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Abstract

In this paper we explore the statistical properties of the distributions of consump-
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characterized by asymmetric exponential-power densities. Departures from log-
normality are mainly due to the presence of thick lower tails coexisting with upper
tails thinner than Gaussian ones. The emergence of this irreducible heterogeneity
in statistical patterns casts some doubts on the attempts to explain log-normality
of household consumption patterns by means of simple models based on Gibrat’s
Law applied to permanent income and marginal utility.
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1 Introduction

In the last years, considerable effort has been devoted to the study of the distributional

properties of key microeconomic variables and indicators. For example, a huge amount

of contributions has explored the statistical properties of wealth and personal income

distributions, both across years and countries (see, e.g., Chatterjee, Yarlagadda, and

Chakrabarti, 2005, and references therein). Similarly, in the field of industrial dynamics,

a large body of literature has successfully characterized the shape of cross-section firm

size and growth-rate distributions, and their evolution over time (cf. among others Axtell,

2001; Bottazzi and Secchi, 2006a).

These studies show that, despite the turbulence typically detected at the microe-

conomic level (e.g., entry and exit of firms; positive and negative persistent shocks to

personal income; etc.), there exists an incredible high level of regularity in the shape of

microeconomic cross-section distributions, both across years and countries. For instance,

personal income distributions appear to be characterized by a log-normal body with a

Pareto upper tail in the majority of cases (Clementi and Gallegati, 2005a; Souma, 2001).

Furthermore, as far as growth-rate distributions are concerned, there seems to emerge a

sort of universality feature: the same family of distributions1 is indeed able to fit growth

rates for firms in different sectors, industries and even countries (both cross-sectionally

and along the time-series dimension; cf. Lee et al. 1998; and Fagiolo, Napoletano and

Roventini 2007) .

Notwithstanding such successful results, the above line of research has not been ex-

tensively applied, so far, to other key microeconomic variables for which detailed cross-

section data are available, namely household consumption expenditures (HCEs). This

is somewhat surprising for two related reasons (Attanasio, 1999). First, understanding

consumption is crucial to both micro- and macro-economists, as it accounts for about two

thirds of GDP and it decisively determines social welfare. Second, while we know a lot

about the statistical properties of aggregate consumption time-series and microeconomic

1That is, the exponential-power family of densities, originally introduced by Subbotin (1923). More
on this below.
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life-cycle profiles, our knowledge about the distributional properties of cross-section HCEs

is rather poor, as we almost always limit ourselves to the first and second moments thereof.

The only exception to this trend is a recent contribution by Battistin, Blundell, and

Lewbel (2007). They employ expenditure and income data from U.K. and U.S. surveys

and show that HCE distributions are, within cohorts, well approximated by log-normal

distributions (or, as they put it, are “more log normal than income” distributions)2.

Battistin, Blundell, and Lewbel (2007) show that this evidence can be accommodated

by assuming that a sort of Gibrat’s Law of Proportionate Effects (Gibrat, 1931; Kalecki,

1945) holds for permanent income and, through intertemporal utility maximization, for

household consumption (Hall, 1978)3.

This is a nice empirical result, because it seems to establish a stylized fact holding

across cohorts and, possibly, countries, i.e. the distribution of the logarithms of HCEs

is normal. In turn, it implies that all the moments of the distribution exist but we only

need a two-parameter density to characterize the large majority of observed HCE patterns.

The main empirical message of the paper is therefore that, as far as HCE distributions

are concerned, there is no need to look at higher moments. Indeed, skewness, kurtosis,

etc., of logged HCE distributions would mimic the correspondent Gaussian moments

independently of cohorts, years and age classes. Furthermore, log-normality of HCE

distributions implies that one can explain them by means of simple multiplicative growth

models building upon the idea that consumption results from “the cumulation of random

shocks to income and other variables that affect utility” (Battistin, Blundell, and Lewbel,

2007, p.4)4. If confirmed, this would be a powerful insight, which parallels similar ones

obtained in industrial dynamics for firm size and growth rates (Ijiri and Simon, 1977;

Sutton, 1997).

2Log-normality of HCE distributions in U.K. is confirmed by another early study in the econophysics
domain, see Hohnisch, Pittnauer, and Chakrabarty (2002).

3Of course, one can derive log-normality of consumption directly from the hypothesis that individual
consumption is approximately equal to permanent income (Friedman, 1957). Notice, however, that
permanent income is not observable in practice.

4Notice that log-normality of individual consumption stems from log-normality of permanent income
only if a long list of restrictions do indeed hold. Let aside the very hypothesis that individuals act
as utility maximizers, one also needs that the random-shock process obeys some form of central-limit
theorem and marginal utility is linear in log consumption.
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In this paper, however, we show that log-normality is not generally the case for Italian

HCE distributions. We employ the “Survey of Household Income and Wealth” (SHIW)

provided by the Bank of Italy and we study HCE distributions with a parametric approach

both in the aggregate and conditioned to the age of the household head (as reported in

the survey) for a sequence of 8 waves from 1989 to 20045. Unlike in Battistin, Blundell,

and Lewbel (2007), who only check goodness of fit (GoF) employing graphical tools and

Kolmogorov-Smirnov (KS) tests, we run a wider-range battery of GoF tests that overcome

the well-known power limitations of the KS test.

Our main result is that in Italy, for all the waves under study and for the majority of

age classes, the logs of HCE distributions are not normal but can be satisfactorily approx-

imated by asymmetric exponential-power densities. This family of distributions features

five parameters and allows one to flexibly model asymmetries in both the third and the

fourth moment. Indeed, our statistical tests often reject the hypothesis that logs of HCE

display zero-skewness and normal kurtosis. On the contrary, one invariably detects signif-

icant positive/negative skewness and asymmetry in the tail behavior. More specifically,

the large majority of logged HCE distributions exhibit thick lower tails together with up-

per tails thinner than Gaussian ones. This evidence is quite robust to a series of further

checks involving, e.g., estimation with robust statistics.

The basic message is that, at least for Italy, it seems impossible to come up with a

statistical description of consumption data that can compress the existing heterogeneity

in HCE distributions, so as to avoid a higher number of degrees of freedom in parametric

characterizations. In other words, the existing, statistically-detectable, departures from

log-normality prevent us from providing a simple two-parameter density that fits both

aggregate and disaggregate HCE distributions. This in turn casts some doubts on the

possibility to explain observable HCE distributions by means of simple, invariant models

based on permanent income and Gibrat’s law hypotheses.

The rest of the paper is organized as follows. In Section 2 we describe the database

5Italian income distributions for SHIW data have been extensively studied in Clementi and Gallegati
(2005b). They find that income is log-normal in the body and power-law in the upper tail. More on the
relationships between income and consumption distributions is in Section 4.
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that we employ in the analysis. Section 3 reports on our empirical results and related

robustness checks. Section 4 presents a speculative discussion on the implications of our

findings. Finally, Section 5 concludes.

2 Data

Our empirical analysis is based on the “Survey of Household Income and Wealth” (SHIW)

provided by the Bank of Italy. The SHIW is one of the main sources of information on

household income and consumption in Italy. Indeed, the quality of the SHIW is nowadays

very similar to that of surveys in other comparable countries like France, Germany and

the U.K.6.

The SHIW was firstly carried out in the 1960s with the goal of gathering data on

incomes and savings of Italian households. Over the years, the survey has been widening

its scopes. Household are now asked to provide, in addition to income and wealth in-

formation, also details on their consumption behavior and even their preferred payment

methods. Since then, the SHIW was conducted yearly until 1987 (except for 1985) and

every two years thereafter (the survey for 1997 was shifted to 1998). In 1989 a panel

section consisting of units already interviewed in the previous survey was introduced in

order to allow for time comparison.

The present analysis focuses on the period 1989-2004. We therefore have 8 waves. The

sample used in the most recent surveys comprises about 8000 households (24000 individ-

uals), distributed across about 300 Italian municipalities. The sample is representative of

the Italian population and is based on a rotating panel targeted at 4000 units.

Available information includes data on household demographics (e.g., age of house-

hold head, number of household components, geographical area, etc.), disposable income,

consumption expenditures, savings, and wealth. In this paper, we employ yearly data

on aggregate HCEs7. We study both unconditional and age-conditioned distributions,

6SHIW data are regularly published in the Bank’s supplements to the Statistical Bulletin and made
publicly available online at the URL http://www.bancaditalia.it/statistiche/indcamp/bilfait. We refer
the reader to Brandolini (1999) for a detailed overview on data quality and main changes in the SHIW
sample design.

7Data for disaggregated expenditure categories (e.g., nondurables, food, durables, etc.) are also
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where age conventionally refers to the household head (on the problems related to assign-

ing household-level data to its members, see for example Attanasio, 1999, section 2.2).

Consumption figures have been converted to Euros for the entire period (1989-2000). Fur-

thermore, HCEs have been weighted by using appropriate sample weights provided by the

Bank of Italy. Finally, we deflated all consumption expenditure figures so as to obtain

real HCE distributions.

More formally, our data structure consists of the aggregate distribution of yearly house-

hold (real) expenditure for consumption {Ch,t}, where h = 1, . . . , Ht stands for households

and t ∈ T={1989, 1991, 1993, 1995, 1998, 2000, 2002, 2004} are survey waves. Since in

each wave there were many cases of unrealistic (e.g., zero or negative) consumption fig-

ures, we decided to drop such observations and to keep only strictly positive ones. We

also dropped households for which consumption expenditures were larger than yearly in-

come (as reported in the SHIW). Therefore, we ended up with a changing (but still very

large) number of households in each wave (Ht). HCE distribution is complemented with

information on the age of household head in wave t (Ah,t). We employ this variable to

condition HCE distributions. More specifically, in line with Battistin, Blundell, and Lew-

bel (2007), we consider the following age breakdown: A = {A1; . . . ; A8} = {≤30; 31-35;

36-40; 41-45; 46-50; 51-55; 56-60; ≥ 61}, which generates sufficiently homogeneous sub-

samples as far as the number of observations is concerned. In each wave, we then build the

distributions {Ch,t|Ah,t ∈ Ak}, with k = 1, . . . , 8. As usual, we will mainly employ natural

logs of real consumption expenditure figures, defined as ch,t = log(Ch,t). Age-conditioned

distributions will thus read {ch,t|Ah,t ∈ Ak}, for k = 1, . . . , 8 and t ∈ T .

available. See also Section 5.
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3 Towards a Characterization of Household Consump-

tion Expenditure Distributions

In this Section, we shall explore the statistical properties of Italian HCE distributions

and their evolution over time8. We are interested in answering four related questions: (i)

Did HCE distributions exhibit structural changes over time? (ii) Can aggregate and age-

conditioned HCE distributions be well-approximated by log-normal densities? (iii) If not,

which are the causes of departures from log-normality? (iv) If HCE distributions are not

log-normal, can one find alternative, better statistical descriptions of HCE distributions

across age classes and time?

3.1 Time-Evolution of HCE Distributions

Let us begin with a descriptive analysis of HCE distributions and their evolution over

time. Table 1 reports descriptive statistics for (real) aggregate {Ch,t} distributions. Simple

inspection shows that HCE sample moments are quite stable over time. Such evidence is

confirmed by Figure 1, where the first four sample moments of logged HCE distributions

{ch,t} are plotted against time. This means that, notwithstanding many household did

probably move back and forth across quantiles, HCE distributions did not dramatically

change their structural properties. This is a strong result, also in light of the introduction

of the Euro in 2002.

Surprisingly enough, HCE distributions appear to be quite stable over time also when

one conditions to age classes. Figure 2 reports plots of sample moments vs. waves for two

age classes (left: 41-45; right: ≥ 61). As it can be easily seen, also within age classes HCE

distributions have been remained quite stable over the years. Furthermore, one does not

detect any evident trends in the first moments of the HCE distributions when, in each

wave, they are plotted against age classes (see Figure 3 for wave 2004).

Notice also that if HCE distributions were lognormal, their logs would have been

normally distributed, with zero skewness and kurtosis equal to 3. On the contrary, Table 2

8Additional details on the statistical analyses presented in this Section are available from the Authors
upon request. All exercises were performed unsing MATLABr, version 7.4.0.287 (R2007a)
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(top panel) shows that for aggregate distributions some positive skewness always emerges,

while kurtosis levels fluctuate below and above the normal threshold. This is true also for

age-conditioned distributions, see Table 2 (bottom panel). It is interesting to note that

while HCE distributions appear to be right-skewed for almost all age classes and years,

kurtosis is in the majority of cases below 3 (more on that below). Of course, to decide

whether these departures from the normal benchmark are significant or not, one needs a

more formal battery of statistical tests. This is what we shall do in the next section.

3.2 Are HCE Distributions Log-Normal?

To check whether HCE distributions are log-normal (or equivalently if their logs are

normal), we have used a battery of three normality tests: Lilliefors (Lilliefors, 1967),

Jarque-Bera (Bera and Jarque, 1980, 1981) and Quadratic Anderson-Darling (Anderson

and Darling, 1954). These tests are known to perform better than comparable ones (e.g.,

KS test) in terms of power (see D’Agostino and Stephens, 1986; Thode, 2002, for details).

More specifically, the Lilliefors test adapts the KS test to the case where parameters

are unknown. In this sense, it can benchmark results obtained in Battistin, Blundell,

and Lewbel (2007), who, as already mentioned, only employ the less-performing KS test.

Finally, the Jarque-Bera test is known to perform better in presence of outliers, which is

a commonly-detected problem for consumption data (more on this in Section 3.3).

Table 3 reports GoF results for logs of aggregate and age-conditioned HCE distribu-

tions. Aggregate distributions are never log-normal, while in the age-conditioned case,

only for 9 distributions (out of 64) the three tests are simultaneously unable to reject (at

5%) the null hypothesis of log-normality (in boldface). Log-normality seems to be slightly

more pervasive in age classes 36-40 and 56-60, and in the years from 1995 to 2000.

The above GoF evidence casts some doubts on whether consumption distributions can

be well-approximated – in Italy – by log-normal densities. This seems to be true, for all

waves under study, both at the aggregate level and after one conditions to age classes.

Our statistical findings are also detectable through standard graphical analyses. As

an example, Figure 4 presents for wave 2004 a size-rank plot together with a log-normal
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fit (left) and a QQ-plot against exponential quantiles (right) for the aggregate HCE dis-

tribution (cf. Embrechts, Kluppelberg, and Mikosh, 1997; Adler, Feldman, and Taqqu,

1998, for details). Even a simple visual inspection suggests that the empirical HCE is far

from being log-normally distributed. Departures from log-normality emerge not only in

the upper tail, but also in the central-leftward part of the distribution. Furthermore, con-

cavities and convexities displayed in the QQ-plot signal a strong mismatch between the

logs of HCE distribution and log-normal upper-tail behavior (Reiss and Thomas, 2001).

A more robust way to assess the thickness of upper tails is to take a non-parametric

perspective and apply the Hill estimator (Hill, 1975)9. As Table 4 shows, the majority of

Hill’s alpha estimates are larger than 2, implying lighter upper tails. The evidence about

upper-tail behavior of HCE distributions seems however quite mixed: a clear, common

pattern does not emerge, thus hinting to the necessity of going beyond a simple two-

parameter statistical model. We shall go back to this issues in Section 3.4.

3.3 Robustness Checks

As discussed in Battistin, Blundell, and Lewbel (2007), consumption and income data

generally suffer from under reporting (especially in the tails) and outliers, and Italian

data are not an exception (Brandolini, 1999). In order to minimize the effect of gross

errors and outliers, we have studied distribution moments and normality GoF tests with

two alternative strategies.

First, we have employed robust statistics to estimate the moments of HEC distribu-

tions (Huber, 1981). More specifically, following Battistin, Blundell, and Lewbel (2007),

we have used median (MED) and mean absolute deviation (MAD) as robust estimators

for location and scale parameters. Furthermore we have estimated the third moment

with quartile skewness (Groeneveld and Meeden, 1984) and kurtosis using Moors’s octile-

based robust estimator (Moors, 1988). Results confirm, overall, our previous findings.

Robust moments for the logs of HEC are stable over time (and within each wave, across

age classes). Aggregate and conditioned (logs of) HEC distributions display a significant

9In order to select the most appropriate value for the cutoff parameter (k∗), we have employed here
the procedure discussed in Drees and Kaufmann (1998). See Lux (2001) for details.
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excess skewness, while robust kurtosis values are statistically different (according to stan-

dard bootstrap tests) from their expected value in normal samples (i.e. 1.233). Again,

upper tails appear to be in general relatively light. Furthermore, we have computed

normality tests on logs of consumption distributions standardized using robust statistics.

More formally, for any given logged consumption distribution {c}, we have computed

Lilliefors, Jarque-Bera and Quadratic Anderson-Darling tests on:

c̃ =
c−MED(c)

MAD(c)
. (1)

Table 5 reports p-values for the three tests in the aggregate and age-conditioned cases.

Results confirm the evidence obtained without robust standardization. This implies that

existing statistically-significant departures from log-normality are not due to outliers.

Second, we used both our original data and robustly-standardized samples to compute

normality tests on sub-samples of logged HEC distributions obtained by truncating the

upper or lower tail. More precisely, we defined left- and right-truncated distributions

by cutting either the lower or the upper x% of the distribution. We then ran standard

truncated-GoF normality tests (Chernobay, Rachev, and Fabozzi, 2005) by allowing x ∈
{5, 10, . . . , 25, 30}. In all our exercises (not shown), we ended up with p-values which were

even lower than those obtained for the full samples, irrespective of whether the x% of the

lower or the upper tail was removed.

3.4 Fitting Asymmetric Exponential-Power Densities to HCE

Distributions

The foregoing analysis shows that HCE distributions can hardly be described by means of

log-normal distributions. In other words, the same family of two-parameter density is not

able to describe the existing, statistically-detectable, heterogeneity in HCE distributions.

This is true both at the aggregate level and at the age-conditioned level, across years.

The underlying cause of this distributional heterogeneity is the presence/absence of: (i)

positive/negative skewness; (ii) leptokurtic/platykurtic behavior of the distribution as a
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whole. However, it may well be that any given HCE distribution displays tails that look

different between each other. This can happen if e.g. the upper (respectively, lower) tail is

thinner (respectively, thicker) than a normal one. Furthermore, HCE distributions might

exhibit a variability that is larger on the right (left) of their median or modal value than

it is on its left (right).

To possibly accommodate all these departures from a well-behaved log-normal sta-

tistical model, we propose here to fit the logs of HCE distributions with a higher-

parameterized, more flexible, distribution family known as the asymmetric exponential

power (AEP). The density of the AEP family10 reads:

g(x; al, ar, bl, br,m) =





K−1e
− 1

bl
|x−m

al
|bl

, x < m

K−1e−
1
br
|x−m

ar
|br

, x ≥ m
, (2)

where K = alb
1/bl

l Γ(1+1/bl)+arb
1/br
r Γ(1+1/br), and Γ is the Gamma function. The AEP

features five parameters. The parameter m controls for location. The two a’s parameters

control for scale to the left (al) and to the right (ar) of m. Larger values for a’s imply

– coeteris paribus – a larger variability. Finally, the two b’s parameters govern the left

(bl) and right (bl) tail behavior of the distribution. To illustrate this point, let us start

with the case of a symmetric EP, i.e. when al = ar = a and bl = br = b. It is easy

to check that if b = 2, the EP boils down to the normal distribution. In that case, the

correspondent HCE distribution would be log-normal. If b < 2, the EP displays tails

thicker than a normal one, but still not heavy. In fact, for b < 2, the EP configures itself

as a medium-tailed distribution, for which all moments exist. In the case b = 1 we recover

the Laplace distribution. Finally, for b > 2 the EP features tails thinner than a normal

one and still exponential.

It is easy to see that when one allows for different left-right a- and b-parameters, the

AEP can encompass a wealth of different shapes. In Figure 5 we plot the log-density11

of the AEP in both the symmetric and asymmetric case for different parameter values.

10The AEP density turns out to be a very good statistical model for many economic variables, like
firm growth-rates and market-price returns. See Bottazzi and Secchi (2006b) and references cited therein
for details.

11Thus, in the normal case one will end up with a parabolic log-density shape.
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Notice how the AEP can easily pick up across-distribution heterogeneity in skewness and

kurtosis, but also within-distribution heterogeneity concerning variance and tail-thickness

behaviors.

In what follows, we fit AEP densities to both aggregate and age-conditioned logged

HCE distributions. Parameters are estimated via maximum likelihood12.

To check whether logs of HCE distributions can be satisfactorily described by AEP

densities, we firstly estimate AEP parameters via ML and then we employ a battery of

GoF tests based on empirical distribution function (EDF) statistics. More specifically, we

run three widely-used EDF-based GoF tests: Kuiper (KUI), Cramér-Von Mises (CVM)

and Quadratic Anderson-Darling (AD2), with small-sample modifications usually consid-

ered in the literature (the AD2 test statistic employed here is analogous to that used

above to test for normality: for more formal definitions, see D’Agostino and Stephens,

1986, Chapter 4, Table 4.2). We also compute a KS test to benchmark our results to

those in Battistin, Blundell, and Lewbel (2007). Notice, however, that the former three

tests are known to perform better – in terms of e.g. power – than the KS in all practical

situations (Thode, 2002). All p-values for the test statistics are computed by running

Monte-Carlo simulations (1000 replications) under the null hypothesis that the empirical

sample comes from an AEP with unknown parameters; see Capasso et al. (2007) for a

discussion.

Table 6 reports test statistics and Monte-Carlo p-values for the four GoF tests. Notice

how AEP fits perform dramatically better than normal ones. P-values are almost always

larger than 0.05, meaning that (if one takes 5% as the relevant significance level) in

almost all the cases the logs of HCE distributions can be statistically described by AEP

densities (and not by normal distributions). There are only three exceptions to this rule

(in boldface). Indeed, for the age class 41-45, all four tests are rejected at 5% for the

1989 and 1995 waves. Borderline cases (still at 5%) are represented by the aggregate

distribution and the 51-55 age class in 1989. However, if one lowers the significance level

at 1% in almost every situation all four tests pass.

12See Agrò (1995) and Bottazzi and Secchi (2006b) for technical details. Estimation has been carried
out with the package SUBBOTOOLS, available online at http://www.cafed.eu.
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The main reason why AEP distributions are able to better explain, from a statistical

perspective, the logs of HCE distributions appears to be evident from Table 7, where

ML estimates of AEP parameters are shown. Let us focus on â’s and b̂’s parameter

estimates (the estimate for the location parameter m is not relevant, as it closely tracks

the mode of the distribution). It is easy to see that in about 79% of cases the right tail

of the distribution appears to be thinner than the left tail (b̂r > b̂l). Furthermore, about

89% of all distributions display a right tail which is thinner than a normal one (b̂r > 2).

Conversely, in 47% of times b̂l < 2, meaning that the left tail is thicker than a normal

one. Right thin tails are also associated to higher â’s parameters. In fact, about 90% of

distributions obey the condition âr > âl.

This evidence seems to confirm our conjecture about the existence of a double-faced

heterogeneity in HCE distributions. On the one hand, HCE distributions, even if they

belong to the same family, are characterized, as expected, by very different parameter

values. On the other hand, each HCE distribution displays very different structural

properties as far as its left and right tails are concerned: the right tail is typically thinner

but more dispersed than the left tail. This implies that a two-parameter, log-normal

distribution is not enough to statistically model HCE distributions. As a consequence,

one needs to employ higher-parameterized distributions that, as happens with the AEP,

are able to account for these two levels of heterogeneity.

To further elucidate this point, Figure 6 plots AEP fits to aggregate HCE distributions

in the period considered (similar patterns emerge also for age-conditional HCE distribu-

tions). Notice how AEP distributions are able to satisfactorily characterize the data. This

is true especially as far as asymmetry in tail thickness is concerned, a feature that could

never be accommodated by a symmetric, two-parameter density like the log-normal one.

4 Discussion

The foregoing findings convey two methodological messages. First, moments estimators

(whether they are robust statistics or not) are not always able to shed light on within-

distribution heterogeneity. Whereas HCE kurtosis levels hinted to the presence of tails
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thinner than normal as a whole, EP fits have shown that this could be probably due

to the presence of a medium-thick left tail coexisting with a thin right tail. Therefore,

our study not only suggests that moments higher than the second one do indeed matter,

but it also stresses the importance of investigating the existence of within-distribution

asymmetries in higher moments. Second, and relatedly, the use of too generic statistical

models (like the log-normal) or of non-parametric tools designed to look only at one side

of the coin (e.g., the Hill’s estimator, originally developed to study the right tail behavior

only) might hinder the exploration of more subtle statistical properties, as the co-existence

of tail asymmetries.

In fact, the AEP turned out to be an extremely flexible, but still parsimonious, family

of densities capable of accounting for the extreme heterogeneity found in the data. This is

important because without the AEP one should have employed two different distributions

in order to account for different left and right tail behaviors. Having a single distribution

that does the job is not only more elegant, but also more parsimonious from a statistical

viewpoint.

Furthermore, our exercises show that alternative families of densities like the Levy-

stable (Nolan, 2006) and the generalized hyperbolic (Barndorff-Nielsen, 1977), which can

only account for tails thicker than normal ones, are not able to statistically describe our

data, in the sense that GoF tests are always rejected. This implies, once again, that a key

feature of the logs of HCE distributions is within- and cross-distribution heterogeneity in

tail behavior.

It must be noted, however, that the interpretation of AEP fits discussed above should

be scrutinized vis-à-vis a number of additional statistical tests. In fact, a deeper inspection

of Table 7 reveals that b̂l and b̂r estimates are often close to each other (and to the

normal threshold). As a rule of thumb (Agrò, 1995), one can use confidence intervals

of the form b̂ ± 2s(b̂), where s(b̂) are the standard errors of the estimates. In our case,

given the large number of observations, standard errors are always very small. This

means that in almost all cases differences between b̂l and b̂r are statistically significant.

More generally, however, one should employ likelihood-ratio tests to check whether tail
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asymmetries are statistically significant and whether b̂ estimates are different from 2 (see

Fagiolo, Napoletano, and Roventini, 2007, for an application). Indeed, it might well turn

out that in some cases (e.g., aggregate HCE, wave 1989) a more parsimonious symmetric

EP density (i.e., al = ar = a, bl = br = b) can satisfactorily describe the data. This

would still represent a departure from log-normality if the tail parameter b is statistically

different from 2.

No matter whether a symmetric or asymmetric exponential-power fits the data, the

existence of tails different from Gaussian ones for the logs of HCE distributions implies

that the results in Battistin, Blundell, and Lewbel (2007) do not apply for Italy. Fur-

thermore, even their weaker statement that consumption is more log-normal than income

seems to be rejected by our data. Indeed, it is well-established (Clementi and Gallegati,

2005b) that Italian household income is log-normal in the body and power-law in the

tail. Our results about thick-left and thin-right tails in HCE distributions suggest that, if

any, it is income that is more log-normal than consumption. In other words, income and

consumption distributions seem to belong to two different density families. Log of income

displays a thick upper tail but features a standard-normal lower tail. On the contrary,

consumption displays a thinner-than-normal upper tail and features a thicker-than-normal

lower tail.

What does the foregoing statistical description add to our understanding of consump-

tion? To begin with, a parametric approach can shed light on the nature of the existing

heterogeneity in cross-section HCE distributions. The fact that the logs of HCE distri-

butions can be robustly characterized – over the years – by AEP densities with thick

lower tails and thin upper tails, enable us to better understand how consumption is

distributed across households and to go beyond standard representative-hypothesis as-

sumptions where only the first (and sometimes the second) moment matters. Since het-

erogeneity has been shown to be of crucial importance for aggregation (Forni and Lippi,

1997), a deeper knowledge of HCE distributional properties might hopefully help to better

grasp the statistical properties of consumption dynamics at the macro level.

A second important reason why knowledge of cross-section HCE distributional prop-
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erties may be important is that they can be considered as stylized facts that theoretical

models should be able to replicate and explain. Of course, their “unconditional-object”

status prevents us from univocally finding the generating process: as discussed in Brock

(1999), there can be many alternative generating processes that could generate a given

unconditional object such as a HCE distribution as their long-run equilibrium.

Nevertheless, knowledge about distributional properties of unconditional objects may

help us in restricting the scope of the analysis. In other words, knowing that logs of HCE

are not log-normal but AEP-distributed gives us some information on which generating

processes one may exclude. For example, rejection of the null hypothesis that consump-

tion is log-normally distributed irrespectively of disaggregation casts some serious doubt

on whether some sort of Gibrat’s law is at work. If one indeed assumes – like in Battistin,

Blundell, and Lewbel (2007) – that a simple multiplicative process applies to permanent

income and marginal utility, the resulting limit HCE distributions would be log-normal.

If this were the stylized fact to be replicated, one would have come very close to Cham-

pernowne’s indication about the strategy to follow in modeling economic phenomena (in

his case, income dynamics):

The forces determining the distribution of incomes in any community
are so varied and complex, and interact and fluctuate so continuously,
that any theoretical model must either be unrealistically simplified or
hopelessly complicated. We shall choose the former alternative but then
give indications that the introduction of some of the more obvious com-
plications of the real world does not seem to disturb the general trend
of our conclusions. [Champernowne, 1953, p.319]

On the contrary, it appears that our results suggest to leave the “unrealistically simplified”

domain: if stylized facts to be replicated are much more complicated than what a Gibrat’s

law would have implied, also their theoretical explanation in terms of Gibrat’s dynamics

could hardly hold.

However, the fact that our data reject simple multiplicative models à la Gibrat does

not necessarily mean that the alternative explanation is “hopelessly complicated”. The

idea is that a fruitful strategy to replicate and explain what we have found in Italian data

is to build simple-enough stochastic equilibrium models like those developed in industrial

dynamics to explain the emergence of power-laws and Laplace distributions for firm size
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and growth rates (Bottazzi and Secchi 2006a; Fu et al. 2005). Along similar lines, one

might attempt to single out the basic forces driving the generating process of cross-section

distributions (e.g., imitation, innovation, fulfilment of basic needs, optimal choice under

budget constraints, etc.) and find necessary conditions for the emergence of the observed

stylized facts 13.

5 Conclusions

In this paper we have studied the statistical properties of Italian household consumption

expenditure (HCE) distributions. We have found that, contrary to Battistin, Blundell,

and Lewbel (2007), HCE distributions, both in the aggregate and within homogeneous age

classes, are not log-normally distributed. Goodness-of-fit tests allow us to conclude that

HCE distributions can be well approximated by asymmetric exponential-power densities.

We have shown that departures from log-normality are due to a pervasive heterogeneity

that is present at two different levels. First, given the same parametric fit, consumption

distributions differ, as expected, in their parameters. Second, within each given distribu-

tion, the lower tail behaves differently from the upper tail. More specifically, our results

indicate that, in the majority of cases, HCE distributions display a thick lower tail co-

existing with a thin upper tail. These results hold vis-à-vis a series of further checks

involving e.g. robust-statistic estimation.

The fact that the AEP performs better than a normal density in statistically describing

HCE distributions suggests not only that higher moments matter, but also that within-

distribution asymmetries in tail behavior can be important. It must be also noticed that

the AEP density has been extensively used to statistically model many economic variables

and indicators related to growth rates or returns expressed as differences between log levels

(e.g., growth rates of firm size, returns of log prices, etc.; see Bottazzi and Secchi, 2006b).

To our best knowledge, this is the first time that the AEP density is shown to provide

a good approximation for the logs of the levels of a given variable (i.e., consumption

13This is quite in tune with the evolutionary agenda on consumption, see for example Aversi et al.
(1999). Complementary ideas are in Witt (2001, 2007).
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expenditures).

Several extensions to the present study can be conceived. First, it would be interesting

to apply the same methodology employed above to U.K. and U.S. data to investigate

whether one could detect in other countries the same departures found in Italian HCE

distributions.

Second, one might explore the distributional properties of HCE data disaggregated

over consumption categories (durables, non-durables, etc.) and study whether the tail

behavior observed in the aggregate can be traced back to some particular consumption

category or it is the mere effect of aggregation. Furthermore, since HCE distributions for

consumption categories are likely to be correlated, it would be interesting to characterize

the distributional properties of the joint G-dimensional HCE distribution (where G is the

number of observable consumption categories).

Finally, another issue worth to be addressed concerns the statistical characterization

of consumption budget-share (CBS) distributions (where for any given household the

consumption budget-share for good g is simply a number in the unit interval defined

as the share of expenditure for good g over total household consumption expenditure).

Indeed, the fact that HCE distributions – disaggregated over consumption categories –

are not statistically independent makes very hard to make predictions about the shape of

CBS distributions, even if we knew how HCE marginals are distributed.
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Table 1: Moments of aggregate HCE distributions vs. waves.
Waves

Stats 1989 1991 1993 1995 1998 2000 2002 2004
Mean 194.044 182.233 181.363 180.051 175.263 182.445 182.685 187.132

Std Dev 250.789 251.174 226.596 190.695 190.301 200.845 220.376 213.916
Skewness 3.357 3.732 3.294 2.655 3.100 2.830 3.215 3.253
Kurtosis 18.503 22.892 17.486 12.655 17.777 14.304 17.709 17.546

N Obs 7424.000 7208.000 6241.000 6274.000 5606.000 6292.000 6376.000 6277.000

Table 2: Skewness (top panel) and kurtosis (bottom panel) of HCE distributions vs. age classes and
waves.

Skewness Waves
Age Classes 1989 1991 1993 1995 1998 2000 2002 2004

≤ 30 0.452 0.186 0.358 0.203 0.048 0.016 0.130 0.228
31-35 0.440 0.320 0.398 0.083 0.011 0.079 0.196 0.427
36-40 0.329 0.289 0.403 0.030 0.164 0.060 0.289 0.372
41-45 0.254 0.161 0.388 0.224 0.089 0.156 0.249 0.051
46-50 0.258 0.107 0.132 0.095 0.080 0.176 0.408 0.251
51-55 0.278 0.136 0.265 0.038 -0.189 0.156 0.083 0.263
56-60 0.207 0.100 0.270 0.054 0.031 0.016 0.127 -0.074
≥ 61 0.110 0.113 0.237 0.159 0.122 0.163 0.313 0.289

Kurtosis Waves
Age Classes 1989 1991 1993 1995 1998 2000 2002 2004

≤ 30 3.066 2.583 2.698 2.318 2.519 2.170 2.254 2.322
31-35 2.959 2.898 2.735 2.602 2.553 2.611 2.531 2.577
36-40 2.753 2.866 2.909 3.440 2.828 2.748 2.597 2.839
41-45 2.558 2.687 2.798 2.530 2.492 2.501 2.628 3.022
46-50 2.631 2.628 2.648 2.649 2.650 2.575 2.617 2.854
51-55 2.791 2.915 2.711 2.486 2.596 2.529 2.687 2.950
56-60 2.750 3.011 2.764 2.712 2.622 2.975 2.797 2.872
≥ 61 2.632 2.794 2.862 2.609 2.670 2.812 2.632 2.873
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Table 4: Estimates for Hill’s α tail statistic. Aggregate and age-conditioned HCE distributions vs. waves.
Age Class 1989 1991 1993 1995 1998 2000 2002 2004
Aggregate 3.296 3.913 3.478 3.099 2.524 3.546 3.583 3.151
≤ 30 4.029 2.635 3.434 3.084 3.578 3.037 2.696 2.800
31-35 2.387 2.122 2.027 2.277 2.934 2.329 2.455 2.480
36-40 2.467 2.848 5.725 3.562 2.462 3.581 3.082 3.144
41-45 2.326 3.491 2.511 2.924 3.995 2.702 3.116 3.263
46-50 2.755 2.743 2.253 2.412 2.365 2.707 2.468 2.876
51-55 2.868 2.410 3.002 3.043 2.595 2.579 2.705 3.218
56-60 2.410 2.427 2.653 2.971 2.316 2.709 2.482 3.025
≥ 61 2.081 2.517 3.395 2.227 2.811 3.292 2.568 3.238
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Table 5: Robustly-standardized distributions. Monte-Carlo (one-tailed) p-values for goodness-of-fit tests.
Null hypothesis: normal logs of HCE distributions. JB: Jarque-Bera test; AD2: Anderson-Darling test.
Boldface entries: The null hypothesis is never rejected (at 5%).

Waves
Age Class Test 1989 1991 1993 1995 1998 2000 2002 2004

Lilliefors 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
Aggregate JB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AD2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lilliefors 0.000 0.114 0.112 0.008 0.071 0.027 0.003 0.101

≤ 30 JB 0.000 0.074 0.023 0.027 0.032 0.039 0.042 0.055
AD2 0.000 0.057 0.022 0.000 0.119 0.006 0.003 0.013

Lilliefors 0.008 0.030 0.003 0.438 0.068 0.065 0.006 0.010
31-35 JB 0.001 0.009 0.006 0.164 0.016 0.029 0.047 0.011

AD2 0.000 0.001 0.000 0.097 0.041 0.074 0.003 0.000
Lilliefors 0.001 0.000 0.118 0.333 0.459 0.566 0.008 0.000

36-40 JB 0.006 0.014 0.000 0.108 0.213 0.405 0.011 0.010
AD2 0.000 0.000 0.001 0.169 0.431 0.539 0.000 0.000

Lilliefors 0.000 0.021 0.001 0.020 0.210 0.048 0.001 0.602
41-45 JB 0.002 0.035 0.002 0.012 0.032 0.024 0.017 0.875

AD2 0.000 0.002 0.000 0.001 0.037 0.001 0.001 0.610
Lilliefors 0.018 0.077 0.045 0.058 0.268 0.018 0.000 0.026

46-50 JB 0.003 0.051 0.082 0.101 0.116 0.017 0.001 0.029
AD2 0.001 0.012 0.028 0.079 0.164 0.003 0.000 0.007

Lilliefors 0.001 0.358 0.020 0.361 0.023 0.019 0.019 0.000
51-55 JB 0.010 0.234 0.010 0.026 0.018 0.011 0.149 0.029

AD2 0.000 0.114 0.001 0.029 0.001 0.005 0.018 0.000
Lilliefors 0.000 0.064 0.003 0.449 0.465 0.036 0.474 0.029

56-60 JB 0.027 0.140 0.012 0.240 0.138 0.081 0.233 0.057
AD2 0.001 0.016 0.000 0.516 0.521 0.044 0.233 0.022

Lilliefors 0.143 0.000 0.001 0.000 0.010 0.043 0.000 0.000
≥ 61 JB 0.003 0.010 0.000 0.000 0.003 0.001 0.000 0.000

AD2 0.003 0.000 0.000 0.000 0.002 0.003 0.000 0.000
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Table 7: Maximum-likelihood estimates for AEP parameters. Logs of aggregate and age-conditioned
HCE distributions vs. waves.

Waves
Age Class Par Est 1989 1991 1993 1995 1998 2000 2002 2004

bl 2.1100 1.4800 1.9600 2.0600 2.8000 2.0000 1.7200 2.2300
br 2.1600 2.8400 2.2300 2.7600 2.2200 2.6000 3.0000 2.4500

Aggregate al 0.8790 0.6840 0.7650 0.7540 1.0700 0.7640 0.5590 0.8140
ar 1.2000 1.6000 1.2100 1.2100 0.9340 1.2100 1.5300 1.0200
m 4.4800 3.9300 4.3500 4.4400 4.8300 4.4400 4.0100 4.6400
bl 1.8264 2.6838 3.4784 2.8409 2.3229 2.0270 1.6824 1.4698
br 1.9099 2.5343 2.1067 4.7809 5.5946 5.9859 4.7128 4.6543

≤ 30 al 0.6375 1.0720 0.9439 0.3336 0.4333 0.5746 0.4023 0.3939
ar 1.1933 1.3895 1.1355 1.9250 1.9339 1.8933 1.8632 1.8796
m 4.0828 4.3805 4.6277 3.6510 3.8154 3.9950 3.8786 3.9322
bl 2.5369 1.4394 1.1079 1.4773 1.6434 1.7550 2.0736 2.8661
br 1.8686 2.5804 2.8514 3.7219 3.3895 2.8100 3.0101 2.8389

31-35 al 0.8025 0.5577 0.3579 0.5240 0.5804 0.7265 0.6399 0.4790
ar 1.1243 1.6217 1.6403 1.4988 1.3814 1.2432 1.3074 1.3745
m 4.4728 3.8696 3.9560 4.2383 4.5930 4.6114 4.6097 4.4728
bl 2.1609 0.9380 3.2251 1.0805 2.9043 1.8151 2.2951 2.3470
br 2.0893 3.0883 1.6099 2.8363 1.6710 2.5732 2.5396 1.8137

36-40 al 0.7643 0.3794 0.9303 0.4707 1.0649 0.7106 0.7197 0.7209
ar 1.1940 1.7964 0.8543 1.3487 0.7860 1.0961 1.2988 0.9504
m 4.5031 3.5896 4.9635 4.3117 5.0316 4.7428 4.5627 4.9490
bl 2.5612 1.4617 1.6333 1.8705 3.8072 0.6505 1.2828 1.6956
br 2.5086 3.1394 2.3128 3.0148 2.0921 5.3062 3.3669 2.2922

41-45 al 0.8341 0.6264 0.5325 0.5753 1.3160 0.2537 0.3950 0.7260
ar 1.2709 1.7432 1.3212 1.3335 0.8500 2.1415 1.6184 1.0751
m 4.6130 3.9111 4.3436 4.4315 5.2057 3.6109 4.0068 4.8672
bl 2.8096 1.4084 1.3657 1.7577 1.9047 2.0853 2.1231 1.7792
br 2.2515 3.4740 3.4019 3.0167 2.8639 2.7611 2.7404 3.1136

46-50 al 0.9484 0.5992 0.6125 0.6877 0.7266 0.7180 0.7567 0.6186
ar 1.1956 1.7433 1.7715 1.4712 1.2562 1.2382 1.1886 1.3936
m 4.7793 4.0615 4.1525 4.0397 4.3729 4.4334 4.4656 4.4622
bl 2.1609 1.7359 2.0888 2.1000 3.2167 2.0871 1.3787 1.4694
br 1.9891 2.3749 2.2832 3.4695 1.5723 3.1234 3.5366 2.0241

51-55 al 0.8357 0.7851 0.7684 0.7527 1.4808 0.6823 0.5149 0.6065
ar 1.1406 1.3103 1.2501 1.3319 0.5256 1.3621 1.5937 1.1296
m 4.6808 4.4028 4.4891 4.5970 5.4916 4.3501 3.8658 4.5630
bl 1.8000 1.0879 1.2046 2.0186 2.2544 1.2993 2.1298 2.6124
br 2.3144 2.9803 2.8425 2.6568 2.6424 3.1377 2.3666 1.6653

56-60 al 0.7367 0.5377 0.4703 0.7786 0.9005 0.5924 0.8440 1.1678
ar 1.2507 1.6693 1.5856 1.1368 1.1019 1.4766 1.1392 0.6601
m 4.3758 3.8507 3.7869 4.5036 4.6072 4.1829 4.3743 5.2561
bl 2.2891 1.2890 2.1234 2.6800 2.5814 2.5327 1.5162 2.6018
br 2.7515 3.1477 2.2968 2.8594 2.7732 2.9858 3.0719 2.9253

≥ 61 al 1.1169 0.6045 0.8207 0.8811 0.9528 0.9494 0.4568 0.8324
ar 1.1290 1.7444 1.1313 1.0749 1.0168 0.9387 1.6372 0.9385
m 4.4717 3.5217 4.2002 4.4132 4.5531 4.5833 3.7797 4.4634
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Figure 1: Moments of aggregate logs of HCE distributions vs. waves.
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Figure 2: Moments of logs of age-conditioned HCE distributions vs. waves. Left: Class 4 (41-45). Right:
Class 8 (≥ 61)
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Figure 3: Moments of age-conditioned logs of HCE distributions vs. age classes in wave 2004.
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Figure 4: Aggregate 2004 HCE distribution. Left: Size-rank plot (dots) vs. log-normal fit (dashed).
Right: QQ-plot (dots) against exponential quantiles (solid line).
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Figure 5: The asymmetric exponential-power density (logs) for different parameter values. Top-Left:
Symmetric case for increasing shape-parameter (a). Other parameter values: m = 0, b = 1. Top-Right:
Symmetric case for increasing tail-parameter (b). Other parameter values: m = 0, a = 1. Bottom-Left:
Asymmetric case for increasing right shape-parameter (ar). Other parameter values: m = 0, bl = br = 1.
Bottom-Right: Asymmetric case for increasing tail-parameter (br). Other parameter values: m = 0,
al = ar = 1.
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Figure 6: AEP fits for aggregate HCE distributions.
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