reviews the previous literature relating to this subject, and section 3 presents the
database. In section 4, we begin with some summary statistics and results using conventional
regressions, and then apply quantile regression techniques in Section 5. Section 6 concludes
with a discussion of our findings.

2 Literature review

The relevant empirical questions in this section are the sign, the magnitude, and also the
time-scale of serial correlation in the growth rates of firms.

Early empirical studies into the growth of firms measured serial correlation when growth
was measured over a period of 4 to 6 years. Positive autocorrelation of 33% was observed by
[jiri and Simon (1967) for large US firms, and a similar magnitude of 30% was reported by
Singh and Whittington (1975) for UK firms. However, much weaker autocorrelation was later
reported in comparable studies by Kumar (1985) and Dunne and Hughes (1994).

More recently, availability of better datasets has encouraged the consideration of annual
autocorrelation patterns. Indeed, persistence should be more visible when measured over
shorter time horizons. However, the results are quite mixed. Positive serial correlation has
often been observed, in studies such as those of Chesher (1979) and Geroski et al. (1997) for
UK quoted firms, Wagner (1992) for German manufacturing firms, Weiss (1998) for Austrian
farms, Bottazzi et al. (2001) for the worldwide pharmaceutical industry, and Bottazzi and
Secchi (2003) for US manufacturing. On the other hand, negative serial correlation has also
been reported — some examples are Boeri and Cramer (1992) for German firms, Goddard et
al. (2002) for quoted Japanese firms, Bottazzi et al. (2003) for Italian manufacturing, and
Bottazzi et al. (2005) for French manufacturing. Still other studies have failed to find any
significant autocorrelation in growth rates (see Almus and Nerlinger (2000) for German start-
ups, Bottazzi et al. (2002) for selected Italian manufacturing sectors, Geroski and Mazzucato
(2002) for the US automobile industry, and Lotti et al. (2003) for Italian manufacturing firms).
To put it mildly, there does not appear to be an emerging consensus.

Another subject of interest (also yielding conflicting results) is the number of relevant lags
to consider. Chesher (1979) and Bottazzi and Secchi (2003) found that only one lag was



significant, whilst Geroski et al. (1997) find significant autocorrelation at the 3rd lag (though
not for the second). Bottazzi et al. (2001) find positive autocorrelation for every year up to
and including the seventh lag, although only the first lag is statistically significant.

It is perhaps remarkable that the results of the studies reviewed above have so little in
common. It is also remarkable that previous research has been so little concerned with this
question. Indeed, instead of addressing serial correlation in any detail, often it is ‘controlled
away’ as a dirty residual, a blemish on the ‘natural’ growth rate structure. The baby is thus
thrown out with the bathwater. In our view, the lack of agreement would suggest that, if
there are any regularities in the serial correlation of firm growth, they are more complex
than the standard specification would be able to detect (i.e. that there is no ‘one-size-fits-
all” serial correlation coefficient that applies for all firms). We therefore consider how serial
correlation changes with two aspects of firms — their size, and their growth rate — and our
results, though preliminary, are nonetheless encouraging. In a nutshell, our results suggest
that the discrepancies between autocorrelation coefficients in previous studies can be explained
by the different firm-size compositions of these databases.

3 Database

This research draws upon the EAE databank collected by SESSI and provided by the French
Statistical Office (INSEE).! This database contains longitudinal data on a virtually exhaustive
panel of French firms with 20 employees or more over the period 1989-2002. We restrict our
analysis to the manufacturing sectors. Since data reporting norms changed over the period,
we maintain statistical consistency by only using the period 1996-2002 and we consider only
continuing firms over this period. Firms that entered midway through 1996 or exited midway
through 2002 have been removed. Since we want to focus on internal, ‘organic’ growth rates,
we exclude firms that have undergone any kind of modification of structure, such as merger
or acquisition. Because of limited information on restructuring activities and in contrast to
some previous studies (e.g. Bottazzi et al., 2001), we do not attempt to construct ‘super-firms’
by treating firms that merge at some stage during the period under study as if they had been
merged from the start of the period. Firms are classified according to their sector of principal
activity.? To start with we had observations for around 22000 firms per year for each year
of the period.® In the final balanced panel constructed for the period 1996-2002, we arrive,
somewhat serendipitously, at exactly 10 000 firms for each year.

Our analysis is based on precisely the same database used by Bottazzi et al.’s (2005) study
addressing the size distribution of firms, Gibrat’s law, and statistical properties of growth
rates. Readers interested in such topics are referred to this paper.

4 Analysis

4.1 Summary statistics

We begin by looking at some summary statistics of firms in our database (see Table 1). First, in
keeping with the elementary ‘stylized facts’ of industry stucture, we observe that the firm-size

!'The EAE databank has been made available to the author under the mandatory condition of censorship
of any individual information.

2The French NAF classification matches with the international NACE and ISIC classifications.

322319, 22231, 22305, 22085, 21966, 22053, and 21855 firms respectively
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Table 1: Summary statistics of the firm size distribution

year  obs. ‘ mean  std. dev. skewness kurtosis ‘ median 1% 99%
SALES (FF "000)

1996 10000 | 93622 324276 14.80 316.24 | 29660 5640 1149076
1997 10000 | 98792 364255 19.44 618.02 | 30815 5665 1179687
1998 10000 | 104734 383413 19.38 611.57 | 33117 5960 1227714
1999 10000 | 107321 381536 17.15 456.54 | 34080 6042 1318392
2000 10000 | 117369 424978 17.27 473.09 | 36617 6044 1429880
2001 10000 | 121774 445042 17.33 463.25 | 37845 6009 1548911
2002 10000 | 120637 456510 18.56 515.27 | 37091 5638 1502079
EMPLOYMENT

1996 10000 | 97.07 225.30 14.78 398.26 44 19 885
1997 10000 | 97.40 223.16 14.54 386.69 45 20 868
1998 10000 | 98.41 222.91 14.47 385.01 45 19 889
1999 10000 | 99.20 222.55 14.32 376.92 45 20 894
2000 10000 | 101.41  224.41 13.54 328.31 46 20 909
2001 10000 | 103.47  230.70 13.29 307.61 47 19 925
2002 10000 | 102.55  233.19 13.97 339.49 46 19 922
SALES GROWTH

1997 10000 | 0.0359  0.2337 0.1410 25.74 | 0.0317 -0.6858  0.7689
1998 10000 | 0.0665  0.2163 0.0311 22.33 | 0.0592 -0.6030 0.7516
1999 10000 | 0.0257  0.2155 -0.0998 23.40 | 0.0278 -0.6206  0.6695
2000 10000 | 0.0647  0.2160 0.8329 27.06 | 0.0569 -0.5604 0.7088
2001 10000 | 0.0308  0.2114 -0.5049 24.65 | 0.0351 -0.6677  0.6045
2002 10000 | -0.0252  0.2206 -0.3137 22.09 |-0.0091 -0.7216  0.5864
EMPLOYMENT GROWTH

1997 9990 | 0.0094  0.1359 0.1746 21.79 | 0.0000 -0.4199  0.4394
1998 9989 | 0.0143  0.1368 0.1673 18.54 | 0.0000 -0.4387 0.4199
1999 9989 | 0.0083  0.1464 4.3251 181.57 | 0.0000 -0.4162  0.3895
2000 9999 | 0.0225  0.1451 -0.8492 59.09 | 0.0118 -0.3947  0.4595
2001 10000 | 0.0116  0.1380 -0.1701 31.84 | 0.0000 -0.4480  0.4055
2002 10000 | -0.0147  0.1386 -0.7697 32.14 | 0.0000 -0.4788  0.3460
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distribution is right-skewed (compare the mean and the median, look also at the skewness and
kurtosis statistics). Second, whilst the distribution appears to be roughly stationary, a closer
inspection reveals subtle shifts in the sample characteristics over time, with firms on average
getting bigger but at a decreasing rate. Indeed, one caveat of working with balanced panels
is that the characteristics of the firms may change slightly as we move from the beginning to
the end of the period under consideration.

Our two measures of size and growth are sales and number of employees, which are highly
correlated with each other.* Figures 1 and 2 present the distributions of sales and employment
growth rates, where these growth rates are cleaned of size dependence, serial correlation and
heteroskedasticity effects according to the procedure described in Bottazzi et al. (2005). The
main point of interest here is that the distribution is fat-tailed and resembles the Laplace
(i.e. it appears to be approximately ‘tent-shaped’ on logarithmic axes). This testifies that
relatively large growth events in any year occur not altogether infrequently. It also indicates
that regression estimators based on the assumption of normally distributed errors (such as
OLS) may be unreliable.

4.2 Regression analysis

To begin with, we apply regression analysis to obtain point estimates for autocorrelation
coefficients, although the main results of this paper come from the quantile regressions.

In keeping with previous studies, we define our dependent variable GROWTH as the
log-difference of size:

GROWTHZ,t = lOg(SIZEz’t) - 1Og(S[ZEZ‘7t,1) (2)

for firm ¢ at time ¢, where SIZE;; is measured either in terms of sales or employees. We
then estimate the following regression equation:

K
GROWTHz,t = Qg + OéllOg(SIZE@t_l) + Z 6}6GROWTHZ¢_]€ + €it- (3)
k=1
Given that the Gibrat Law literature has identified a dependence of growth rates upon
firm size, we introduce lagged size as a control variable.

4The correlation between sales and number of employees is 0.8404 (with N=70 000), and the correlation
between sales growth and employment growth is 0.3903 (with N = 59 967; taking logs of employment we lose
firms who at some point in time had 0 employees). Both are very highly significant.



Table 2: OLS estimation of equation (3), taking
3 lags. Coefficients significant at the 5% level
appear in bold.

Table 3: MAD estimation of equation (3), tak-
ing 3 lags. Coefficients significant at the 5%
level appear in bold.

t ] b o s t | o b Ba s
SALES SALES
2000 | 0.0026 |-0.2136 -0.0995 -0.0231 2000 | 0.0066 | -0.0501 0.0018 0.0207
(SE) (0.0017) (0.0239) (0.0195) (0.0172) (SE) (0.0012) (0.0066) (0.0068) (0.0062)
2001 | -0.0055 | -0.2119 -0.0533 0.0029 2001 | -0.0028 | -0.0530 0.0180 0.0359
(SE) (0.0017) (0.0237) (0.0192) (0.0149) (SE) (0.0012) (0.0064) (0.0064) (0.0063)
2002 | 0.0016 -0.2523  -0.1294 -0.0357 2002 | 0.0025 |-0.0568 -0.0336 0.0082
(SE) (0.0018) (0.0294) (0.0238) (0.0168) (SE) (0.0014) (0.0076) (0.0076) (0.0074)
EMPL EMPL
2000 | -0.0105 | -0.1110 0.0361 0.0452 2000 | -0.0015 0.0123 0.0588 0.0476
(SE) (0.0015) (0.0286) (0.0163) (0.0172) (SE) (0.0014) (0.0076) (0.0088) (0.0088)
2001 | -0.0017 | -0.1185 0.0174 0.0430 2001 | 0.0039 0.0045 0.0109 0.0163
(SE) (0.0015) (0.0373) (0.0139) (0.0148) (SE) (0.0004) (0.0025) (0.0025) (0.0026)
2002 | -0.0055 | -0.1042 -0.0084 0.0448 2002 | -0.0004 | 0.0003 0.0007 0.0008
(SE) (0.0015) (0.0253) (0.0285) (0.0180) (SE) (0.0000) (0.0001) (0.0001) (0.0001)

To begin with, we estimate equation (3) by OLS but, since the residuals are known to
be approximately Laplace-distributed, OLS is likely to perform relatively poorly. Similarly,
many other estimators, including the Binder-Hsiao-Pesaran (2005) short-panel VAR estima-
tor, require normality of residuals and are thus inappropriate in this particular case. Instead,
we follow Bottazzi et al. (2005) and prefer the results obtained by Minimum Absolute Devia-
tion (MAD) estimation of equation (3). The MAD estimator is to be preferred on theoretical
grounds because it provides reliable results for Laplace-distributed residuals. Regression re-
sults are reported in Tables 2 and 3. When growth is measured in terms of sales, we observe
a small negative autocorrelation for the first lag, in the order of -5%. The second lag is
smaller, sometimes significant, but variable across the three years; and the third lag is small
and positive. Regarding employment growth, we observe a small yet positive and statistically
significant correlation coefficient for the average firm, for each of the first three lags.

However, it has previously been noted that one calendar year is an arbitrary period over
which to measure growth (see the discussion in Geroski, 2000). We will now look at growth rate
autocorrelation over periods of two and three years, by MAD estimation of equation (3). The
results are presented in Tables 4 and 5. When we measure growth over periods of two or three
years, we obtain quite different results. Regarding autocorrelation of sales growth, we obtain
a positive and significant coefficient when growth is measured over a three-year interval, which
contrasts with the results presented in Table 3 for annual data. In addition, the coefficients
for employment growth autocorrelation are much larger when growth is measured over two or
three years. In showing these results, we are not trying to confuse the reader by showing that
the autocorrelation coefficients vary wildly for different specifications. Rather, we are trying
to demonstrate that an autocorrelation coefficient is only ever meaningful when it refers to a
specific time period.

These results highlight some important features that should be kept in mind when in-
vestigating serial correlation. First, both the magnitude and even the sign of the observed



Table 4: MAD estimation of equation (3), with Table 5: MAD estimation of equation (3), with

sales growth measured over different periods. employment growth measured over different pe-
Coefficients significant at the 5% level appear riods. Coefficients significant at the 5% level
in bold. appear in bold.
2 aq B B2 t aq b1 Ba
00-02 98-00 96-98 00-02 98-00 96-98
0.0023 0.0043  0.0062 -0.0006 | 0.0010 0.0005
(0.0013) | (0.0055) (0.0055) (0.0000) | (0.0001)  (0.0001)
99-01 97-99 99-01 97-99
-0.0029 | 0.0306 0.0038 | 0.0135
(0.0012) | (0.0047) (0.0005) | (0.0021)
98-00 96-98 98-00 96-98
0.0062 | 0.0205 -0.0016 | 0.0522
(0.0013) | (0.0055) (0.0014) | (0.0065)
99-02 96-99 99-02 96-99
0.0024 | 0.0126 -0.0005 | 0.0006
(0.0013) | (0.0045) (0.0000) | (0.0001)

autocorrelation coefficients are sensitive to the accounting period used. We should be reluc-
tant to speak of ‘mean reversion’ in the growth process generally, for example, if we observe
negative autocorrelation in annual growth rates, because these findings may not be robust
to changes in time periods. Second, the conventional accounting period of one year is arbi-
trary and does not correspond to any meaningful duration of economic activity. Given these
important qualifications, our following analysis is nonetheless able to provide useful insights
into the growth process because it explores systematic variation in serial correlation patterns,
conditional on firm size and conditional on growth rates.

4.3 Does autocorrelation vary with firm size?

As firms grow, they undergo many fundamental changes (Greiner, 1998). Whilst smaller firms
are characteristically flexible, larger firms are more routinized, more inert and less able to
adapt. In large firms, everything takes place on a larger scale, there is less reason to fear a
‘sudden death’, and the time-scale of strategic horizons extend much further than for a smaller
counterpart. Larger firms may well have longer-term investment projects that unfold over a
period of several years, whereas smaller firms can adjust much more rapidly. It is therefore
meaningful to suppose that differences in the behavior of large firms and smaller firms will
also be manifest in their respective growth processes. It has previously been conjectured that
large and small firms operate on a different ‘frequency’ or time-scale, and respond to different
stimuli (Hannan and Freeman, 1984).> However, to my knowledge, no empirical study has

5To be precise, Hannan and Freeman write about: “the proposition that time-scales of selection processes
stretch with size. .. One way to visualize such a relationship is to consider environmental variations as composed
of a spectrum of frequencies of varying lengths - hourly, daily, weekly, annually, etc. Small organizations are
more sensitive to high-frequency variations than large organizations. For example, short-term variations in
the availability of credit may be catastrophic to small businesses but only a minor nuisance to giant firms. To
the extent that large organizations can buffer themselves against the effects of high-frequency variations, their
viability depends mainly on lower-frequency variations.” Hannan and Freeman, 1984:161
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Figure 3: Autocorrelation of annual sales growth ~ Figure 4: Autocorrelation of annual employment
growth

explicitly considered this relationship. The results in Dunne and Hughes (1994: Table VI)
and in Wagner (1992: Table II) would appear to lean in this direction, but the authors fail
to comment upon this possibility. The aim of this section is thus to compare growth rate
autocorrelation among firms of different sizes.

We sort firms into 20 equipopulated bins according to their Sales in 1996,° and calculate
their growth rate autocorrelation by MAD estimation of equation (3). The evidence presented
in Figures 3 and 4 would seem to support the hypothesis that annual growth rate autocorre-
lation varies with size, being negative, on average, for small firms and positive for larger ones.
Further evidence in support of this hypothesis will also be presented in what follows.

We should be careful how we interpret these results. It may not be meaningful to say that
large firms have positive feedback and smaller firms have negative feedback in their growth
dynamics because, as discussed previously, it is possible that the magnitudes and signs of the
autocorrelation coefficients would change if we were to measure growth over a different time
period. However, one thing that we can infer from these results is that large firms and small
firms operate on different time scales.

5 Quantile regression analysis

In this section we begin by explaining why we believe quantile regression techniques to be
a useful tool to this study. First we describe the intuition of quantile regression analysis,
and then we present the quantile regression model in a few introductory equations. We then
present the results.

5.1 An introduction to quantile regression

Standard least squares regression techniques provide summary point estimates that calculate
the average effect of the independent variables on the ‘average firm’. However, this focus on
the average may hide important features of the underlying dynamics. As Mosteller and Tukey
explain in an oft-cited passage: “What the regression curve does is give a grand summary

6The issue of ascribing growing firms to different size classes is not as easy as one could imagine. A drawback
of sorting firms in this way is that their size in the initial period could be a poor proxy for their longer-term
characteristics (this is commonly known as the problem of the ‘regression fallacy’ — see Friedman (1992) for
a discussion). In the Appendix we develop an alternative methodology for sorting firms according to size (by
taking their mean size over the 7-year period), and we obtain qualitatively similar results.



for the averages of the distributions corresponding to the set of z’s. We could go further
and compute several regression curves corresponding to the various percentage points of the
distributions and thus get a more complete picture of the set. Ordinarily this is not done, and
so regression often gives a rather incomplete picture. Just as the mean gives an incomplete
picture of a single distribution, so the regression curve gives a correspondingly incomplete
picture for a set of distributions” (Mosteller and Tukey, 1977:266). Quantile regression tech-
niques can therefore help us obtain a more complete picture of the underlying dynamics of
firm growth processes.

In our case, estimation of linear models by quantile regression may be preferable to the
usual regression methods for a number of reasons. First of all, we know that the standard
least-squares assumption of normally distributed errors does not hold for our database because
growth rates follow a heavy-tailed distribution. Whilst the optimal properties of standard re-
gression estimators are not robust to modest departures from normality, quantile regression
results are characteristically robust to outliers and heavy-tailed distributions. In fact, the
quantile regression solution By is invariant to outliers that tend to % oo (Buchinsky, 1994).
Another advantage is that, while conventional regressions focus on the mean, quantile regres-
sions are able to describe the entire conditional distribution of the dependent variable. In the
context of this studies, high growth firms are of interest in their own right, we don’t want to
dismiss them as outliers, but on the contrary we believe it would be worthwhile to study them
in detail. This can be done by calculating coefficient estimates at various quantiles of the con-
ditional distribution. Finally, a quantile regression approach avoids the restrictive assumption
that the error terms are identically distributed at all points of the conditional distribution.
Relaxing this assumption allows us to acknowledge firm heterogeneity and consider the pos-
sibility that estimated slope parameters vary at different quantiles of the conditional growth
rate distribution.

The quantile regression model, first introduced by Koenker and Bassett (1978), can be
written as:

Yit = Ty 00 + Ugit with Quanty(yi|xit) = 3,00 (4)

where y;; is the growth rate, x is a vector of regressors, /3 is the vector of parameters to be
estimated, and u is a vector of residuals. Qg(yi¢|x;;) denotes the 6" conditional quantile of v;;
given z;;. The 0" regression quantile, 0 < § < 1, solves the following problem:

1 : : RS
mm—{ Z Olyse — 33| + Z (1_9)‘yit_$it6’}:mﬁlnE;pGU&t (5)

B n| . , ‘ )
ity >, 0 ity <zl

where pg(.), which is known as the ‘check function’; is defined as:

| Ouey if gy > 0
poltoir) = { (0 — Vg if ugyr < 0 (6)
Equation (5) is then solved by linear programming methods. As one increases 6 con-
tinuously from 0 to 1, one traces the entire conditional distribution of y, conditional on x
(Buchinsky, 1998). More on quantile regression techniques can be found in the surveys by

Buchinsky (1998) and Koenker and Hallock (2001); for applications see Coad and Rao (2006)
and also the special issue of Empirical Economics (Vol. 26 (3), 2001).
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Figure 5: Regression quantiles for sales (left) and employment (right) autocorrelation coefficients,
with 95% confidence intervals.

Table 6: Quantile regression estimation of equation (7) for the 10%, 25%, 50%, 75% and 90%
quantiles, allowing for only one lag in serial correlation. Coefficients significant at the 5% level
appear in bold.

10% 25% 50% 5% 90%
Sales gr.
6t -0.1354 -0.0725 -0.0449 -0.0596 -0.1267
(t-stat) -12.35 -17.79 -15.63 -14.15 -10.49
Pseudo- R? 0.0294 0.0259 0.0189 0.0237  0.0294
Empl. gr.
o3 -0.0924 -0.0206 0.0000 0.0034 -0.0547
(t-stat) -8.45 -5.11 0.00 0.7100  -4.0000
Pseudo- R? 0.0091 0.0041 0.0007  0.0121 0.0237

5.2 Quantile regression results

The regression equation that we estimate is:

GROWTHLt = Qg + CYﬂOg(S[ZEi’t_l) -+ ﬁlGROWTHi7t_1 + Yt -+ €it- (7)

where y, are yearly dummies. The quantile regression results are presented in Table 6,
and a summary representation is provided in Figure 5. The coefficients can be interpreted
as the partial derivative of the conditional quantile of the dependent variable with respect to
particular regressors (Yasar et al., 2006). Evaluated at the median, we observe that there is
only slight negative autocorrelation in sales growth and totally insignificant autocorrelation
in employment growth. (In fact, the median quantile regression corresponds to the MAD
regression estimate.) The story does not end here, however, because the serial correlation co-
efficient estimates vary considerably across the conditional growth rate distribution. For firms
experiencing dramatic losses in sales or employment at time ¢, the sharply negative coefficient
implies that in the previous period t — 1 these firms were probably experiencing above-average
growth. Similarly, for those fastest-growing firms at time ¢, the negative coefficient estimate
indicates that these firms probably performed relatively poorly in the previous period t — 1.
It would appear then that, although in any one year there are some firms that undergo signif-

11



0.1 T T T T
0.05 - i
O - -
§
5 -0.05 | 1
=
Q
8
g o1f 1
ks
£ A
o
g 015 .
e 1 oA
2 e R
3 e Vo
-0.2 R \q\\ i
5 = o X
6 --o0- ‘,\\
025 7 e 3 e
8 —ba— B
9 A '
10 —— R
0.3 | | | | A
0 0.2 0.4 0.6 0.8 1
quantile

Figure 6: regression quantiles for sales growth autocorrelation coefficients across the 10 size groups
(group ‘1’ = smallest group)

icant growth events, these firms are unlikely to repeat this performance.” According to this
evidence, it would appear that the better analogy would probably be that of the ‘hare and tor-
toise’ rather than notions of cumulative ‘snowball effect” dynamics or even serial independence
of growth rates.

5.3 Robustness across size groups

Are the previous results robust across size? Or is the relationship displayed in Figure 5 just
the result of aggregating firms of different sizes — where smaller firms are the extreme growers
and it is these same firms that experience the negative autocorrelation? It does not appear,
for this dataset, that growth rate variance decreases dramatically with size (compare Bottazzi
et al. (2005) with Bottazzi and Secchi (2003)). Nevertheless, in this section we will investigate
possible heterogeneity across size classes by applying quantile regression analysis to different
size groups. We sort and split the firms into 10 size groups according to their initial size (sales
in 1996). We then explore the regression quantiles for each of these 10 groups. Results are
presented in Table 7 and Figures 6 (sales growth) and 7 (employment growth).

The results are reasonably consistent whether we consider sales growth or employment
growth. For the larger firms, the results support the previous finding that, on average, these
firms experience a slightly positive autocorrelation in annual growth rates. Even as we move

"One potential problem that we thought deserved investigation was the possibility of data entry errors.
Despite the INSEEs reputation for providing high-quality data, we were concerned that there could be cases
of omitted numbers in which a firm’s sales (or employees) were observed to shrink by tenfold in one year and
grow by tenfold in the next. Where we found such cases, we checked for consistency with other corresponding
variables (e.g. value added, employees etc). As it happens, the database appeared consistent under scrutiny
and we are pleased to acknowledge that our suspicions were a waste of time.
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Table 7: Quantile regression estimation of equation (7) for the 10%, 25%, 50%, 75% and 90% quantiles
for 10 size groups (1 = smallest), allowing for only one lag in serial correlation. The size groups are
sorted according to sales in 1996. Coefficients significant at the 5% level appear in bold.

| 10% 25% 50% 75% 90%
Sales gr.

1: 5 -0.1694 -0.1420 -0.0847 -0.0810 -0.1427
(t-stat) -4.74 -10.98 -8.92 -6.23 -4.17

2: 3 -0.1507 -0.1295 -0.0942 -0.1147 -0.1601
(t-stat) -4.12 -8.58 -8.21 -7.47 -4.26

3: A -0.1337 -0.0989 -0.0630 -0.0718 -0.1447
(t-stat) -4.05 -6.96 -4.62 -4.19 -3.00

4: 3 -0.0375 -0.0336 -0.0456 -0.0701 -0.1381
(t-stat) -1.06 -2.09 -3.71 -3.93 -2.95

5: B -0.1356 -0.0832 -0.0876 -0.0971 -0.2052
(t-stat) -3.79 -6.24 -9.89 -6.85 -4.62

6: 5 -0.0984 -0.0808 -0.0706 -0.1248 -0.1960
(t-stat) -2.72 -6.16 -7.15 -7.42 -5.15

7 51 -0.1366 -0.0584 -0.0574 -0.0997 -0.2218
(t-stat) -3.38 -3.86 -5.52 -7.26 -6.22

8: (1 -0.0797 -0.0292 -0.0287 -0.0795 -0.1689
(t-stat) -2.21 -2.35 -3.84 -5.59 -3.07

9: -0.0150  -0.0009  -0.0018 -0.0476 -0.1271
(t-stat) -0.41 -0.07 -0.19 -3.79 -2.95
10: 5, 0.0662  0.0786 0.0641 0.0526 -0.0055
(t-stat) 1.71 5.36 6.07 3.35 -0.13

Empl. gr.

1: 5 -0.1837 -0.1051 0.0000 -0.0390 -0.0918
(t-stat) -5.61 -6.80 0.00 -3.64 -1.90

2: 3 -0.2002 -0.1016 -0.0196 -0.0354 -0.1544
(t-stat) -5.72 -5.45 -5.88 -4.10 -3.24

3: A -0.1039 -0.0296 0.0000  -0.0247  -0.0624
(t-stat) -4.17 -2.66 0.00 -1.19 -1.19

4: 3 -0.0709  -0.0128  0.0000  0.0006  -0.0184
(t-stat) -1.92 -1.01 0.00 0.04 -0.46

5: (1 -0.1355 -0.0734 -0.0248 -0.0660 -0.1367
(t-stat) -3.67 -5.27 -6.75 -4.08 -3.13

6: 3 -0.1067 -0.0331 0.0000  -0.0002 -0.0740
(t-stat) -3.21 -2.46 0.00 -0.01 -2.44

7 5y 0.0141  0.0381 0.0000  0.0131  -0.0673
(t-stat) 0.49 2.77 0.00 0.79 -1.47

8: (1 -0.0395  0.0078  0.0063 0.0149  -0.0679
(t-stat) -1.09 0.59 2.07 1.10 -1.71

9: 5 0.0528  0.0550 0.0668 0.0848 0.0582
(t-stat) 1.29 3.95 9.77 5.37 1.51

10: 5, 0.1094 0.1361 0.1890 0.1975 0.1780
(t-stat) 2.64 11.92 33.19 18.30 7.70
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Figure 7: regression quantiles for employment growth autocorrelation coefficients across the 10 size
groups (group ‘1’ = smallest group)

to the extremes of the conditional distribution, the autocorrelation coefficient does not change
too dramatically. This may be because diversification has a stabilizing effect on growth rates.
Smaller firms, however, typically experience negative correlation which is moderate near the
median but quite pronounced towards the extreme quantiles. This is in line with previous
observations on “the prevalence of interruptions to growth” for small firms (Garnsey and
Heffernan (2005: 675)). For these firms, prolonged periods of high growth are quite unusual.

5.4 Robustness to temporal disaggregation

Up until now, we have pooled together the observations from all of the years of the panel
database. However, it might not be a valid methodology to pool together observations from
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Figure 8: Regression quantiles for sales (left) and employment (right) autocorrelation coefficients for
t=1999, with 95% confidence intervals.
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Figure 9: Regression quantiles for sales (left) and employment (right) autocorrelation coefficients for
t=2002, with 95% confidence intervals.

different years if the autocorrelation structure varies with time (e.g. over the business cycle).
We now check how our results stand up to temporal disaggregation by estimating the quantile
regressions for individual years. In a sense, we are moving from a panel dataset to five yearly
cross-sections. However, our findings appear to be robust to temporal disaggregation. The
quantile regression plots for the years 1999 and 2002 (for sales and employment growth) are
shown in Figures 8 and 9.

5.5 Robustness to sectoral disaggregation

Rigourous empirical methodology requires us to also ensure that these results are not due
to aggregation over heterogeneous industries. In this section, we report quantile regression
results for 20 2-digit industries. Summary information on these sectors is provided in Table 8
and the results are presented in Table 9.

Generally speaking, the properties that were visible at the aggregate level are also visible
for 2-digit industries. Firms near the median experience only moderate autocorrelation (either
positive or negative), whereas firms at the extreme quantiles of the conditional growth rate
distribution experience much stronger forces of negative autocorrelation. Although sectoral
disaggregation does not qualitatively change our key findings, there are a few sectors in which
the results are quite ‘messy’. This may be because we aggregate over firms from the same in-
dustry but of different sizes. One interpretation would be that, in determining autocorrelation
in growth processes, the most relevant dimension is size and conditional growth rate, rather
than sector of activity.
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Table 9: Quantile regression estimation of equation (7) for the 10%, 25%, 50%, 75% and 90% quantiles
for 20 2-digit sectors (17-36), allowing for only one lag in serial correlation. Coefficients significant
at the 5% level appear in bold.

10% 25% 50% 75% 90% [ 10% 25% 50% 75% 90%
Sales gr. Empl. gr.

17: 51 0.0588 0.0221 0.0003 -0.0094 -0.0303 -0.0217 0.0128 0.0003 0.0294 -0.0191
(t-stat) 2.24 1.69 0.02 -0.57 -0.66 -0.50 0.92 1.33 1.85 -0.45

18: (1 -0.1438 -0.0392 -0.0284 -0.05 -0.1170 | -0.0907  -0.0312 0.0000 -0.0699  -0.1097
(t-stat) -3.30 -2.56 -2.21 -2.38 -2.10 -2.13 -1.86 0.00 -4.52 -1.82

19: 51 -0.1227  -0.0296 -0.0032 -0.0967 -0.1718 | -0.2684 -0.1256 -0.0379 -0.0727  -0.1550
(t-stat) -2.56 -1.42 -0.22 -4.95 -2.08 -3.08 -5.19 -2.98 -2.00 -1.67

20: 41 -0.0458 -0.0188 0.0144 0.0383 -0.1454 | -0.1578  -0.0531 -0.0019 -0.0319 -0.0896
(t-stat) -1.09 -0.98 0.68 1.63 -1.86 -2.92 -1.80 -0.79 -0.88 -1.12

21: B -0.2197 -0.0961 -0.0563 -0.1180 -0.2096 | -0.1027 -0.0304 -0.0001 0.0018 -0.0531
(t-stat) -5.86 -4.39 -4.01 -5.80 -3.46 -1.80 -1.74 -1.29 0.12 -0.82

22: B -0.1691 -0.0574 -0.0194 -0.0374 -0.0903 | -0.1506 -0.0753 0.0000 -0.0507 -0.1484
(t-stat) -4.12 -4.95 -2.85 -3.57 -2.48 -2.84 -5.32 0.00 -3.20 -3.72

23: £ 0.0961 0.1317 0.1883 0.1523 0.1098 -0.0899 0.0683 0.1788 0.1926 0.0678
(t-stat) 0.20 1.80 9.09 5.16 0.12 -0.22 0.80 2.52 1.98 0.27

24: 3 -0.0667 -0.0155 -0.0100 -0.0272 -0.0558 0.0634 0.0550 0.0587 0.0818 0.0068
(t-stat) -1.46 -1.01 -0.84 -1.48 -1.14 1.34 3.40 7.66 4.79 0.10

25: (1 -0.1346 -0.0582 -0.0246 -0.0440 -0.1126 | -0.1009  -0.0262 0.0000 0.0091 -0.0361
(t-stat) -2.50 -3.93 -2.34 -2.87 -3.05 -2.06 -1.50 0.00 0.46 -0.82

26: (1 -0.0685  -0.3990 -0.0239 -0.0686 -0.1429 | -0.1252 -0.0216 -0.0003  -0.0689 -0.1483
(t-stat) -1.30 -2.31 -2.20 -3.31 -2.60 -1.77 -1.13 -0.56 -3.34 -2.45

27: £ -0.1552 -0.1052  -0.0189 0.0094 0.0096 -0.0744 0.0194 0.0115 0.0455 0.0176
(t-stat) -2.42 -5.02 -0.79 0.29 0.19 -3.05 2.02 3.24 3.58 0.60

28: 51 -0.1801 -0.1219 -0.1003 -0.1153 -0.1748 | -0.1262 -0.0485 -0.0005 -0.0353 -0.1284
(t-stat) -7.71 -13.85 -14.57 -12.46 -7.07 -6.97 -5.73 -6.37 -3.14 -4.27

29: 51 -0.2043 -0.1438 -0.1062 -0.1354 -0.1874 | -0.0909  -0.0084 0.0006 -0.0028 -0.0758
(t-stat) -4.91 -8.98 -12.20 -9.37 -4.34 -2.91 -0.77 2.21 -0.18 -1.87

30: 51 0.0074 -0.0959 0.0194 0.0593 -0.1050 -0.3232 -0.0403 0.1071 0.1416 0.2377
(t-stat) 0.30 -0.70 0.14 0.33 -0.31 -0.86 -0.20 1.49 1.23 0.22

31: £ -0.0551  -0.0749 -0.0437 -0.0602 -0.1216 | -0.0490 0.0227 0.0172 0.0735 0.1041
(t-stat) -1.00 -2.69 -2.91 -2.39 -2.11 -0.87 1.09 1.26 3.07 1.57

32: 31 -0.1094  -0.0904 -0.0610 -0.0228 -0.0538 -0.0106 -0.0138 0.0384 0.0692 0.1172
(t-stat) -1.31 -2.42 -1.88 -0.93 -0.91 -0.14 -0.62 1.66 1.87 1.16

33: 1 -0.1573 -0.1179 -0.0763 -0.0779  -0.1457 | -0.1160 0.0053 0.0000 0.0895 0.0967
(t-stat) -2.60 -5.47 -5.33 -2.63 -1.87 -2.03 0.22 0.00 3.45 1.37

34: 51 -0.0696  -0.0472  -0.0193 -0.0386 -0.0438 | -0.1472  -0.0298 0.0245 0.0592 0.0715
(t-stat) -1.09 -1.98 -0.92 -1.83 -0.51 -2.51 -1.12 1.09 1.75 0.83

35: 51 -0.2325 -0.1190 -0.1097 -0.1439 -0.2830 -0.0719 0.0036 0.0443 0.0228 -0.1280
(t-stat) -2.52 -3.53 -4.51 -3.74 -1.90 -0.59 0.15 2.09 0.61 -0.89

36: 51 0.0052 -0.0304 -0.0172 -0.0588 -0.1527 0.0113 0.0087 0.0039 -0.0482  -0.1278
(t-stat) 0.17 -2.51 -1.53 -3.25 -2.60 0.32 0.61 1.40 -1.87 -2.48
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6 Summary and Conclusions

We began by exploring serial correlation in annual growth rates using standard regression
techniques, and detected a statistically significant influence of past growth even for the third
lag. When sales growth was considered, the coefficient on the first lag was typically around
5%, whereas for employment growth it was generally positive although smaller in magnitude.
We also found evidence that growth rate autocorrelation varied with firm size, consistent with
the hypothesis that small firms operate on a different time scale (i.e. a shorter ‘frequency’)
than larger ones. In the case of annual growth rates, we obtained negative coefficients for
groups of smaller firms and positive ones for larger firms. This systematic variation of au-
tocorrelation coefficients across firm size helps explain why previous studies using different
databases (reviewed in Section 2) found such inconclusive results.

An important recent discovery in the industrial organization literature is that firm growth
rates are fat-tailed and follow closely the Laplace density. This means that we can expect that,
in any given year, a significant proportion of turbulence in market share or employment is due
to just a handful of fast-growing firms. Although small in number, these firms are of special
interest to economists. What are the characteristics of these firms? Standard regression
techniques, that focus on the ‘average firm’, are of limited use in this case. Instead, we
apply quantile regression techniques that explicitly recognise heterogeneity between firms, and
present results from various quantiles of the conditional growth rates distribution. Although we
find a small negative annual autocorrelation at the aggregate level, there exist more powerful
autoregressive forces for those firms that matter the most - the extreme-growth firms. These
firms may grow a lot in one period, but it is unlikely that the spurt will last long. We
also observed an interaction between the characteristics of the extreme-growth firms and size.
Whilst smaller fast-growth firms are much more prone to dramatic negative autocorrelation,
larger firms seem to have much smoother growth dynamics.

Our results can be related to several well-known theories in the industrial organization
literature. The models of passive and active learning in the evolution of industries (as proposed
by Jovanovic (1982) and Ericson and Pakes (1995), respectively) appear to be supported by
our findings, because the growth paths of small firms are quite erratic and noisy whereas those
of larger firms are relatively smoothed. Our results also have implications for Gibrat’s Law.
On the basis of our findings, this ‘law’” would be rejected because, in many cases, growth rates
in consecutive years are not independent.

It is, of course, far too early to speak of the possibility of ‘stylized facts’, but since our
findings are reasonably robust and also theoretically meaningful, we anticipate that future
research will corroborate our results. We also consider that more should be done in way of in-
vestigation of the characteristics of extreme high-growth firms (see also Coad and Rao, 2006).
These firms are just a small proportion in the number of firms but account for a great propor-
tion of employment growth or market share turbulence. Conventional regression techniques
are of limited use in this respect. Quantile regression techniques are far more appropriate,
although perhaps future work on high-growth firms should also consider an approach by case
studies.
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Appendix

In this Appendix we provide further evidence of the robustness of our findings. In particu-
lar, we check the robustness of our findings by using an alternative technique for sorting firms
according to size.

Up until now, we have sorted the firms according to their size in the first time period of our
panel dataset, i.e. 1996. However, this could give misleading results. If we sort firms according
to size in any one year, there is a danger that the size of some firms in that particular year will
not be representative of their size in the other years. For example, suppose a firm experiences
a temporary negative shock to its size in one year, but next year it returns to it’s ‘usual’ size.
Such a firm will thus be erroneously classified as a ‘fast-growing small firm’ if it is put into a
size class during the year that it is small. Conversely, the year before it would perhaps have
been classified as a ‘fast-shrinking medium-sized firm’. If we classify firms according to their
size in any one particular year (such as the initial year), we may have a tendency to exaggerate
the growth of small firms and underestimate the growth of larger firms. There may also be
implications for the relationship between autocorrelation and firm size.

This statistical problem of sorting growing entities according to size is commonly known
as the ‘regression fallacy’. In his 1992 discussion of this issue, Milton Friedman suggests that
firms should be allocated to size classes according to their average size for the whole period of
analysis, rather than attributing them to a size class according to their size in any one year.
Therefore, in this Appendix, we classify firms according to their mean size over the whole
period (more precisely, the mean number of employees 1996-2002).

We begin by examining whether autocorrelation coefficients do indeed vary with firm size
according to this new size-classification scheme. The evidence is shown in Figures 10 and 11.
Again, we see that autocorrelation does vary with firm size.

We also repeat the quantile regression analysis by sorting firms according to their mean size
rather than initial size. The plots are shown in Figures 12 and 13, and results are reported
in Table 10. We conclude that our findings are qualitatively similar to those obtained by
classifying firms according to their initial size.

. . . . . . . . . . . . .
34 36 38 4 42 4.4 46 48 5 34 36 38 4 42 4.4 46 48 5
log(size) log(size)

Figure 10: Autocorrelation of annual sales Figure 11: Autocorrelation of annual employ-
growth ment growth
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Figure 12: regression quantiles for sales growth autocorrelation coefficients across the 10 size groups
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Figure 13: regression quantiles for employment growth autocorrelation coefficients across the 10 size
groups (group ‘1’ = smallest group)
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Table 10: Quantile regression estimation of equation (7) for the 10%, 25%, 50%, 75% and 90%
quantiles for 10 size groups (1 = smallest), allowing for only one lag in serial correlation. The size
groups are sorted according to their mean size (employees) 1996-2002. Coefficients significant at the

5% level appear in bold.

‘ 10% 25% 50% 75% 90%
Sales gr.

1: 5 -0.1984 -0.1380 -0.1084 -0.0980 -0.1775
(t-stat) -5.65 -8.57 -10.94 -7.08 -6.36

2: 3 -0.2706 -0.1566 -0.0974 -0.1324 -0.2147
(t-stat) -6.63 -12.98 -10.28 -9.54 -5.22

3: 3} -0.2229 -0.1426 -0.1022 -0.1236 -0.2071
(t-stat) -5.36 -12.11 -13.68 -8.61 -4.99

4: 5, -0.1742 -0.1144 -0.0708 -0.1049 -0.1928
(t-stat) -6.25 -10.33 -8.63 -6.62 -4.71

5: (1 -0.0650 -0.0239 -0.0482 -0.0785 -0.1626
(t-stat) -2.01 -2.04 -4.69 -5.88 -4.23

6: 3 -0.0966 -0.0497 -0.0261 -0.0345 -0.1153
(t-stat) -3.36 -3.59 -2.45 -2.44 -3.38

7 B -0.1440 -0.0701 -0.0447 -0.0469 -0.1197
(t-stat) -4.24 -4.98 -5.70 -3.47 -3.28

8: 3} -0.0285  0.0057 0.0083  -0.0132  -0.0503
(t-stat) -0.88 0.39 0.83 -0.90 -1.13

9: 3 -0.1103 -0.0291 0.0255 0.0194  -0.0400
(t-stat) -2.92 -2.01 2.53 1.43 -1.04

10: 5, 0.0255  0.0920 0.0862 0.0709 0.0779
(t-stat) 0.64 6.93 7.96 3.81 2.11

Empl. gr

1: 5 -0.1414 -0.0436 0.0000 -0.0645 -0.1182
(t-stat) -3.36 -10.28 0.00 -10.03 -3.47

2: 3} -0.2482 -0.1412 0.0000 -0.0973 -0.2019
(t-stat) -6.96 -10.68 0.00 -7.72 -5.14

3: 3 -0.2384 -0.1528 -0.0820 -0.1584 -0.3008
(t-stat) -5.60 -9.69 -13.70 -9.85 -6.23

4: 5, -0.1135 -0.0673 0.0000 -0.0855 -0.1966
(t-stat) -4.19 -5.28 0.00 -4.43 -3.97

5: 3 -0.0536  -0.0172  0.0000 -0.0603 -0.1660
(t-stat) -1.54 -1.90 0.00 -6.92 -3.98

6: 5 -0.0663 -0.0051  0.0000 0.0032  -0.1066
(t-stat) -2.52 -1.04 0.00 0.26 -2.81

7 5y -0.0924 0.0157 0.0137 0.0514 0.0154
(t-stat) -2.69 2.59 2.97 3.75 0.40

8: (1 0.0410  0.0645 0.0755 0.1165 0.0944
(t-stat) 1.60 4.86 9.79 8.41 2.63

9: 0.0450  0.0449 0.0932 0.1700 0.1811
(t-stat) 1.37 3.48 13.01 11.6 4.95

10: 3, 0.0888 0.1194 0.1770 0.1996 0.1943
(t-stat) 1.82 9.60 32.09 18.93 6.92
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