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Abstract

This note discusses some problems possibly arising when approximating via Monte-
Carlo simulations the distributions of goodness-of-fit test statistics based on the em-
pirical distribution function. We argue that failing to re-estimate unknown parameters
on each simulated Monte-Carlo sample – and thus avoiding to employ this information
to build the test statistic – may lead to wrong, overly-conservative testing. Further-
more, we present a simple example suggesting that the impact of this possible mistake
may turn out to be dramatic and does not vanish as the sample size increases.
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1. Introduction

This note discusses some problems possibly arising when approximating – via Monte-Carlo
simulations – the distributions and critical values of the most commonly employed goodness-
of-fit (GoF) tests based on empirical distribution function (EDF) statistics (D’Agostino and
Stephens, 1986; Thode, 2002). We show that, when testing with unknown parameters, critical
values (and consequently testing outcomes) may be dramatically sensible to the procedure
actually employed to approximate them. More specifically, we argue that the researcher may
sometimes build inaccurate critical-value tables because he/she fails to perform a crucial step
in his/her Monte-Carlo simulation exercises, namely maximum-likelihood (ML) re-estimation
of unknown parameters on each simulated sample. In our opinion, this is a lesson worth
learning because critical-value tables are only available for particular distributions (e.g.,
normal, exponential, etc.). In all other cases, our study indicates that failing to correctly
specify the Monte-Carlo approximation procedure may lead to overly-conservative hypothesis
tests.

The rest of this note is organized as follows. Section 2 formalizes the general GoF test
under study and discusses the main problems associated to the approximation of EDF-
based GoF test-statistic distributions from a theoretical perspective. Section 3 presents an
application to the case of normality with unknown parameters. Finally, Section 4 concludes
with a few remarks.

2. Approximating EDF-based GoF test-statistic distributions:
The case of unknown parameters

In many applied contexts, the researcher faces the problem of assessing whether an empirical
univariate sample xN = (x1, . . . , xN) comes from a (continuous) distribution F (x; θ), where
θ is a vector of unknown parameters. EDF-based GoF tests (D’Agostino and Stephens, 1986;
Thode, 2002) employ statistics that are non-decreasing functions of some distance between
the theoretical distribution under the null hypothesis H0 : xN ∼ F (x; θ) and the empirical
distribution function constructed from xN , provided that some estimate of the unknown
parameters is given.

In what follows, we will begin by focusing on the simplest case where F (x; θ) has only
location and scale unknown parameters (we will discuss below what happens if this is not the
case). Furthermore, we will limit the analysis to four out of the most used EDF test statistics,
namely Kolmogorov-Smirnov (Massey, 1951; Owen, 1962), Kuiper (Kuiper, 1962), Cramér-
Von Mises (Pearson and Stephens, 1962) and Quadratic Anderson-Darling (Anderson and
Darling, 1954), with small-sample modifications usually considered in the literature 1.

It is well-known that if one replaces θ with its maximum likelihood (ML) empirical-sample
estimate θ̂(xN), the distributions of the EDF test statistic under study can be shown to be
independent on the unknown true parameter values (David and Johnson, 1948). However,

1For more formal definitions, see D’Agostino and Stephens (1986), Chapter 4, Table 4.2. Small-sample
modifications have been applied to benchmark our results to those presented in the literature. However, our
main findings remain qualitatively unaltered if one studies test-statistic distributions without small-sample
modifications.
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test-statistic distributions are hard to derive analytically. They must be therefore simulated
via Monte-Carlo and critical values must be accordingly computed. To do so, let us consider
a first possible procedure:

Procedure A

Step A1 Generate, by means of standard simulation techniques (Devroye, 1986), a suffi-
ciently large number (say, M >> 0) of independently-drawn N-sized samples zj

N =

(zj
1, . . . , z

j
N), j = 1, . . . , M , where each zj

i is an i.i.d. observation from a F (x; θ̂(xN)),
i.e. from the distribution under H0 where unknown parameters are replaced by their
empirical-sample estimates;

Step A2 For each N-sized sample zj
N , compute an observation of the EDF test statistic

under study by comparing the EDF constructed from zj
N with the theoretical distribu-

tion F (zj
N , θ̂(xN)), i.e. when F is computed at the empirical sample observations and

unknown parameters are always replaced with estimates θ̂(xN) obtained once and for
all from the empirical sample;

Step A3 Once Step A2 has been carried out for all M samples, compute the empirical
distribution function T of the test statistic;

Step A4 Compute (upper-tailed) critical values, for any given significance level α, by em-
ploying the empirical distribution function T of the EDF test statistic as obtained in
Step A3.

At a first scrutiny, the above procedure seems to be correct. Indeed, the procedure tells
us to approximate the distribution of the test statistic under study by repeatedly compute it
on a sufficiently large number of i.i.d. samples, all distributed as if they came from the null
distribution F (·, θ), when the unknown parameters are replaced with their empirical sample
estimate θ̂(xN).

Despite its appeal, however, Procedure A can be shown to be wrong, in the sense that it
generates a completely wrong approximation to the “true” distribution of the test statistic
under the null hypothesis.

The reason why Procedure A is not correct lies in Step A2. More precisely, when we
compare the EDF constructed from zj

N with the theoretical distribution F (zj
N , θ̂(xN)), we

are assuming that our estimate for θ does not depend on the actual sample zj
N under analysis.

This is the same as presuming that the hypothesis test is performed for known parameters.
On the contrary, sticking to the null hypothesis implies that the theoretical distribution
which should be compared to the EDF of zj

N must have parameter estimates that depend on
the actual Monte-Carlo sample zj

N . In other words, scale and location parameters θ must be

re-estimated (via, e.g., ML) each time we draw the Monte-Carlo sample. Let θ̂(zj
N) be such

estimate for sample j. This means that the theoretical distribution to be used to compute the
test statistic would be F (zj

N , θ̂(zj
N)) and not F (zj

N , θ̂(xN)). The correct procedure therefore
reads:
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Procedure B

Step B1 Same as A1;

Step B2 For each N-sized sample zj
N , compute an observation of the EDF test statistic

under study by comparing the EDF constructed from zj
N with the theoretical distri-

bution F (zj
N , θ̂(zj

N)), i.e. when F is computed at the empirical sample observations

and unknown parameters are replaced with estimates θ̂(zj
N) obtained from the j-th

Monte-Carlo sample;

Step B3 Same as A3;

Step B4 Same as A4.

How dramatic is the error we make in applying Procedure A instead of Procedure B? Do
we get a more conservative or less conservative2 test by using the wrong procedure? In other
words, can we detect significant shifts in the Monte-Carlo approximation to the distribution
of the test statistics under study when we compare Procedures A and B? In the next section,
we will answer these questions by providing a simple example.

3. Application: Testing for Normality with Unknown Parameters

Let us consider the null hypothesis that the empirical sample comes from a normal distribu-
tion N(µ, σ) with unknown mean (µ) and standard deviation (σ). In such a case, parameters
may be replaced by their ML estimates (m(xN), s(xN)), i.e. sample mean and standard devi-
ation. In this case critical values for the four test statistics under study are already available.
Our goal, for the sake of exposition, is therefore to compare Monte-Carlo approximations
to the distributions of the four test statistics obtained under Procedures A and B. We thus
have two setups. In the first one (Procedure A), one does not re-estimate the parameters
and always employs (m(xN), s(xN)) to build the theoretical distribution. In the second one
(Procedure B), one re-estimates via ML mean and standard deviation on each simulated
sample by computing (m(zj

N), s(zj
N)) and then uses them to approximate the theoretical

distribution of the test statistic.
Our simulation strategy is very simple. Since the argument put forth above does not

depend on the observed sample’s mean and standard deviation, we can safely suppose that
(m(xN), s(xN)) = (0, 1) 3. For each of the four test statistics considered, we run Monte-Carlo
simulations 4 to proxy its distribution under the two setups above. In both setups, we end
up with an approximation to the distribution of the four tests, from which one can compute
critical values associated to any significance level (or p-value).

To begin with, Table 1 shows critical values for all 4 tests at α = 0.05 significance level,
and for different combinations of N (sample size) and M (Monte-Carlo replications). It is

2We loosely define here a test statistic to be “more conservative” if it allows to accept the null hypothesis
with a higher likelihood, given any significance levels.

3Alternatively, one can standardize the observed sample and generate Monte-Carlo sample replications
from a N(0,1) without loss of generality.

4All simulations are performed using MATLABr, version 7.4.0.287 (R2007a).
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easy to see that if we employ Procedure B, we obtain the same critical values published in
the relevant literature for the case of normality with unknown parameters (compare, e.g.,
our table 1 with table 1A-1.3 at page 732 in Stephens, 1974). On the contrary, if we employ
procedure A, critical values dramatically increase. The effect is of course more evident in the
case of so-called “quadratic statistics” (Cramér-Von Mises and Quadratic Anderson-Darling),
but is equally relevant also in the case of “supremum statistics” (Kolmogorov-Smirnov and
Kuiper). What is more, Procedure A allows us to obtain critical-value figures which are very
similar to those found in the literature for the case of normality with completely specified,
known, parameters.

Table 1 also indicates that if we wrongly employ Procedure A, we end up with test
statistics that are dramatically more conservative (at α = 0.05) than if we correctly employ
Procedure B. This is true irrespective of the significance level. As Figure 1 shows, the A
vs. B gap between critical values remains relevant for all (reasonable) p-value levels. In
other words, the wrong choice of employing Procedure A induces a rightward shift of (and
reshapes) the entire test-statistic distribution. To see this, in Figure 2 we plot the estimated
cumulative distribution of all 4 test statistics under the two setups. Choosing Procedure A
makes all tests much more conservative.

Finally, it is worth noting that the above results do not depend on the empirical sample
size. In fact, one might argue that the mismatch between the two procedures may be relevant
only for small N ’s but should vanish as N gets large. This is not true: the gap remains there
as N increases within an empirically-reasonable range and for any sufficiently large number
of Monte-Carlo replications (M) – see Figure 3 for the case M = 10000.

4. Concluding Remarks

In this note, we have argued that failing to re-estimate unknown parameters on each simu-
lated Monte-Carlo sample (and not employing this information to compute the theoretical
distribution to be compared with the sample EDF) may lead to wrong, overly-conservative
approximations to the distributions of GoF test statistics based on the EDF. Furthermore,
as our simple application shows, the impact of this possible mistake may turn out to be
dramatic and does not vanish as the sample size increases.

Notice that similar issues have already been discussed in the relevant literature (Lilliefors,
1967; Dyer, 1974; Stephens, 1974; Green and Hegazy, 1976). More specifically, Stephens
(1976) shows that the mean of the Anderson-Darling statistic shifts leftwards when the
parameters of the population distribution are unknown. Yet, despite the success of EDF-
based GoF tests, no clear indications were given – to the best of our knowledge – about
the correct Monte-Carlo procedure to be followed in order to approximate test-statistic
distributions in the case of unknown parameters. This note aims at shedding more light
on the risks ensuing a wrong specification of the Monte-Carlo simulation strategy, in all
cases where critical-value tables are not already available. Given the lack of contributions
addressing this topic, and the subtle nature of the choice between Procedure A and B, our
feeling is that mistakes may be more likely than it may seem.

A final remark is in order. In our discussion we deliberately focused only on the case where
parameters to be estimated are location and scale. In such an “ideal” situation, as we noted,
the distributions of the four EDF-based test-statistics that we have considered do not depend
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on the true unknown parameters. Therefore, in principle, to approximate their distributions
one may generate, in Step B1, a sufficiently large number of independently-drawn N-sized
samples from a F (x; θ∗), where θ∗ is any given value of the unknown parameters, and not
necessarily their empirical-sample estimates θ̂(xN). Since the distribution of the test is
location- and scale-invariant, we just need to make sure to apply Step B2 (i.e. re-estimation
of θ using zj

N) in order to avoid the implicit assumption that parameters are known.
What happens if instead parameters are not location and scale but are still unknown?

In such a case, very common indeed (e.g., when F is a Beta or a Gamma distribution),
test-statistic distributions do depend on the true unknown parameter values (Darling, 1955;
Durbin, 1975; Stute, 1993; Rao, 2004). Therefore, Step B1 may be considered as a first
(good) guess towards the approximation of test-statistic distributions. In fact, when param-
eters are not location and scale, one cannot employ any given θ∗ to generate Monte Carlo
samples. Since the “true” test-statistic distribution depends on the “true” unknown param-
eter values, one would like to approximate it with a sufficiently similar (although not exactly
equal) distribution, which can be easily obtained – provided that Procedure B is carried out
– by employing the empirical sample estimates θ̂(xN). In such a situation, critical value
tables are not typically available, because they would depend on the empirical sample to be
tested. Monte-Carlo simulations are therefore required and choosing the correct Procedure
(B) instead of the wrong one (A) becomes even more crucial than in the location-scale case.
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Figure 1: Critical values versus P-values for the four test statistics under study. Empirical
sample size: N = 5000. Number of Monte-Carlo replications: M = 10000. Solid line:
Procedure B (parameters are re-estimated each time on Monte-Carlo sample). Dashed line:
Procedure A (always using empirical-sample estimates).
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Figure 2: Estimates of cumulative distribution function (Cdf) for the four test statistics under
study. Empirical sample size: N = 5000. Number of Monte-Carlo replications: M = 10000.
Solid line: Procedure B (parameters are re-estimated each time on Monte-Carlo sample).
Dashed line: Procedure A (always using empirical-sample estimates).
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Figure 3: Critical values versus empirical sample size N (in log scale) for the four test statis-
tics under study. Number of Monte-Carlo replications: M = 10000. Solid line: Procedure B
(parameters are re-estimated each time on Monte-Carlo sample). Dashed line: Procedure A
(always using empirical-sample estimates). Symbols stand for significance levels: ◦ = 0.10,
× = 0.05, ¤ = 0.01.
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