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Abstract

This note analyzes the distributional properties of Pareto Type III random variables. The
orignal two parameters distribution proposed by Pareto is expanded in a three parameters version
and both its density and characteristic function are derived. The analytic expression of the inverse
distribution function is also obtained, together with a simple series expansion of its moments of any
order. Finally, we propose a simple statistical exercise designed to show the increased reliability
of the Pareto Type III distribution in describing asymptotically dumped power-like behaviors.
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Figure 1: Lower (left) and upper (right) tail of the survival function of the Pareto III distribution
for a = 1, s = 1 and different values of the exponential coefficient b. The case b = 0 corresponds to
the Zipf’s law log(1 − F (x)) ∼ x−1.

1 Introduction

Zipf’s Law (Zipf, 1949), and Pareto Laws in general (Pareto, 1897), have been assumed, since a
relative long time, as reliable descriptions of the distributional properties of variables characterizing
different social and natural phenomena (see Newman (2005), the critical review in Kleiber and
Kotz (2003) and references therein). These Laws are usually assumed valid when sufficiently large
realizations of the variable of interest are considered, that is for the upper tail of the associated
distributions. If a random variable x follows the Pareto Law with tail index a, the associated survival
function possesses a power-like asymptotic behaviour, 1−F (x) ∼ x−a, so that its n-th moment E[xn],
for sufficiently large values of n, diverges. This property is particularly relevant when small values of
the tail parameter are considered. For instance, when a ≤ 2, the variance (n = 2) is already absent.
Contrary to the Pareto hypothesis, however, the empirical evidence often suggests finite values for the
central moments, also when heavy-tail distributed variables are considered. Sometimes this can be
understood with the presence of a natural upper bound which limits the largest attainable value of a
given variable. Hence, in several cases it has been reported that a truncated Pareto provides a better
fit to the data (Burroughs and Tebbens , 2001) than a pure power Law. In this paper I introduce
a new three parameters version of the two parameters family of distributions originally proposed in
Pareto (1896). The added parameter is a “dispersion” parameter which explicitly accounts for the
typical scale of the underlying random variable, thus reducing the negative effect of the latter on the
estimation of the power and exponential coefficients reported in Creedy (1977). Since the shape of the
distribution is essentially the same of the orignal two parameters family proposed by Pareto, following
Kleiber and Kotz (2003) I retain the name of Pareto Type III distribution. The exponential dumping
in the upper tail makes this distribution particularly suitable in describing all those samples which
display power behavior for intermediate values and a more than power-like decrease in probability
above a certain threshold or for particularly large observations (c.f. the examples in Burroughs and
Tebbens (2001)).

2 The Pareto Type III Distribution

Consider the three parameters family of distributions

F (x) = 1 −
(x

s
+ 1

)−a
e−b x

s (1)
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where s > 0 is a scale parameter, a > 0 the “power” coefficient and ≥ 0 the “exponential” coefficient.
Notice that when the exponential coefficient is set to zero, b = 0, the previous equation reduces

to a Pareto Type II distribution (Kleiber and Kotz, 2003), which is asymptotically equivalent to the
original Pareto distribution. As discussed above, with respect to the original formulation of Pareto
and some later work, the functional expression proposed in (1) contains one more parameter, the
“scale” parameter s. The associated density reads

f(x) =
1

s

(x

s
+ 1

)−a
e−b x

s

(

b +
a

x/s + 1

)

. (2)

It is immediate to see, with direct derivation, that f ′(x) > 0 for any allowed value of the parameters,
so that the density in (2) is unimodal with mode in x = 0.

The effect of the values of the exponential coefficient b on the overall shape of the distribution can
be see in Fig. 1, where the survival function 1 − F (x) is reported. For x/s << 1 (left panel), when
b is large the exponential factor becomes leading and the survival function decreases linearly on the
normal x scale. Conversely, when x/s >> 1 (right panel) an increase in b introduce a deviation (on
the log-log graph) from the stright line characteristic of the Pareto power like behavior.

2.1 Characteristic Function and Moments

Following Abramowitz and Stegun (1964) (equation 6.5.20, p. 262)) define

αn(x) =

∫ +∞

1
dt e−xt tn = x−n−1 Γ(n + 1, x) (3)

where Γ(n, x) stands for the incomplete gamma function

Γ(n, x) =

∫ +∞

x
dt e−t tn−1 .

Using the properties of Γ(n, x), it is immediate to obtain the following recurrence relation

αn(x) =
e−x

x
+

n

x
αn−1(x) . (4)

Using this relation it is easy to show that

Theorem 2.1 The characteristic function φ(k) = E[eikx] where x is distributed according to (1)
reads

φ(k) = 1 + e−iks+b iks α−a(b − iks) . (5)

Proof. From the definition above and using (2) one has

φ(k) =

∫ +∞

0
dx eikx 1

s

(x

s
+ 1

)−a
e−b x

s

(

b +
a

x/s + 1

)

which, after the change of variable z = x/s + 1, reduces to

φ(k) =

∫ +∞

1
dz z−ae−(b−iks)z

(

b +
a

z

)

.

Using (3) this can be rewritten as

φ(k) = e−iks+b (bα−a(b − iks) + aα−a−1(b − iks))

which using (4) reduces to (5).
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Q.E.D.

The moments of the Pareto III distribution can in principle be obtained from the characteristic
function defined in (5). For instance, one immediately has that the mean value m1 is

m1 = (−i)
d

dk

∣

∣

∣

∣

k=0

φ(k) = 1 + ebα−a(b) . (6)

For higher moments, however, can be more practical to directly derive a series expansion. The
following applies

Theorem 2.2 The moments mn = E[xn] where x is distributed according to (1) admit the following

representation:

mn = sn eb ba
n

∑

h=0

(

n

h

)

(−1)n−h h

bh
Γ(h − a, b) . (7)

Proof. From the definition

mn =

∫ +∞

0
dxxn 1

s

(x

s
+ 1

)−a
e−b x

s

(

b +
a

x/s + 1

)

using z = x/s + 1, one has

mn = sn eb

∫ +∞

1
dz (z − 1)nz−ae−bz

(

b +
a

z

)

.

Taking the binomial expansion of the last expression and using (3) gives

mn =

n
∑

h=0

(

n

h

)

sn eb (b αh−a(b) + aαh−a−1(b))

which using (4) and the definition of the α function in terms of incomplete gamma, reduces to (7).

Q.E.D.

2.2 Inverse distribution function

The distribution function in (1) is defined over [0,+∞) and has image in [0, 1). In this section we
derive its inverse, the quantile function. This function, apart its theoretical interest, is useful for
many purposes. For instance, it can be used to build so called q-q plots of i.i.d. samples or in in the
computer generation of pseudo random number.

Consider the real function f(x) = x ex. Since it is continuous and monotonically increasing for
x ≥ −1, it admits a continuous inverse W (y) defined for y ≥ −1/e. This function corresponds to the
real branch of the Lambert function (c.f. Jeffrey et al. (1990)) and satisfy the equation

W (y) eW (y) = y . (8)

Theorem 2.3 The inverse distribution function Q of (1) reads

Q(q) = s

(

a

b
W

(

b

a
e

b

a (1 − q)−1/a

)

− 1

)

, (9)

where W (x) is the real branch of the Lamber function.

4



 0.001

 0.01

 0.1

 10000  100000

EDF
fit top 5%

fit top 10%
fit top 30%

 0.001

 0.01

 0.1

 10000  100000

EDF
fit top 5%

fit top 10%
fit top 30%

Figure 2: Distribution of the largest worldwide firms in 2006 according to Fortune 500. The maximum
likelihood estimation of the upper tail obtained using 5%,10% and 30% of the available data is plotted
for the Pareto Type I (left) and Pareto Type III (right) distribution.

Pareto I Pareto III
sample size 5% 10% 30% 5% 10% 30%
â 1.74 1.39 1.13 1.92 1.30 1.49
ŝ/104 0.68 0.41 0.26 1.07 0.49 0.63

b̂ - - - 0.016 0.026 0.023

Table 1: Estimated coefficients for the Pareto Type I and III

Notice that when q ∈ [0,+∞), the argument of the function W in (9) is positive, so that the
above expression is well defined. Moreover, for q = 0 the argument reduces to eb/a b/a. From the
definition of W , it is immediate to check that its value at this point is exactly a/b, so that one recover
the relation Q(0) = 0.

Proof. Let q ∈ [0,+∞), we are interested in the value of x that satisfy F (x) = q. Considering
the expression in (1) this reduces to the equation

(x

s
+ 1

)−a
e−b x

s = 1 − q .

Taking the logarithm of both sides and defining z = b(x/s + 1)/a, the previous expression reduces to

log(x) + z = C where C =
b − log(1 − q)

a
+ log(b) − log(a) .

Taking the logarithm of (8), it is easy to see that the real solution of the previous equation is
z = W (log C). Substituting the definition of C and remembering the previous change of variable,
(9) follows.

Q.E.D.

As mentioned before, (9) can be straightforwardly used to generate i.i.d. pseudo-random variables
extracted from a Pareto Type III distribution. To this purpose, one can generate a set of independent
realizations {qi} uniformly distributed in [0, 1) and apply the inverse distribution function Q to each
realization to obtain a set {Q(qi)} of independent variates distributed according to (1).
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Figure 3: Distribution of the largest Italian manufacturing firms in 2004 (ISTAT data). The maxi-
mum likelihood estimation of the upper tail obtained using 5%,10% and 30% of the available data is
plotted for the Pareto Type I (left) and Pareto Type III (right) distribution.

3 Firms size distribution

The upper tail exponential cut-off which characterizes the Pareto Type III distribution can prove
extremely useful in obtaining better and more reliable descriptions of empirical data. We illustrate
this claim with an example taken from Economics. In particular, we use the Pareto III distribution
to describe the upper tail of the Empirical Distribution Function (EDF) of annual revenues of the
largest worldwide companies. This choice seems particularly fit in our case, since it was exactly
the problem of finding a reliable statistical description of the distribution of wealth which originally
prompted the work of Pareto. We consider the Fortune 500 database, published each year by the
Fortune magazine 1, which collects the revenues of the largest 500 firms in the world. Using maximum
likelihood estimation (c.f. Hill (1975) and for details Bottazzi and Tamagni (2007)) we fit the Pareto
Type III distribution defined in (1) to the EDF upper tail, using subpopulation of different sizes. For
comparison, we also fit a Pareto Type I distribution defined as

F (x) = 1 −
(x

s

)−a
. (10)

The Pareto Type I is the distribution traditionally applied to the description of the upper tail of
wealth or income distribution (see for instance Castaldi and Milakovic (2007) and references therein).
Results are reported in Fig. 2.2: the power-like decay of the Pareto I distribution shows up as a
straight line in the log-log plot (left panel) while the exponential cut-off of the Pareto III distribution
appears as a convex shape. As can be seen, the latter is remarkably less sensitive to the size of the
considered sample and much more adapted to empirical observations. The estimate values for the
tail index â, the scale ŝ and the exponential correction b̂ are reported in Table 2.2. A similar analysis
is repeated in Fig. 3 for the distribution of the largest Italian manufacturing firms using the database
of firms with more than 20 employees provided by Italian Statistical office (ISTAT).

4 Conclusion

The Pareto Type III distribution, originally proposed by Pareto in 1896 as one of the possible
statistical characterization of the distributional properties of the wealth in the Grand Duchy of
Oldenburg, has never received much attention. However, its exponential asymptotic shape assures

1Data are publicly available at http://money.cnn.com/magazines/fortune/fortune500/
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the existence of central moments and can be successfully used to probe for the presence of “deviation”
from the power-like behavior of the upper tail of empirical distributions. This paper presents some
properties of the Pareto III random variables. In particular, the formal expression of the inverse
distribution function is derived, which allows for the simple computer generation of pseudo-random
Pareto III variables.
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