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1 Introduction

The evolution of technologies and industries clearly occurs in “spaces”, both geographical

spaces and more metaphorical ones wherein “distances” and boundaries are shaped by

institutions, networks of interaction and associated knowledge spillovers. However, while

a lot of efforts has gone into the formalization of the processes of technological and

economic evolution in general (for some overview of the progress since the seminal Nelson

and Winter (1982), cf. Dosi and Winter (2002)), it is fair to say that much less progress

has been made in the formal representation of the spatial nesting of such evolutionary

processes and even less so in the elaboration of models yielding empirically testable

formulations.1 This is the central concern of this work.

The basic skeleton of the class of models we present is made of a simple economy

composed of a finite number of distinct locations (i.e. production sites) and populated

by a finite number of firms. New firms enter the economy, select a site in which to place

their activities. Conversely incumbent firms from every location face some probability

of leaving them (i.e. dying). New firms are randomly selected from a notionally infi-

nite number of potential entrants and select their production sites depending on their

expected benefits (most likely including expected profits). In that, note that well in

tune with evolutionary interpretations of economic change, “expectations” do not map

in any precise sense into what the economic environment will eventually deliver (hence,

in general “rational expectations” are deemed as just a particular case out of many pos-

sible descriptions of investment processes). We assume that the benefits “perceived” by

entrants are made up of a common component, identical across the would be population,

and an individual term, which captures idiosyncratic (actual or expected) returns from

locating in one particular site.

Since we are interested in investigating the effect of different degrees of “agglomer-

1Discussions of the inroads made by evolutionary ideas in the field of economic geography are in
Boschma and Frenken (2006) and Martin and Sunley (2006).
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ation economies” on the ultimate distributional patters, we assume that the common

term in firm preferences is composed of two elements: the intrinsic “geographic attrac-

tiveness” of a location and an “agglomeration” benefit. The latter is in general different

for different locations and is assumed to be proportional to the number of firms already

located there.

We describe the entry and exit process of firms and the ensuing evolution of the

geographic distribution of economic activities as a finite Markov chain. This stochastic

model does retain the basic evolutionary methodological prescription that sound ac-

counts of economic phenomena - in this case evolving industrial geographies - have to be

grounded into explicit process stories involving micro behaviors unfolding over time and

bearing macro-level effects. Micro heterogeneity here fully appears even if black-boxed

into the stochastic structure of the entry process, accounting for those trial-and-error

behaviors and, together, those degrees of bounded rationality which are likely to under-

lie micro processes of exploration and adaptation. At the same time, the presence of

agglomeration benefits accounts for dynamic increasing returns often associated with,

e.g. learning-by-doing and by-using, network effects, user-producer relations and var-

ious forms of ”Marshallian” externalities which characterize evolutionary dynamics in

the socio-economic domain. In turn, such increasing returns are likely to be, at least

partly, local, also in a strict geographical sense.

The foregoing ingredients suffice to account also for the interplay between chance

and necessity involved in industrial evolution and its geographical unfolding. Indeed,

the spatial distribution of economic activities is likely to depend on the intrinsic features

of space itself – features that look very much like “endowments” or at least “slow” vari-

ables, like many institutional set-ups which change on a time scale much longer than

the scale over which micro location decisions occur. Together, there are agglomeration

forces which emerge, so to speak, along the process of agglomeration itself, with earlier

locational events influencing the attractiveness of the site for future investors. In turn,
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such agglomeration forces might be location-specific and independent of individual sec-

tors and technologies, or, conversely, sector-specific, applying across different locations

within the same sector of activity.

The formal apparatus presented in this work is meant precisely to offer an account

of the different agglomeration forces at work and together to allow the derivation of

empirically testable formulations.

As compared to the incumbent literature, such a “reduced form” evolutionary model

does share with New Economic Geography (NEG) (cf. Krugman (1991) and Fujita et al.

(1999), among others) the interpretation of the observed spatial agglomeration patterns

as phenomena of self-organization, driven by externalities and increasing returns of some

kind. On the other hand, the two stream of interpretations tend to depart with respect

to the micro-foundations (with NEG much more committed to rational decision-makers)

and also with respect to the style of analysis whereby NEG searches whenever possible

for closed form equilibrium solutions and most often builds “explanations” upon com-

parisons among equilibria themselves, whereas models like those presented below try to

explicitly account for whatever dynamics and ask where it may lead to. Correspond-

ingly, NEG models straightforwardly assume agglomeration phenomena as equilibrium

outcomes of location decisions in monopolistically competitive markets while no such

commitment is necessarily made by models closer to an evolutionary inspiration. In

fact, precisely because of such an agnosticism, evolutionary-inspired models can be use-

fully applied also to dynamic processes such as those concerning the development of

technological externalities or the diffusion of knowledge within and across geographical

sites which often do not involve any market and, even less so, any equilibrium notion.

More precisely, the models in this work find their roots into the notion of local

dynamic increasing returns explored in Arthur (1990, 1994), Dosi et al. (1994) and Dosi

and Kaniovski (1994).2 Using the formal tool of generalized urn schemes, these models

2In a similar spirit see also Brenner (2003).
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begin to offer a simple spatial characterization of adaptive processes of growth accounting

for the presence of positive, and possibly also negative, feedbacks over ever-growing

populations of firms or customers. However, a significant drawback of generalized urn

schemes rests in their limited interpretative ability over small population and short time

horizons. In such a framework, the initial conditions of the system (i.e. the initial number

of firms present in each location), together with the sequences of stochastic realizations,

characterizes the asymptotic geographical distribution of firms. The strength of such

representation is precisely its ability to account for the “power of history” to shape

long-term outcomes under dynamic increasing returns of most kinds. The symmetric

drawback is that such an approach hardly applies to circumstances wherein “choices”

are somewhat reversible over time, while - together - one may easily account for “small”

populations of agents. The representation of such alternative set-up involves repeated

and reversible decisions by finite populations of agents in presence of “local” dynamic

increasing returns. This is the focus of this study, formally grounded on the analytical

results presented in Bottazzi and Secchi (2007).

In the following we adopt this second approach and we consider, instead of an ir-

reversible birth dynamics, a Markov process with finite number of firms/locations and

reversability of locational choices. In this framework we are able to derive the equi-

librium distribution of firms across geographical locations and to obtain empirically

testable models. Next we show that, by varying the relative strength of geographical

attractiveness and of agglomeration positive feedbacks, the model is able to reproduce

highly different degrees of spatial concentration and different temporal dynamics. In

particular, when the agglomeration benefits are absent or very low, different locations

attract, on average, a share of the overall population of firms that is proportional to

their intrinsic attractiveness (we shall define more precisely these notions below). These

shares, however, tend to fluctuate in time with a relatively high volatility. Conversely,

when the strength of the agglomeration benefits increases, the system moves toward
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more “polarized” distributional patterns in which a small fraction of location contains

almost the entire economy. At the same time, the introduction of agglomeration ben-

efits and the ensuing polarization of spatial distribution entails a major indeterminacy

(to some extent alike that shown in Arthur (1994)): locations which absorb the largest

part of the economy are dynamically selected and history plays a fundamental role in

it. However, the prominence of particular sites is not permanent. Rather, they repre-

sent sort of “metastable” states: over the long term, new locations do emerge displacing

previous ones as leading attractive poles.

The remainder of the paper is organized as follows. Section 2 presents a stochastic

model of multi-site location in which we disentangle the role played by the “intrinsic

geographic attractiveness” of each site from the one due to pure agglomeration forces.

Section 3 presents some small economies examples, while Section 4 studies the asymptotic

behavior of our model when only entry dynamics are retained. Section 5 explores the

case where all locations is characterized by the same (industry-specific) agglomeration

coefficient. Finally, Section 6 discusses possible applications of the model to empirical

analyses.

2 A Stochastic Process of Multi-Site Location

Assume that the economy is composed of L ≥ 2 distinct locations, labeled by integers

between 1 and L, which can be thought as “production sites” or “industrial districts”

or “regions”. The economy is populated by N firms. Each firm locates its productive

activities in a single location. Time is discrete and at each time step t ∈ {1, 2, . . . } new

firms can enter the economy and incumbents can leave it. Each firm, when entering

the economy, chooses to locate its production activities in the site which is expected to

provide the highest benefits (which economists generally take to be the highest stream

of future profits). Firms are boundedly rational and their expectations build on two
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terms: a common factor and an idiosyncratic component. The common factor affects

the decision of any possible entrant and is meant to represent the common “perceived”

advantage of locating activities in a certain site. The idiosyncratic component captures

the individual preferences of that particular firm. Firms are heterogenous with respect

to their revealed preferences. This heterogeneity can be due to asymmetric information

or “cognitive biases”, but even more plausibly, be the effect of the diverse requirements

that drive the choices of different firms inside an industry.

Since for the time being we are interested only in deriving the aggregate dynamics

of the system, we simply model firm heterogeneity through a random effect. Formally,

we assume the following

Assumption 1. Let F be the population of potential entrants and let cl ≤ 0, l ∈

{1, . . . , L} stand for the common benefits (to all firms) from locating an economic activity

in l.

When a new firm enters the economy, it is selected at random from F and chooses

location l which satisfies

l = arg max
j

{cj + ej |j ∈ {1, . . . , L}}

where (e1, . . . , eL) represents the individual preferences of the firm.3

Essentially, such an assumption postulates that the entry process is defined by the

probability distribution F (e) of individual preferences e = (e1, . . . , eL) on the population

of potential entrants F . The probability pl that the next entrant chooses location l is

indeed4

pl = Prob {cl + el ≥ cj + ej∀j 6= l|c, F (e)} .

3For sake of simplicity we are neglecting here the fact that would-be entrants might have different
sizes and thus also the distinction between would-be returns per unit of investment and returns per firm.
In our framework it is straightforward to consider the cl as returns to firms.

4Notice that this is exactly the same entry process assumed in Arthur (1990).
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The dynamical process implied by this assumption is undetermined until one provides

a precise definition of the distribution F . This is generally a very difficult task as it

requires to model the (private and unexpressed) preferences of the whole population of

possible entrants.

However, Bottazzi and Secchi (2007) show that it is possible to significantly simplify

this problem without restricting too much the generality of the approach. Indeed, by

introducing a minimal degree of structure in the decision process or, alternatively, by as-

suming a simple but plausible structure of the economy, it suffices to show that the entry

decision is, in probability, only driven by the common components c of the variables (e.g.

profits) which enter the decision process. In particular one may either interpret the entry

decision as the outcome of a “discriminal process” (Thurstone, 1927) between different

choices of location or, alternatively, one may assume that each location is composed by

a large number of sub-locations characterized by the same common expected profit cl

(but allowing different firms to posses different preferences over different sub-locations).

In these circumstances, it can be proved that the probability that a given location l is

chosen is

pl =
cl

∑

j cj
. (2.1)

Notice that even if the two different interpretations of the “choice” process start from

highly different premises in terms of the information processing abilities of the agents

and, together, of their abilities to specify their “fine-grained” preferences they do sim-

plify our dynamical process in exactly the same way, thus adding plausibility to the

assumptions underling equation (2.1).

In order to completely specify the model, at this point one has to provide the analytic

expression for the “common” attractiveness of a location (that is, common to all would-be

entrants). To recall, our aim is to describe the spatial distribution of economic activities
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under different agglomeration (or anti-agglomeration) forces. We start by assuming that

the locational choice of entrant firms is affected by the actual distribution of firms that

they observe when they assess their would-be location. For sake of tractability, we will

try to capture this effect with a simple linear relationship, assuming the following

Assumption 2. The common expected profit cl from locating a new activity in location

l at time t is given by

cl = al + blnl

where nl represents the number of firms present in location l at the time of choice and

al ≥ 0, bl ≥ 0.

Since this is the core relation of the family of models which we are going to discuss

in the following, let us spell out at some detail its empirical grounds.

Each location l ∈ {1, . . . , L} is characterized by an “intrinsic attractiveness” param-

eter al and by an “agglomeration” parameter bl.

The coefficient al captures the perceived gains that a firm would obtain by choosing

to locate its activity in l, net of any agglomeration effects. In tune with the quite “agnos-

tic” nature of our modeling skeleton, on purpose, we mean such a coefficient to capture

an ensemble of phenomena, identified in the literature as catalyzers and “exogenous”

drivers of agglomeration as distinct from the drivers which are inbuilt in the location

processes themselves. Hence, they include sheer geographical aspects - e.g. a harbor

or a river - and also infrastructural factors which are indeed man-made but change at

time-scales plausibly slower than those characterizing the entry/exit flows addressed in

our model. The intrinsic attractiveness parameter covers also the “enabling conditions”

and “catalyzer” which Bresnahan et al. (2001) identify at the root of the “novel silicon

valleys” (e.g. locally available skilled labor and knowledge spillovers from thereby uni-
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versities which - as Adams (2002) shows - are geographically quite sticky).5 If location

decisions are in some way related to localized knowledge spillovers, al captures indeed

their location-specific pull. Finally, suppose that the industry described by the foregoing

relation is “small” as compared to the whole economy of any particular location. Then,

al may also naturally accounts for pecuniary and non-pecuniary externalities - ranging

from market availability to relationships with suppliers and customers - which are “en-

dogenous” to the location as a whole, but exogenous to any particular (“small”) sector

of activity.

Conversely, the parameter bl measures the strength of agglomeration economies in

location l: it is the amount by which the advantages obtained by locating in l increases

as a function of the number of firms already located there. The larger is the value

of bl the higher is the incentive for firms to locate as the number of firms that have

already settled there increases. In a way, this is “agglomeration in action”, with relative

advantages of particular locations straightforwardly stemming from the very history of

location decisions. Again, multiple (possibly complementary) dynamics are captured by

positive bl. Local network externalities are an obvious example, but equally important

processes include the development of “social networks” (Sorenson, 2005), “horizontal”

and “vertical” development of knowledge clusters (Maskell and Malmberg, 2007), “face-

to-face” coordination and learning dynamics (Storper and Venables, 2004) and locally

nested processes of “corporate filiation” along the life cycles of industries (Klepper, 2001).

Needless to say, the dynamic-increasing-returns story which our modeling skeleton is

meant to capture is consistent with the well known “Silicon Valley” example but also

with the dynamics of e.g. Emilia Romagna districts in Italy (Brusco, 1982) or the german

production clusters in Baden-Württemberg (Herrigel, 1996).

Finally, notice that in our baseline formulation we assume linear increasing returns

to the number of location events at any one site. As a first approximation, the assump-

5On the localized dimension of knowledge spillovers see also Jaffe et al. (1993), among others.
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tion seems to us as the most unbiased benchmark. However, the model, appropriately

modified, can easily account for non linearities in agglomeration economies and also

“anti-agglomeration” factors above certain thresholds (due e.g. to congestion phenom-

ena or increasing rents).

Concerning the exit of incumbent firms from the economy, we also take the simplest

possible approach and consider the

Assumption 3. All firms are randomly chosen, with equal probability, to exit the econ-

omy.

Moreover, in the following we assume that entry rates are positive, constant and

equal to exit rates. The idea behind this assumption comes from the observation that

the share of firms belonging to a given sector which enter and leave a given location in a

relatively short period of time (e.g. a year) is typically much larger than the net growth

of industry size, so that the time-scale at which spatial reallocations occur is generally

quite short.6 Broadly in line with this piece of evidence, we keep constant the number

of locations L and the number of firms N present in the industry.

Analysis of the model

In our model at each time step, a firm leaves the economy according to Assumption 3

and, after such an exit, a single firm is allowed to enter the economy according to

Assumption 1. Notice that the “entrant” may well “choose” (or in any case happen to

pop up at) a location different from the one where “death” occurred. Thus, the process

is designed to capture both the genuine formation of new firms and the reversibility of

locational decisions of incumbents which might close a production unit in one site just

to open up another one elsewhere. Let us summarize assumptions and results discussed

above in the following

6For a detailed comparative cross-country overview cf. Bartelsman et al. (2005).
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Proposition 2.1. At the beginning of each time period t a firm is chosen at random

among the N incumbents to exit the economy according to Assumption 3. Let m ∈

{1, . . . , L} be the location affected by this exit. After exit takes place, a new firm enters

the economy. The probability pl to choose location l conditional on the exit occurred in

m, according to Assumption 2 and (2.1), is defined as

pl =
al + bl (nl,t−1 − δl,m)

A + b · n − bm

, (2.2)

where A =
∑L

l=1 al, b · n =
∑L

l=1 bl nl and the Kronecker delta δx,y is 1 if x = y and 0

otherwise.

In (2.2) nl,t−1 is the number of firms present in location l at the previous time step

t − 1 while Kronecker delta δl,m in (2.2) implies that it is the number of firms present

is location l after exit took place that affects the probability of the entering firm to

be located in l. The assumption of non-negative bl coefficients implies non-decreasing

dynamic returns and, whenever bl > 0, linear returns to agglomeration.

If nl,t is the number of firms present in location l at time t (with
∑L

l=1 nl,t = N, ∀t)

the occupancy vector nt = (n1,t, ..., nL,t) completely defines the state of the economy at

this time. Due to the stochastic nature of the dynamics (as implied by Proposition 2.1),

the only possible description of the evolution of the economy is in terms of probability

of observing, at a given point in time, one particular occupancy vector among the many

possible ones.

Let a = (a1, . . . , aL) and b = (b1, . . . , bL) be the L-tuples containing the parameters

for intrinsic attractiveness and for the agglomeration strength of locations {1, . . . , L}.

The dynamics of the system described in Proposition 2.1 is equivalent (cfr. Bottazzi

and Secchi (2007), Section 3) to a finite Markov chain with state space

SN,L = {n = (n1, . . . , nL)|nl ≥ 0,

L
∑

l=1

nl = N} .
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If pt(n;a, b) is the probability that the economy is in the state n at time t, the probability

that the economy is in state n′ at time t + 1 is given by

pt+1(n
′;a, b) =

∑

n∈SN,L

P (n′|n;a, b)Pt(n;a, b)

where P (n′|n;a, b) represents the generic element of the Markov chain transition matrix.

Let δh = (0, ..., 0, 1, 0, ...0) be the unitary L-tuple with h-th component equal to 1. Then

P (n′|n;a, b) =



















nm

N

al+bl (nl−δl,m)
C(n,a,b) if ∃l,m ∈ (1, . . . , L) s.t. n′ = n − δm + δl

0 otherwise

(2.3)

where

C(n,a, b) = A + (1 −
1

N
)b · n . (2.4)

The state space of the Markov chain that describes the evolution of the model is the

set of all the L-tuples of non-negative integers whose sum of elements is equal to N .

Note that when the number of locations L and/or of firms N increase, the dimension

of the Markov chain becomes soon very large. For instance, for N = 50 and L = 10

the state space contains more than a billion states. On the other hand, according to

Proposition 2.1, at most one firm is allowed to move at each time steps. This implies

that the transition matrix of the chain contains many zeros and all transitions happen

between very similar states, i.e. states that differ by the location of a single firm.

Moreover, Assumption 2 allows for a location l to have zero intrinsic attractiveness

(al = 0). This kind of location is peculiar because, if at some point in time it is empty,

it will never be occupied again. Indeed, according to (2.2), if al = 0 and nl = 0

the probability of location l to receive the entrant firm is pl = 0. One can think of
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this location as if it had disappeared from the economy. Since the probability that any

occupied location looses a firm is always positive, one should expect that, asymptotically,

all locations with zero intrinsic attractiveness become empty.7 Consequently we assume

that all the locations present attractiveness strictly greater than zero and we present

a complete characterization of the “equilibrium” condition of the present model in the

following

Proposition 2.2. The finite dimensional Markov chain described in (2.3) admits a

unique stationary distribution π(n;a, b).

On S the Markov chain is symmetric under time reversal and satisfies the detailed

balance condition. If n,n − δh + δk ∈ S one has

π(n − δh + δk) = Th→k(n) π(n)

Th→k(n) =
ak + nk bk

ah + (nh − 1) bh

nh

nk + 1

C(n − δh + δk,a, b)

C(n,a, b)
.

(2.5)

If n ∈ S the stationary distribution π(n) reads

π(n;a, b) =
N !C(n,a, b)

ZN (a, b)

L
∏

l=1

1

nl!
ϑnl

(al, bl), (2.6)

where

ϑn(a, b) = bn Γ(a/b + n)

Γ(a/b)
=











∏n
h=1[a + b(h − 1)] n > 0

1 n = 0
(2.7)

and ZN (a, b) is a normalization coefficient depending on the number of firms N and on

the L-tuples a and b.

Proof. See Bottazzi and Secchi (2007), Section 3.

7For a formal proof of this statement see Bottazzi and Secchi (2007), Section 3.
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3 Examples of small economies

The analysis in general terms of the model presented in the previous section would

require a good deal of technical details which are beyond the scope of the present paper.

Here in order to appreciate its main properties, we consider the behavior of our model

in some simple instantiations.

Example 1: no positive agglomeration feedbacks

Consider the simplest case with two distinct locations, 1 and 2. In this case the state

of the system is completely described by the number of firms belonging to one location.

Let n be the number of firms located in 1. From (2.6) it is

π(n) =

(

A + (1 −
1

N
)(b1n + b2(N − n))

) (

N

n

)

bn
1

Γ(a1/b1 + n)

Γ(a1/b1)
bN−n
2

Γ(a2/b2 + N − n)

Γ(a2/b2)
.

(3.1)

If b1 = b2 = 0, the previous expression reduces to the binomial distribution of N in-

dependent trials with probability p = a1/(a1 + a2). This distribution has mean equal

to Np and variance Np(1 − p). Consequently, at equilibrium, location 1 is, on average,

occupied by a number of firms proportional to its relative intrinsic attractiveness (cfr.

the discussion above), that is n ∼ a1/A.

The same property also applies to the general model with L distinct locations: when

all the agglomeration parameters are set to zero, the average occupancy of each location

is proportional to its intrinsic attractiveness.

Figure 1 about here

However, the stochastic nature of the process implies that, in general, the actual

number of firms observed in one location fluctuates through time. At the same time,

when the number of firms increases, due to the Central Limit Theorem, the relative
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amplitude of these fluctuations decreases. An example is provided in Figure 1 (left

panel) for the L = 2 case. As can be seen, when N = 500, the probability to observe a

deviation larger then 10% from the average value of 1/3 is extremely low.

Example 2: positive agglomeration feedbacks uniform across locations

Let us continue with the example in Figure 1, set N = 100 and consider different

values for the agglomeration economies parameter b, keeping it equal across the two

locations. As can be seen from the right panel of Figure 1, a slight increase in the value

of b1 is enough to generate a noticeable widening in the support of the distribution.

Such a widening suggests a more turbulent dynamics, with larger fluctuations in the

fraction of firms which occupy location 1. This phenomenon becomes stronger when

the agglomeration parameter reaches a value comparable to the value of the geographic

attractiveness (b1 ∼ a1). In this case, the support spans the entire range [0, 1] and

fluctuations of any order are likely to be observed. We will briefly discuss some typical

time series at the end of this Section. Here it is interesting to notice than when the

parameter b further increases, the phenomenon is reversed: the set of points on which the

distribution achieves relatively large values shrinks. In particular, the probability weights

becomes increasingly concentrated in the two extremes, n = 0 and n = 1. The reason of

this reversal is straightforward: when the agglomeration strength parameter is high, the

most probable configurations are those that are associated with a highly concentrated

industry. In the case of two locations and 100 firms, the occupancies displaying with the

highest concentration are those near (n1 = 100, n2 = 0) and (n1 = 0, n2 = 100). As can

be seen for the right panel of Figure 1, when b = 4 they are, by a large extent, the most

probable ones.

Figure 2 about here
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The behavior described above is not restricted to the two locations case but has

a general character. For instance, the same behavior is observed when three distinct

locations are considered. This case is illustrated in Figure 2, where the probability

of each fractional occupancy (f1, f2, f3) is shown, where fi = ni/N . Of course f1 +

f2 + f3 = 1, so that these vectors all belong to the 2-dimensional unit simplex and

can be represented using barycentric coordinates. In this coordinate system the triplet

(f1, f2, f3) is represented by a point inside the triangles of Figure 2 whose distance from

vertex i is equal to f2
j + f2

h + fjfh, where j and h stand for the other two vertices. A

point inside the triangles of Figure 2 represents a possible distribution of the N firms

across the three locations. The number of firms for a given locations decreases with its

distance from the point.

Example 3: uniform agglomeration feedbacks with diverse “intrinsic

attractiveness” of locations

Set the geographic attractiveness of location 1, a1 = 2, while the attractiveness of the

other two locations is, a2 = a3 = 1. Consider the case of a homogeneous b. As can be

seen in Figure 2(a), when the value of b is low, the distribution is concentrated around

the center of the triangle. That is, the three locations contain roughly comparable shares

of firms. Location 1 having the highest value of a, results the more attractive one, so that

the probability mass is shifted toward its vertex. In this case, fluctuations are relatively

modest. When b is increased, as in Figure 2(b), the picture changes: the probability is

spread on a larger support. When b = 1, Figure 2(c), the distribution is uniform. This

happens because the agglomeration strength parameter has, in each location, a value

equal to the geographic attractiveness of that location.

For any L > 0, if bi = ai, ∀i, the generic expression (2.6) reduces to

π(n) ∼

(

A + (1 −
1

N
)a · n

)

, (3.2)
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that is, it becomes proportional to an hyperplane. In terms of the fractional occupancy

vector f = (f1, . . . , fL), the distribution (3.2) is defined over the L − 1-simplex and is

sloped in such a way that its highest point (that is the point with greatest probability)

is located in the vertex of the simplex associated with the most attractive location.

In these circumstances when one moves away from this location the probability falls

linearly: hence the distribution displays rather heavy “tails”. Such “decay” of the

probability gets slower as the degrees of locational attractiveness become more similar.

In particular, when all the parameter a’s are equal, the distribution becomes uniform.

Example 4: agglomeration feedbacks with different intensities

Figure 3 about here

In the foregoing examples we analyzed cases with identical b values only. In other

terms, we assumed that the strength of agglomeration effects is equal in all locations.

If one considers different values of b the picture changes. Consider the case with two

locations. Assume a1 = 1, a2 = 2 and set b2 = 0. In Figure 3 the probability distribution

of the fraction of firms in location 1 is shown for different values of the parameter b1.

The left panel reports the distributions for N = 100, and the right panel for N = 50.

As can be seen, in both cases, a small increase in the value of b1 is enough to generate a

big shift of the distribution to the right. This shift implies a larger average population

for location 1. If the value of b1 is further increased, the shape of the distribution

starts to change, so that the probability of finding the large majority of firms in location

1 tends toward 1. Notice that when the number of firms is lower, the impact of the

parameter b is somewhat reduced. This is not surprising, as the “effective” strength of

the agglomeration coefficient depends on the number of firms composing the industry.

Roughly speaking, the relative attractive strength is proportional to the total number of

firms times the dynamic externality (N b). An analogous example for the case of three

locations is reported in Figure 4.
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When local positive returns to localization are absent (b = 0) the distribution is

around the center of the simplex. Since the value of a1 is lower, the probability weight

is nearer to the 1 − 3 line. A slight increase in the agglomeration strength of location

1 (b1 = .1), is enough to move the weight toward the vertex with the same label (panel

b). The shape of the distribution does not change and the effect is similar to the one

obtained with an increase of the parameter a1. If also the agglomeration strength of

location 2 is increased (panel c), the weight moves toward the 1 − 2 line and the shape

becomes more oblong. With higher values for b1 and b2 (panel d) the effect becomes

stronger, and the probability weight is completely concentrated near the 1−2 line. This

implies that location 3 remains mostly empty, while the population of firms is distributed

across locations 1 and 2, with a relative preference for the latter.

Figure 4 about here

The differences in the shape of the limit distribution for different values of the ag-

glomeration parameters b’s we observed above do also reflect different dynamical prop-

erties of the model. As we have seen before, if one considers industries shares nl/N , the

possible occupancy vectors n for the L-locations case map in different points inside the

(l−1)-simplex. When the probability weight of the limit distribution is heavily clustered

around an interior point, like in Figure 1(a) or Figure 4(a), the model displays a rather

stable distribution of firms, with relatively minor fluctuations around the equilibrium

market shares. An example of this behavior is provided in Figure 5(a). These trajecto-

ries are obtained by simulating a model with N = 100 firms and three locations. The

geographic attractiveness of the three locations are equal to the ones considered in Fig-

ure 4, namely a1 = 1, a2 = a3 = 2. The dynamics of firm shares is reported for different

values of the agglomeration parameters. The case of zero agglomeration strength - panel

(a) - follows the pattern described above: the share of firms located in 2 and 3 fluctu-

ates around .4, while the share of location 1 is around .2, reflecting the lower intrinsic
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attractiveness of this site. If we slightly increase b1 we recover the dynamics of panel

(b): the average fraction of location 1 increases, but the shares belonging to different

locations remain rather stable in time. A further increase in the value of the parameters

b changes the picture. In panel (c), both locations 1 and 2 have a value of b equal to

.5. This corresponds to the limit distribution of panel (d) in Figure 4. The weight of

the distribution is near the 1 − 2 border of the simplex. As a consequence, location 3 is

persistently almost empty (see the line near the bottom border), while location 1 and

2 (nearly) share the entire population of firms. Notice, however, that the population

of firms is not distributed in time-stationary shares among the two locations. On the

contrary, at any time, one location typically dominates the other and attracts a larger

number of firms. This cluster can last for several periods, and then abruptly disappear.

When the two locations become equipopulated a reversal in the relative concentrations

become more likely, with the second location becoming the most populated one ( or

alternatively, the location which previously attracted the largest part of firms may as

well swiftly recover its dominating role). If the value of b becomes larger, the effect is

reinforced: the difference in market shares is increased and is likely to persist for a longer

time: see Figure 4(d).

The foregoing analysis reveals that the dynamical characters of different equilibrium

distributions can be quite diverse. In fact, the equilibrium distribution represents the

unconditional probability of finding the system in a given state. This probability, how-

ever, can be very different from the average fraction of firms observed over finite time

windows. The proper interpretation of a distribution like the one in Figure 2(d) is that

the entire population of firms will end up concentrated in one large cluster, occupying

exactly one location. Nonetheless, the three locations have the same probability to be-

come the main industry cluster. Which location is selected, is a matter of history and

chance. This highly concentrated state of the industry can last for several thousand of

steps, but is only a metastable state. At some point, the sequence of random alloca-
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tions can lead one of the other sites to catch up, in terms of number of firms, with the

most populated location and, possibly, to overtake it. At this point, in relatively few

time steps, this location may become the new cluster of the industry. loosely speaking

the time profile recalls what in biology are known as “punctuated equilibria” with long

period of relative environmental stability intertwined by relatively sudden transitions.

Just to give an idea of the time scale of the previous dynamics, consider that the

typical turbulence in entry and exit dynamics in industrial sectors is around 5%. So, with

a sector of 100 firms, five time steps of the simulations can be thought as representing

one year of “real” time. In the example above (see Figure 5(d)), the metastable state in

which the largest part of industry is clustered in location 1 can last for several thousand

of steps. That would be equivalent to several centuries of historical time. So, even

if these states are only metastable, they can be indeed considered stable for all the

practical purposes. Notice, however, that this relative stability is in place only for

strongly “polarized” industries: if the coefficients b are zero, or very low, then one can

observe significant fluctuations also on relatively short time scales (see Figure 5(a)).

4 Pure entry process and large industry limit

In the present section we study the asymptotic behavior of our model when we switch

off the exit process and retain only the entry dynamics described in Assumption 2.1.

This implies that the number of firms in the industry will increase linearly with time.

Assuming that the process starts with no firms present in the industry, if nl(t) is the

number of firms present in location l at time t, one has
∑

l nl(t) = t. Let n(t) =

(n1(t), . . . , nL(t)) be the occupancy vector at time t, the probability that the next firm

chooses location l is

pl(n(t)) =
al + blnl(t)

A + b.n(t)
, (4.1)
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with the same notation used in Proposition 2.1. The function pl(x, t) describes the

probability that the new entrant firm locates its activity in l, given the time t in which

it enters the industry and the actual occupancy of all the locations n.

Consider now the conditional expected occupancy of location l at time t + 1

n̄l(t + 1) = E [nl(t + 1)|n(t)] .

It clearly depends on the previous occupancy nl(t). More precisely, it is equal to the

number of firms previously present in l plus the average number of firms which entered

that location at time t + 1. This number (between zero and one) is exactly equal to the

probability in (4.1). One can thus write

n̄l(t + 1) = nl(t) + pl(n(t)) ,

which in terms of the “fractional occupancy” x, where xl(t) = nl/t, reads

x̄l(t + 1) = xl(t) +
1

t + 1
(pl(n(t)) − xl(t)) .

Substituting the definition of pl in (4.1) and the previous equation becomes

x̄l(t+1)−xl(t) =
1

t + 1

1
A
t

+ b · x(t)





1

t
(al − Axl(t)) +

L
∑

j=1

xj(t)xl(t)(bl − bj)



 . (4.2)

The previous expression can be used to derive some properties of the asymptotic

behavior of the system.
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Case 1: positive agglomeration feedbacks with diverse “intrinsic attrac-

tiveness” of locations

First, consider the case in which at least one b is different from zero. In this case,

the first term inside the square brackets vanishes, with respect to the second term,

proportionally to t−1. The same applies to the first term of the denominator in front

of the square brackets. In this case, retaining only the leading terms in the asymptotic

expansion one has

x̄l(t + 1) − xl(t) ∼
1

t + 1

1

b · x(t)

L
∑

j=1

xj(t)xl(t)(bl − bj) . (4.3)

Notice that the coefficients a have completely disappeared from this expression and the

asymptotic behavior seems completely driven by the coefficients b. In particular, if there

exists a location l which possesses an agglomeration economy coefficient greater than

any other location, that is bl > bj ,∀j 6= l, then, for this location, the right hand side of

(4.3) is always positive, that is E[fl(t + 1)] > fl(t). This means that the expected value

of the fraction of firms in l at the next time step is always higher than the presently

realized value. This seems to suggest that, with probability one, fl(t) → 1 when t → ∞.

The previous heuristic argument can be proved to be true. In Bottazzi and Secchi

(2007), using formal results derived in Pemantle (1990), it is shown that for the pure

entry process defined by (4.1), when the number of firms diverges, it is impossible to

find finite shares of firms in two locations with different b’s. In other terms, when the

number of firms in the industry diverges, only two types of distributions can possibly

be observed: a complete concentration in one single location, or a population of firms

split across locations with the same coefficient b. Moreover, it is possible to show that

only the locations with the largest agglomeration coefficients are populated in the limit.

This finally proves our heuristic conclusion: if there exists a location whose b is larger

than any other b, then, when the number of firms becomes large, the industry finds
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itself completely clustered in that single location. On the other hand, if there are several

locations which share the highest coefficient b, a constant positive (in probability) flows

of firms will be observed from the location with lower b’s toward the location with higher

b’s. Consequently, as t increases, the industry becomes increasingly concentrated among

the latter locations and, in the limit, only these locations retain a positive fraction of

firms. Notice, however, that the previous analysis does not give any hint on the way

in which the population of firms is distributed across these locations8. In fact, in tune

with the original Polya model (Polya, 1931) all the shares between the most attractive

locations are asymptotically attainable: history fully rules.

Case 2: no agglomeration feedbacks with diverse “intrinsic attractive-

ness” of locations

In order to complete our analysis, let us consider the case in which all coefficient b’s

are equal to zero, that is the industry lacks any agglomeration effect in any location.

Following our heuristic approach and setting b = 0 in (4.2) one has

x̄l(t + 1) − xl(t) =
al − Axl(t)

A (t + 1)
(4.4)

The right hand side of (4.4) becomes zero when

xl =
al

∑L
j=1 aj

, (4.5)

so that, as expected, each location contains, asymptotically, a number of firms propor-

tional to its intrinsic geographic attractiveness. In this case, indeed, the process retains

no history: the choice of each agent is identical. At each time t, the distribution of

occupancies follows a multinomial laws, with probabilities given by (4.5), so that the

8The interested reader find in Bottazzi and Secchi (2007) a discussion of the asymptotic distribution
for large t is derived in analogy with a well known Polya process.
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result follows.

To sum up: we started with a model with reversible choices and a finite population

of agents, we turned off the death process - thus making location decisions irreversible

- and allowed the number of firms to go to infinity. By doing that in absence of any

agglomeration economies, the asymptotic picture boils down a distribution of activi-

ties somewhat in tune with the conventional notion of invariant “endowment-based”

comparative advantages of the different locations. Conversely under positive returns

to agglomeration, the limit properties are shaped by the very location processes and

their different “pulling strengths”. In particular, when more than one location posses

the highest agglomeration force, one recovers the path dependency property typically

characterizing polya urn models under increasing returns (cfr. (Arthur, 1994) and (Dosi

and Kaniovski, 1994)).

5 Industry-specific agglomeration economy

The model presented in Section 2 allowed for different agglomeration coefficients b in

different locations. While this represents part of the whole agglomeration story, it is

equally plausible to think of the agglomeration effect as a force acting inside a certain

industry with a strength which does not depend from the specific location.

In our notation this means assuming a constant b across all locations. As showed

in the previous section, this assumption is also suitable to describe cases in which the

agglomeration economies are, to some extent, location-dependent but the size of the

industry is large. In this case, only the site with the highest coefficient b’s will contain a

relevant number of firms so that, in discussing the empirical consequences of the model,

one can assume all other sectors as having a = b = 0, that is remove them from the

dynamics.

Let us consider different geographic attractiveness al for each different location l. The
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strength of the agglomeration economy is represented by an industry-specific parameter

b, equal for all locations. If we assume, as in the previous sections, that all locations

posses strictly positive intrinsic attractiveness al then we have the following

Proposition 5.1. If bl = b ∀l ∈ {1, . . . , L} with constant b > 0, the stationary distribu-

tion defined in (2.6) reduces to

π(n;a, b) =
N !Γ(A/b)

Γ(A/b + N)

L
∏

l=1

1

nl!

Γ(al/b + nl)

Γ(al/b)
(5.1)

where b stands for the L-tuple of constant b’s.

Proof. See Bottazzi and Secchi (2007), Section 3.

In this case locations do, in general, differ and are characterized by their specific

attractiveness parameter al. In order to define a marginal distribution, one has to

specify the parameter a of the location of interest.

Proposition 5.2. The marginal distribution π(n, a) of the number of firms in a location

with geographic attractiveness a for the model in (5.1) reduces to the Polya distribution

π(n;N,L, a,A, b) =

(

N

n

)

Γ(A/b)

Γ(A/b + N)

Γ(a/b + n)

Γ(a/b)

Γ((A − a)/b + N − n)

Γ((A − a)/b)
(5.2)

and the average occupancy of site l ∈ {1, . . . , L} with attractiveness al reads

< nl >= N
al

A
(5.3)

Proof. See Bottazzi and Secchi (2007).

Figure 6 about here
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The marginal distribution in (5.2) depends on the total number of firms N , the total

number of locations L, the two global parameters A =
∑L

j=1 aj and b and the location-

specific parameters al. Figure 6 reports the marginal distribution (5.2) for different

values of the parameter b. As we observed before, an increase in the value of b induces

an apparent change in the shape of the distribution and, in particular, an increase in

the size of its support again hinting at more turbulent dynamics of location.

The case is indeed interesting because it highlight the relevance for the ensuing dis-

tributions of the sheer strength of agglomeration forces, even when they apply identically

in all locations.

6 Empirical issues for further research

An important feature of the family of models presented above rests in its ability to be

empirically estimated on the actual locations of firms, plants and employment by sector

and by site. The characterization of the stationary distribution derived in equation (5.1)

allows to go well beyond the exercises of indirect model validation generally found in the

literature (for a discussion concerning NEG cf. Brakman and Garretsen (2006)).

As we have already began to do in Bottazzi et al. (2006) and Bottazzi et al. (2004)

one may undertake at least four classes of empirical exercises.

First, one may statistically compare the whole shape of the empirical distribution of

business plants with the theoretical one (see equation 5.1) in each given industrial sector.

This improves upon the existing empirical literature, where only synthetic agglomeration

indices are derived (cf. Devereux et al. (2004), Maurel and Sedillot (1999), Overman

and Duranton (2002), Dumais et al. (2002), Ellison and Glaeser (1999), Combes and

Overman (2004) for exercises in a similar spirit).

Second, one may test simpler instances of our model obtained from the general one

by switching off and on geographical and technological heterogeneity, thus gaining in-

27



sights on their importance in determining the observed locational profiles. For example,

one may start from an utterly simple specification where all agglomeration parameters

are set to zero (i.e. bl = 0, ∀l) and all locations possess the same intrinsic attractive-

ness (al = a, ∀l). This case is a sort of “null hypothesis” benchmark whereby neither

spatial specificities nor agglomeration processes play any lasting role. Nevertheless, this

unrealistic specification allows to test our model against pure randomness in the vein

of Ellison and Glaeser (1997, 1999) and Rysman and Greenstein (2005). Furthermore,

in order to explore the relevance (or irrelevance) of geographical heterogeneity, one can

consider models where locations are homogeneous and share the same geographic at-

tractiveness a > 0, but agglomeration economies are now present in the form of an

industry-wide agglomeration force measured by a single parameter b > 0. Finally, one

can envisage models where one considers heterogeneous geographic attractiveness al for

each different location l, while retaining an industry-specific agglomeration parameter

b, equal for all locations. As we do in Bottazzi et al. (2004), on Italian data disag-

gregated by sector of activity and by location, one is able to disentangle the “pull” of

each location irrespectively of the sector of activity (call it the urbanization effect) from

sector-specific agglomeration (or anti-agglomeration) forces. Hence, one is able to dis-

tinguish the “horizontal” forces of agglomeration - stemming from e.g. inter-sectoral

linkages and marshallian externalities - as distinct from sector-specific forms of localized

increasing (or decreasing) returns, in turn, possibly associated, with the characteristics

of knowledge accumulation in each line of activity.

Third, revealing evidence is likely to come from the comparison of the distributions

of agglomeration parameters across different variables. So, for example, comparisons

between the location patterns of firms as compared to the location pattern of employment

tell how much of the purported agglomeration forces are in fact “internalized” within a

few relatively big firms, or conversely, result in the proximity of several “district-like”

firms.
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Fourth, the increasing availability of spatially tagged time-series allows an easy inter-

temporal application of the foregoing model asking how agglomeration patterns have

changed over the years and exploring the evolution of the “urbanization” and sector-

specific forces.

7 Conclusions

In this work we have presented a family of models of evolutionary inspiration where

boundedly rational heterogeneous agents decide to locate their production activities in-

fluenced by both the “intrinsic” attractiveness of individual locations and by the number

of firms already operating there, entailing the possibility of local dynamic increasing re-

turns.

Firms enter and firms die. In fact, in the current specification, such a process keeps

constant the number of incumbents but relaxations are easily possible. The Markov

processes define a dynamic over a finite number of states whose limit distributions can

be empirically estimated. In fact, the model allows to empirically address the question

of how relevant are agglomeration economies driven by some form of localized positive

feedbacks associated with the very history of birth and death of firms in each location.

Together, it allows to empirically distinguish agglomeration forces which are, so to speak,

“horizontal”, in the sense that they apply across sectors of activity within the same

location and those which, on the contrary, are sector-specific.

Granted these achievements, one can think of several ways ahead. One such way is to

make less rudimentary the representation of “space” by adding some notion of “distance”

among sites with a related impact upon location decisions. A second development that

comes to mind involves the explicit account of multiple sectors of activities with ensuing

inter-sectoral spillovers. Third, an important extension involves the account not only

of birth and death of firms but also of spatially nested growth (a sketch of a model
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along these lines is in Boschma and Frenken (2007), this volume). However, possibly the

most important step forward involves adding a process of learning through which firms

could change their technological capabilities over time (i.e. innovation) and a process of

selection driving the growth and death of each firm. Doing that would largely fulfill the

objective of formalizing a fully fledged evolutionary model explicitly nested in space.
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Figure 1: Two-locations model with a1 = 1 and a2 = 2. Left panel: Probability density
for the number of firms in location 1 for b = 0 and different values of N . Right panel:
Probability density for the number of firms in location 1 for N = 100 and different values
of b.
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Figure 2: Model with three locations and N = 100 firms. All the geographic attractive-
ness are set to 1. The probability density of each point (n1, n2, N − n1− n2) are shown
for different values of the common variable b.
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Figure 3: Probability density of the fraction of firms in location 1 for different values
of b1 with a1 = 1, a2 = 2 and b2 = 0. The number of firms N is set equal to 100 (left
panel) and 50 (right panel).
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Figure 4: The model with three locations and N = 100 firms. The geographic attrac-
tiveness parameters are a1 = 1, a2 = 2 and a3 = 2. Agglomeration parameters are as
follows: a) b1 = 0, b2 = 0, b3 = 0; b) b1 = .1, b2 = 0, b3 = 0; c) b1 = .1, b2 = .1, b3 = 0; d)
b1 = .5, b2 = .5, b3 = 0.
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Figure 5: Temporal dynamics of the location firm shares for a model with three locations
and N = 100 firms. The geographic attractiveness parameters are a1 = 1, a2 = 2
and a3 = 2. Agglomeration parameters are as follows: a) b1 = 0, b2 = 0, b3 = 0; b)
b1 = .1, b2 = 0, b3 = 0; c) b1 = .5, b2 = .5, b3 = 0; d) b1 = .5, b2 = .5, b3 = 0.
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Figure 6: Polya marginal distributions (for different values of b). All distributions are
computed for N = 20000, L = 800, and geographic attractiveness a = 1.
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