


Volatility-price relationships in power exchanges:

A demand-supply analysis∗

Sandro Sapio†

April 1, 2008

Abstract

The evidence of volatility-price dependence observed in previous works (Karakatsani
and Bunn 2004; Bottazzi, Sapio and Secchi 2005; Simonsen 2005) suggests that there
is more to volatility than simply spikes. Volatility is found to be positively correlated
with the lagged price level in settings where market power is likely to be particularly
strong (UK on-peak sessions, the CalPX). Negative correlation is instead observed in
markets considered to be fairly competitive, such as the NordPool. Prompted by these
observations, this paper aims to understand whether volatility-price patterns can be
mapped into different degrees of market competition, as the evidence seems to suggest.

Price fluctuations are modelled as the outcome of dynamics in both sides of the market
- demand and supply, which in turn respond to shocks to the underlying preference
and technology fundamentals. Negative volatility-price dependence arises if the market
dynamics is accounted for by common shocks which affect valuations uniformly. Positive
dependence is related to the impact of asymmetric shocks. The paper shows that under
certain conditions, these volatility-price patterns can be used to identify the exercise of
market power. Identification is however ruled out if all shocks affect valuations uniformly.

JEL Classifications: C16, D4, L94.
Keywords: Electricity, Market, Volatility, Supply Curve, Demand Curve, Funda-

mentals, Shocks.

1 Introduction

Among the goals of the power industry restructuring, attaining a high degree of efficiency is
viewed as a primary one. Widespread demand for lower energy prices urged regulators to
introduce market-based trading in key segments of the industry, such as electricity production
(Joskow 1996, Newbery 2002). Whether markets have been successful in yielding lower power
prices is still a debated issue. Much better established is the evidence that liberalized power
exchanges can be extremely volatile. Simonsen (2005) reports a 16% value for the annualized
volatility of NordPool daily returns - a value much higher than for other energy markets,
such as coal, natural gas, and petroleum (Schwartz and Smith 2000). Sharp and short-lived
spikes are commonly observed in market sessions characterized by a very tight balance between
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demand and the available generating capacity. Besides, power exchange volatility has been
shown to possess a rich temporal structure, which has been analyzed through reduced-form
models, such as GARCH, regime-switching, and jump-diffusion models (see Weron 2007 for
a survey). Further statistical studies have shed light on patterns of correlation between the
lagged electricity price level and measures of volatility. Karakatsani and Bunn (2004) fitted a
power law on the relationship between the lagged price level and the residual volatility of the
price model, and observed various patterns across hours in the UK market. Bottazzi, Sapio
and Secchi (2005) and Simonsen (2005) observed negative correlation for the NordPool market;
Sapio (2005, 2008) and Bottazzi and Sapio (2008) described positive correlation between
volatility and the price level in the APX and CalPX, as well as regime breaks in NordPool
and Powernext. These patterns seem to be somewhat related to different degrees of market
competition. Positive correlation in the UK is observed on-peak, when the demand-capacity
ratio is very high, and in a market, such as the CalPX, which is widely recognized as probably
the most striking example of how market power can lead to the collapse of a trade institution
(Joskow 2001, Wolak 2003). Negative correlation is instead found in the NordPool, which
heavy reliance on hydropower suggests it may be fairly competitive. If such association finds
a theoretical foundation, the volatility-price patterns can be seen as “footprints” left by power
producers who exercise market power.

Analyzing the mechanisms which give rise to volatility-price patterns is appealing for this
reason, but not only. Making sense of volatility patterns can improve our understanding of
possible trade-offs between two key goals of energy policy: ensuring low and stable prices. Such
knowledge can be precious to discipline policy-making, by clarifying the menu of the attainable
policy results. Moreover, accurate modelling of the time structure of volatility enables more
precise market forecasts (Weron 2006). As such, it can foster the design of efficient tools for
risk management, a key step on the way to the long-term achievement of liquid and robust
power exchanges (Powell 1993).

The paper seeks to explain the emergence of volatility-price patterns in power exchanges,
and to understand whether volatility patterns can be mapped into different degrees of compe-
tition, and hence used to identify anti-competitive behaviors.. The analysis is carried out by
means of a structural approach, based on direct modelling of the demand and supply curves.
The basic insight behind this approach is that price fluctuations are due to dynamics in both
sides of the market - demand and supply. These are in turn responsive to changes in technol-
ogy and preference fundamentals, such as the demand responsiveness to price signals and the
structure of production costs.

Among the advantages of using a structural approach, it allows to map the evidence into
specific features of the market curves. The properties of demand and supply curves convey
relevant information as to the degree of market competition and transparency. For instance, a
low value of the price-elasticity of demand is a source of market power. Further, if the supply
curve lies above the marginal cost curve and is steeper, this is due to market power abuse by
multi-plant power generating companies (Ausubel and Cramton 1996). In addition to this, and
importantly, the design of any policy measure to mitigate volatility needs to outline batteries
of incentives which directly touch on consumption habits and investment plans. Knowledge
of the main sources of volatility is critical, in that the required policy actions may differ
dramatically whether volatility is due to demand or supply factors.

Results from this paper reveal that negative volatility-price dependence takes place if
the bulk of market dynamics is due to uniform shocks, i.e. common shocks whose impact
on valuations is uniform across agents. The reason is that, if all valuations on either side
of the market change by the same amount, the shock weighs proportionally more on low
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valuations, which are the marginal ones when the price is low. Positive price dependence is
a sign that asymmetric shocks are the main volatility drivers. These shocks typically affect
the degree of heterogeneity among commodity valuations. Under certain conditions, their
impact is amplified by the price level. As the main implications for competition policy, the
identification of market power by means of volatility-price patterns requires the occurrence of
asymmetric shocks. Indeed, if all shocks affect valuations uniformly, volatility patterns do not
vary across market regimes. Since markets with only uniform shocks are hard to imagine, the
association between volatility-price patterns and competition suggested by the evidence might
have some foundation.

This paper fills a gap in the existing theoretical literature on the volatility of power ex-
changes. Some previous works place a similar emphasis on the role of market structure in ex-
plaining volatility. Mount (2000) posits a perfectly inelastic demand and a constant-elasticity
supply function. As shown, the market-clearing price is more volatile, the lower the supply
elasticity. However, agents behaviors are not explicitly modelled. While the analysis in the
present paper eschews modelling behaviors too, it is general enough as to include several op-
timizing models as special cases. Mount (1998) proposes a Cournot model with displaced
quadratic cost functions, and demonstrates that volatility is higher in an oligopolistic setting
than under perfect competition, in that market power makes the supply curve more inelas-
tic. Yet, no account is given for the volatility-price patterns observed more recently. Barlow
(2002) and De Sanctis and Mari (2007) assume a stochastically varying demand function, and
aim to account for the emergences of spikes. Kanamura’s (2007) paper on the natural gas
market is another valuable attempt within the structural approach, but its goal is to explain
the evidence of inverse leverage effects.

The paper is structured as follows. Section 2 reviews the main facts on the volatility of
power exchanges, with a major focus on volatility-price patterns. Section 3 describes the
role of fundamentals in driving market dynamics, and offers some definitions and taxonomies.
Section 4 breaks down volatility into components associated to single fundamental drivers,
gives a flavour of the possible patterns, and illustrates some examples. In Section 5, the linkage
between price dependence patterns and the properties of market curves is investigated, while
Section 6 proposes some market power implications. Discussion and conclusions are in Section
7.

2 Evidence on the volatility of power exchanges

The volatility of electricity markets is commonly associated with the existence of significant
rigidities on both the demand and the supply sides of the market (cf. Alvarado and Rajaraman
2000, Stoft 2006). First, there exists wide evidence of short-run demand inelasticity: Considine
(1999), Halseth (1999) and Earle (2000) report estimated values between 0.05 and 0.5. This
is partly related to electricity being a necessary consumption good and production input in
several economic activities, and partly to the fact that the short-run dynamics of the retail
price is not affected by wholesale price movements, due to lack of metering. Second, power
supply is subjected to capacity constraints, ramp rates, fixed and quasi-fixed costs. These
technical constraints require a certain amount of base-load power to be supplied inelastically.1

The analysis of volatility in power exchanges has benefited from up-to-date statistical and
econometric techniques (Bunn 2004). A very common approach in the relevant literature deals

1In their study on the Spanish market Omel, Guerci et al. (2005) have documented that a fraction of power
suppliers (passive sellers) offer their capacity at a zero ask price.
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with various versions of the GARCH model, which entails the estimation of autoregressive
and moving average components of the conditional volatility of electricity prices. A cursory
review of research in this field includes Bellini (2002), Worthington et al. (2002), Knittel
and Roberts (2005), Cavallo, Sapio and Termini (2005), and Guerci et al. (2006). These
works, among the many, shed light on a few interesting empirical properties of power exchange
volatility, such as the existence of clustering patterns, persistence, mean-reversion, and the
so-called inverse leverage effect - i.e. stochastic innovations have an asymmetric impact on the
volatility level, with positive shocks causing larger increases in volatility (Knittel and Roberts
2005; Hadsell, Marathe and Shawky 2004). Some refinements of the existing econometric
techniques have been called upon in order to cope with the observed discontinuities in the
temporal behavior of electricity prices. The jump-diffusion process (Merton 1976) has received
widespread applications in studies on the power market: see the papers by Johnson and Barz
(1999), Escribano et al. (2002), Villaplana (2004) and Knittel and Roberts (2005). As an
alternative way to capture the sudden shifts observed in electricity prices, the regime-switching
model (Hamilton 1989) posits the existence of multiple price regimes and aims to estimate the
associated switching probabilities. The jump-diffusion and the regime-switching approaches
have been merged in the works by Ethier and Mount (1998), Huisman and Mahieu (2003),
Weron, Bierbrauer and Trueck (2004), Geman and Roncoroni (2006), and De Sanctis and Mari
(2007), whose estimates reveal the dual nature of volatility - large probability to persist in
any given state, along with extremely sizeable jumps due to transitions between states.

While these works provide satisfactory accounts of the time behavior of the volatility level,
there are good reasons to expect that volatility is not homogeneous across price levels. As
an interesting clue to this, spikes are more likely when the load and prices are high (Mount
2000). Closer to a demand-supply focus, demand is more elastic when prices soar: energy
users are induced to adopt energy saving habits, or to arbitrage between market segments,
e.g. by rebalancing their portfolios. Hence, demand responsiveness may not be uniform.
Sources of supply rigidity seem to apply differentially across price levels, too. At times of
high load, incentives exist for suppliers to withhold capacity in order to exploit the emerging
profit opportunities, making the supply responsiveness greater when price is high (see Harvey
and Hogan 2001). Alternatively, power suppliers may choose to over-produce as a way to
cause network congestion and therefore higher prices. Also, fixed and quasi-fixed costs have
a stronger impact on average costs when the quantity traded is small, and so are prices. It
is however worth recalling circumstances in which the supply elasticity may actually display
an inverse relation with the price. First, in most power markets the supply stack has a
rapidly increasing slope, which implies a convex supply curve, as commonly observed. Second,
a supplier with market power may be completely indifferent about having marginal units
dispatched, as there is no penalty to the supplier of setting offers for marginal units at very high
levels (Ausubel and Cramton 1996; Mount, Ning and Oh 2000). This may give rise to a convex
supply function too. Finally, in systems based on a large share of hydropower production, wet
winters may cause the filling fraction of water reservoirs to reach maxima during the following
summer and fall. In order to prevent the reservoirs from flooding, hydroelectric plants are
ready to produce at whatever low prices the market may determine (Simonsen 2005).

An empirical approach which seems better suited to understanding the varying impact of
rigidities on volatility was adopted by Karakatsani and Bunn (2004), Bottazzi, Sapio and Sec-
chi (2005), and Simonsen (2005), who studied the relationship between measures of volatility
and the lagged price level. The former dealt with the UK power market. The latter two
papers, focused on the NordPool market, have been subsequently extended by Sapio (2005),
Sapio (2008), and Bottazzi and Sapio (2008) to other markets, such as the CalPX, the Dutch
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APX, and the French Powernext.
Karakatsani and Bunn (2004) estimated a price model via GLS, including some of the

main fundamental variables of the electricity market as regressors, i.e. the demand level
and curvature, and the demand-capacity margin. The volatility of the model residuals ǫ was
modelled as a power law of the lagged price level:

√

V [ǫt] = χpρ
t−1 (1)

Estimates of the power exponent for peak hours were positive, whereas estimation on off-
peak hours yielded negative values. These patterns, as the authors suggested, could be due
to the fact that producers employ different bidding strategies and use different degrees of
“arbitrariness” in their behaviors under different relative scarcity.

Simonsen (2005) computed daily logarithmic returns of NordPool wholesale day-ahead
prices, sorted them in ascending price order, and after smoothing them through a median
filter, fitted a stretched exponential plus a constant:

√

V [∆ log pt] = k0 + ek1p
k2

t−1 (2)

where k0, k1 and k2 are costant parameters, V [.] the variance operator, and ∆ the first
difference operator. The resulting estimates showed a negative price level dependence of
volatility for the lowest prices, and a much milder dependence for higher prices. Interestingly,
the gap between volatilities corresponding to the lowest and the highest price levels amounts
to about an order of magnitude.

Bottazzi, Sapio and Secchi (2005), Sapio (2005), Sapio (2008) and Bottazzi and Sapio
(2008) modelled the standard deviation of returns as a power function of the lagged price
level, after removing time dependencies from returns. Taking natural logarithms, this reads

√

V [∆ log pt] = χpρ
t−1 (3)

where χ and ρ are constant coefficients, ∆ log pt is a sequence of normalized log-returns.
The parameter ρ tunes the type of volatility-price pattern. Estimation of the power law
scaling model is performed using a binning procedure.2 Results allow to detect two kinds
of volatility-price dependence patterns: (i) monotonically decreasing, with a break beyond a
price threshold (NordPool, Powernext), (ii) monotonically increasing (CalPX, APX). Fig. 1
depicts examples of the patterns observed.

These patterns seem to be associated to different degrees of market competition. Positive
correlation is observed in cases when the market is likely to have been strongly affected by
market power abuse (on-peak sessions in the UK; the CalPX). Negative correlation is instead
found in the NordPool, which could be considered fairly competitive thanks to its high share of
hydropower, which makes it harder for producers to implement capacity withholding strategies.
The research question thus arises as to whether increasing voaltility patterns can be univocally
associated to imperfect competition, and decreasing patterns to perfect (or nearly perfect)
markets.

2For any given time series, data were grouped into equipopulate bins. Next, sample standard deviations of
log-returns in each bin were computed, and the logarithm of the sample standard deviations was regressed on
a constant and on the logarithm of the median price level within the corresponding bins.
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3 Fundamentals, valuations, and shocks

A common way of assessing market performance - vis-à-vis social welfare - is by comparing
the quoted price to the underlying market fundamentals. This lies at the heart of e.g. the
market efficiency hypothesis in the analysis of financial markets: the price is (informationally)
efficient if it includes all information regarding the economic value of the issuer company (see
Leroy 1989 for a survey). In commodity markets, the definition of fundamentals may change,
depending on the physical characteristics of the commodity. Restructuring the power industry
has often been welcomed as a move towards greater transparency, which is but a way to shape
the wide-spread claim that market trading will drive prices down to the cost-based value of
electrical power. The reference fundamental here is productive efficiency, and in a transparent
market the level and variability of power prices closely track the underlying dynamics of input
prices. However, demand factors have a relevant role to play: power markets are structurally
constrained to clear at all times, as storage is not economically viable. Hence, fluctuations in
demand are not smoothed out.

A wider notion of fundamentals of an electricity market is thus the set of variables which
define the structure of the consumption and production decision problems, resulting in the
market curves. Fundamentals refer to both sides of the market, and accordingly can be
categorized in demand fundamentals and supply fundamentals. Demand fundamentals have to
do with consumer choice rooted in preferences and bounded by budget and time constraints.
Supply fundamentals are instead linked to the technological parameters behind the production
choices. Fundamentals are ultimately tied to the valuations of the commodity by users and
producers. As a simple way to visualize fundamentals, one can see them as the parameters of
demand and supply curves. The location of market curves is indeed affected by the average
value of electricity to producers (marginal costs) and consumers (reservation prices). Slopes
take up the heterogeneity of valuations across agents. For instance, steep supply stacks denote
a wide source diversification among plants.

While the dynamics of a transparent power exchange tracks the evolution of fuel costs, more
generally electricity prices reflect the fluctuations in both demand and supply fundamental
drivers. Shocks to agent valuations modify the shape of the market curves, and the power
price changes to ensure market clearing. The volatility of fundamental drivers is transmitted
to power prices, more or less intensely depending on how sensitive is price to fundamentals.
Relatedly, it will prove useful to operate a distinction between shocks to fundamentals. Some
shocks affect energy valuations uniformly across sellers and purchasers. These types of common
shocks can be termed uniform shocks. Other shocks, asymmetric shocks, only hit individuals
or groups of agents, thereby modifying the degree of heterogeneity among valuations; or they
are common shocks yielding heterogeneous individual impacts.

Uniform and asymmetric shocks may lead to different volatility outcomes. Shocks that
affect valuations uniformly have the same impact on demand and/or supply, regardless of the
price level. For example, suppose temperature increases, leading to greater use of air condi-
tioning. If all energy users adjust their electricity consumption levels in the same extent, the
demand curve shifts, with no impact on its slope. Shocks that engender asymmetric response
among companies or among users will instead change the curve slopes. Think of a positive
shock to the marginal cost of a rather inefficient plant: all other cost levels being unaffected,
the slope of the supply curve increases. It is worth stressing that in such a case, shocks
are amplified by the price level. This insight may be extremely relevant in understanding
volatility-price dependence patterns.

In line with the above, let us provide some definitions. A demand fundamental δ is a
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non-price argument of the demand function D. A supply fundamental σ is a non-price argu-
ment of the supply function S. Demand and supply functions are assumed continuous and
differentiable.3 Formally, demand equals

D = D(p, δ, σ) (4)

with the standard assumption ∂D/∂p ≤ 0, while supply reads

S = S(p, δ, σ) (5)

with ∂S/∂p ≥ 0 as usual. Derivatives with respect to δ and σ are left unrestricted.
Whenever a common shock affects agents uniformly, its impact on either supply or demand

is price-invariant:

∂2D

∂δ∂p
=

∂2D

∂p∂δ
= 0

∂2S

∂σ∂p
=

∂2S

∂p∂σ
= 0

An asymmetric shock response yields a price-dependent change in demand or supply:

∂2D

∂δ∂p
=

∂2D

∂p∂δ
6= 0

∂2S

∂σ∂p
=

∂2S

∂p∂σ
6= 0

Unlike in the standard analysis of market curves, demand and supply fundamentals are
treated as arguments of the demand and supply functions. More specifically, they are assumed
to be random variables, driven by geometric random walks:

δ̇ = δgδ δ̇ = δgδ

where gδ ≈ iid(0, vδ), gσ ≈ iid(0, vσ), with gδ and gσ mutually independent.4 This assump-
tion is useful for the sake of simplicity, as well as for its empirical relevance concerning the
dynamics of fuel prices (see Serletis and Herbert 1999, Schwartz and Smith 2000, Asche et al.
2003, Postali and Picchetti 2006).

4 Volatility break-down

It is tempting to try and reduce the volatility of power markets to a function of the volatilities
of fuel prices, and furtherly try and disentangle the respective contributions. Yet, electricity
prices vary over time in response to changes in other fundamentals too, e.g. demand partic-
ipation, the level of water reservoirs, and so forth. Thus, more generally one would like to
break down the volatility of power markets into individual components, imputable to each one
of the most relevant power fundamentals. Benini et al. (2002) have noted how volatility is
due to uncertainty in fundamental drivers. A simple framework for doing so is the following.

3The author is aware that results obtained using continuous market curves are generally not achievable by
taking the continuous limit of discrete curves. Von der Fehr and Harbord (1993) were among the first to show
this, using an auction-theoretic approach better suited to deal with the discrete curves observed in reality.
However, continuous models, such as the Supply Function Equilibrium model, have offered rather accurate
predictions of electricity market outcomes (Baldick, Grant and Kahn 2004). Hence the choice of a continuous
approach - besides its analytical convenience.

4Time subscripts have been omitted for the sake of notational parsimony. Assuming zero means does not
affect the results on volatility.
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Consider the demand and supply functions introduced in the previous section (Eq. 4 and
Eq. 5 respectively). Because power is not economically storable, supply and demand need
to perfectly match at all times. Given a uniform price auction format, the market-clearing
condition is that the price p∗ ensures D(p∗, δ, σ) = S(p∗, δ, σ). As an outcome, the market-
clearing price is a function of all fundamentals:

p∗ = p∗(δ, σ) (6)

Demand and supply evaluated at equilibrium read:

D∗ = D∗(δ, σ) (7)

and

S∗ = S∗(δ, σ) (8)

Having obtained a formulation for the market-clearing price, its rate of change can now be
computed, by taking the time derivative ṗ∗ and dividing it by p∗.5 Because p∗ is a function of
fundamentals, the price rate of change is a weighted sum of the rates of change in fundamentals:

ṗ∗

p∗
= ǫpδgδ + ǫpσgσ (9)

The weight ǫpx ≡ ∂p
∂x

x
p

is the elasticity of the market-clearing price with respect to the
generic fundamental x. Now, the variance of the price rate of change can be computed:

V

[

ṗ

p

]

= ǫ2
pδvδ + ǫ2

pσvσ (10)

where V [.] is the conditional variance operator. This is a weighted sum of fundamental
variances, with weights equal to the squared ǫpx or, as we shall call them from now on, the
variance contribution of x.6

How much a fundamental contributes to the overall variance depends on (i) the variance
of the rate of change of that fundamental, and (ii) how sensitive the price is to fluctuations in
that fundamental. The proposed volatility break-down sheds light on a distinction between
volatility sources (fluctuations in fuel prices, water reservoirs, demand participation and so
on) and volatility transmission (tuned by the price reactiveness to various fundamentals).
The former are most likely exogenous with respect to the power price, and as such, unlikely
to be affected by the values of power prices in previous market sessions. For instance, it is not
very likely that the volatility of the world-wide brent market be influenced by the outcomes of a
local power exchange. Having posited random walk dynamics in fundamentals, the variances of
fluctuations in fundamentals are constant, and volatility-price patterns emerge only if variance
contributions depend on the price level. Intuitively, one can expect the overall pattern to
behave approximately like the variance contribution of the most volatile fundamental. If all
fundamentals behave in the same way - all increasing or all decreasing with price - this will
likely be mirrored in the variance of ṗ/p. If instead different variance contributions follow

5The reader may feel that a discrete-time formulation would be better suited to the periodic nature of
power auctions. While we take this criticism, working in continuous time simplifies the analysis.

6Notice that the above formulation does not include any covariance term: this holds because of orthogonality
between the gδ and gσ sequences, as assumed in Section 3.

8



different patterns, then either one of the patterns prevails, or one could observe some non-
monotonic price dependence. All of this is summarized in

Proposition 1.

(i) If variance contributions are all decreasing (increasing) with price, then the price growth
variance is decreasing (increasing) with price.

(ii) Let ∂ǫ2
pδ/∂p < 0 and ∂ǫ2

pσ/∂p > 0. The price growth variance is decreasing with price
if and only if

∂ǫ2
pδ

∂p
< −

vσ

vδ

∂ǫ2
pσ

∂p
< 0 (11)

Proof. See Appendix.

The above framework can readily be generalized to allow for multiple fundamentals on both
the demand and the supply sides. Accordingly, fundamentals would be denoted by vectors
δ and σ, whose components are assumed to be random variables driven by random walks
with mutually orthogonal innovations. Demand and supply are then multivariate functions of
price and the respective fundamental vectors. Under such additional assumptions, the results
summarized above hold qualitatively.

Let us now illustrate the proposed volatility breakdown with some examples.

4.1 A stochastic demand-supply model

Mount’s (2000) analysis sought to understand how uncertainty about the electricity load is
amplified by the structure of offers to sell power. To this aim, he posited a perfectly inelastic
demand function

D = a (12)

and the following supply function

S = c + ph (13)

where h > 1 makes it convex. In terms of the taxonomy outlined in Section 3, shocks to
the a and c variables are uniform, whereas shocks to h are asymmetric. The market-clearing
price reads

p = (a − c)1/h (14)

In Mount’s original model, fluctuations in the market-clearing price were obtained by
assuming stochastic dynamics in demand, given the supply parameter. Hereby this model is
slightly generalized by allowing for (mutually orthogonal) random walk fluctuations in supply
parameters, too. According to Eq. 10, the variance of price rates of change reads

V

[

ṗ

p

]

=

(

a

hph

)2

V

[

ȧ

a

]

+

(

c

hph

)2

V

[

ċ

c

]

+ (log p)2V

[

ḣ

h

]

(15)

i.e. it amounts to a weighted sum of fundamental volatilities. The existence of volatility
patterns can be detected, as it will be analyzed later, by studying the relationship between
volatility contributions and the price level p.
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Whether and how volatility contributions are related to price, it is quite immediate in
this case. Volatility contributions from parameters a and c are decreasing in p, whereas the
contribution of h is increasing in p whenever p > 1.

4.2 Symmetric Affine SFE

In the Supply Function Equilibrium (SFE) model, introduced by Klemperer and Meyer (1989),
suppliers maximize profits, given the market-wide demand function, by choosing their indi-
vidual supply curves - i.e. a continuum of price-output pairs. Green and Newbery (1992) and
Green (1996) pioneered the use of the SFE model in the analysis of electricity markets.7

It its simplest rendition, the SFE model depicts n symmetric oligopolists, who face an
affine demand function

D = a − bp (16)

and produce their output under a quadratic cost function technology, i.e. c(S) = cS +
0.5hS2. Marginal costs are thus affine functions of output. If we assume a and b fluctuate
randomly, shocks to a have to be seen as uniform shocks, as they do not affect the slope of
demand. Movements in b are instead due to asymmetric shocks.

Solving the associated profit maximization problem, it follows that individual supply func-
tions are themselves affine, and the aggregate supply reads8

S = nβ(p − α) (17)

where the supply parameters, α and β, are the solutions to the mentioned profit maxi-
mization problem, whose optimum values are α = c

β =
n − 2 +

√

(n − 2)2 + 4bh(n − 1)

2h(n − 1)
(18)

As the impact of n and b is tuned by p, movements in these parameters can be seen as
asymmetric shocks. The market clearing price reads

p∗ =
a + nαβ

b + nβ
(19)

According to Eq. 10, the variance of price returns reads

V

[

ṗ

p

]

=

(

a

(b + nβ)p

)2

V

[

ȧ

a

]

+ ǫ2
pbV

[

ḃ

b

]

+

(

nβc

(b + nβ)p

)2

V

[

ċ

c

]

+ ǫ2
phV

[

ḣ

h

]

(20)

with

ǫ2
pb =

b

(b + nβ)p

[(

1 +
n

z

)

p −
nc

z

]2

7See also Baldick, Grant and Kahn (2004) and references therein.
8A crucial assumption here is that, in each period, producers solve the maximization problem after having

observed the actual realizations of the stochastic processes driving fundamentals.
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ǫ2
ph =

nh

b + nβ

∂β

∂h

(

1 −
c

p

)

and

z ≡
√

(n − 2)2 + 4bh(n − 1)

These rather cumbersome expressions for the variance contributions all depend on p: con-
sistent with Proposition 2, the price-dependence patterns can be negative (a and c) as well as
positive (b and h).

5 Volatility contributions and the reactiveness of de-

mand and supply

In this section, the width of price fluctuations is traced back to movements in market curves.
This is done by studying the relationship between variance contributions and the price level,
as shaped by the properties of demand and supply. The two following preliminary results,
proved in the Appendix, will be useful.

Lemma 1. The slope of the price function with respect to the generic fundamental x can
be expressed in terms of the supply and demand slopes, as follows9

∂p∗

∂x
=

∂D
∂x

− ∂S
∂x

∂S
∂p

− ∂D
∂p

(21)

As this Lemma clarifies, the market-clearing price is more sensitive to (i.e. reflects more) a
given fundamental if (i) market curves have very different reactions to fluctuations in the funda-
mental under focus, and (ii) market curves have very similar values of their price-elasticities.10

While the latter effect is in line with the extant literature, the intuition behind the effect
associated with the numerator of Eq. 21 deserves more description. If demand and supply
respond in opposite ways to a given random shock - say, demand plummets as supply soars or
vice versa - then equilibrium-preserving price adjustments need to be distributed on a rather
wide support. Conversely, when demand and supply move in the same direction, any demand
movement is compensated by - or compensates - a change in supply. As a result, the price is
more likely stable.

Lemma 2. The variance contribution of the generic fundamental x depends on price p as
follows:

9Or, equivalently,

∂p∗

∂x
=

∂S
∂x

− ∂D
∂x

∂D
∂p

− ∂S
∂p

10Note that, assuming demand is downward-sloping and supply is upward-sloping, the difference ∂S
∂p

− ∂D
∂p

is always positive, and is null only when both demand and supply are perfectly inelastic.
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∂ǫ2
px

∂p

p

ǫ2
px

= −2

(

1 −
x

ǫpx

Γx

)

(22)

where

Γx =
( ∂2D

∂x∂p
− ∂2S

∂x∂p
)(∂S

∂p
− ∂D

∂p
) − (∂D

∂x
− ∂S

∂x
)(∂2D

∂p2 − ∂2S
∂p2 )

(∂S
∂p

− ∂D
∂p

)2
(23)

The above Lemma indicates that price-dependence patterns in variance contributions are
related to

• the response of demand and supply to price signals;

• the response of demand and supply to fundamentals, for a given price level;

• non-linearities in demand and supply functions;

• the uniform or asymmetric nature of shocks.

The Γx term subsumes all of these effects in a single key indicator. The magnitude and
sign of Γx are crucial to assess the kind of volatility-price pattern at work. Whether and how
variance contributions depend on p is related to whether market curves are linear or not, and
even more importantly, to the “type” of shocks.

The following price-independence condition is obtained by setting Eq. 22 equal to zero,
and shows how the above mentioned properties of demand and supply have to combine for
variance contributions to be unrelated to the price level:

Φx ≡

∂2D
∂x∂p

− ∂2S
∂x∂p

∂D
∂x

− ∂S
∂x

−
1

p
−

∂2S
∂p2 − ∂2D

∂p2

∂S
∂p

− ∂D
∂p

= 0 (24)

If the left-hand side is greater, the ensuing price-dependence is positive; it is negative
otherwise. Given these intermediate steps, one can now study the conditions behind price
dependence in volatility contributions. Analyzing the above price-independence condition
leads to the following

Proposition 2. Let ∂2S
∂p2 − ∂2D

∂p2 < −1
p

(

∂S
∂p

− ∂D
∂p

)

.

(i) If shocks are uniform, then variance contributions are decreasing in price.
(ii) Let ∂2D

∂x∂p
∂D
∂x

> 0, ∂2S
∂x∂p

∂S
∂x

> 0, and ∂D
∂x

∂S
∂x

< 0. If the variance contribution of a funda-
mental is increasing in price, then its fluctuations are due to asymmetric shocks.

Proof. See Appendix.

This proposition states that a sufficient condition for a negative price dependence pattern
is that x is hit by uniform shocks only. The reason is that, if all valuations by agents on either
side of the market change by the same amount, the underlying shock has a proportionally
greater impact on low valuations, which are the marginal ones when prices are low. Moreover,
Proposition 2 establishes a necessary condition for positive price dependence: whenever an
increasing volatility-price pattern is observed, then we know that asymmetric shocks are at
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work, but the asymmetric nature of a shock per se does not allow predictions on the emerging
variance pattern.

A direct consequence of Proposition 2 is the upcoming

Corollary 1. If demand and supply functions are linear or affine, the variance contribution
of a fundamental hit by a uniform shock goes like the inverse of p2.

Proof. See Appendix.

This result follows from two key premises. First, uniform shocks have a greater proportional
impact on low valuations. Second, the price-elasticity of affine demand and supply curve is
not costant: affine market curves are very inelastic when p ≈ 0, and very elastic when p >> 0.
Hence the market is very unstable when price is low, as predicted by the corollary.

6 Volatility and market power

Given the proposed understanding of volatility-price dependence, hereby some implications for
market power analysis are drawn. The seeming association between volatility-price patterns in
markets and sessions which might be characterized by strong market power raises the question
of whether volatility-price patterns can be mapped into different degrees of competition. The
conjecture inspired by the existing evidence is that a competitive market will yield a negative
volatility-price dependence, whereas market power will imply a positive correlation. This
conjecture is true if one can rule out the remaining cases (i.e. market power associated with
a decreasing pattern; competition associated with an increasing pattern). In a sense, this
outlines an identification problem.

The unprecedented levels of volatility, witnessed by liberalized electricity markets, have
frequently been interpreted as a negative side effect of market power exploitation by power
suppliers. Electricity pools are particularly prone to this, due to low demand responsiveness
to price signals, as well as by the large minimum efficient scale of power plants (see Wolak and
Patrick 1997, Wolfram 1999, Borenstein et al. 2002, Green 2004, Stoft 2006). The occurrence
of sharp and short-lived spikes in power exchanges is perhaps the most striking consequence
of anti-competitive behaviors. More subtle, yet empirically relevant, are the volatility-price
patterns which may convey useful information on market power, too.

An early insight on the determimants of volatility was provided by von der Fehr and
Harbord (1993), who shed light on how the market can oscillate between low-demand and high-
demand equilibria. Whenever the load-capacity ratio is expected to grow beyond a certain
threshold, generating companies respond by playing the high-demand equilibrium, and the
highest admissible price results. Otherwise, price offers are kept close to marginal costs.
Transitions between equilibria give rise to price variance. On these grounds, Barlow (2002)
and De Sanctis and Mari (2007) have made sense of how suppliers can induce price jumps.
As suggested by these works, the exercise of market power is associated with a demand-
supply interdependency. This is because in order to fully reap the benefits of a dominant
position, price-making suppliers have to take duly account of the properties of demand. Other
oligopolistic models embody a demand-supply interdependency. In the Cournot model, the
Lerner index is inversely related to the price-elasticity of demand. In the affine SFE, the
supply slopes chosen by generating companies increase with the demand slope parameter, as
suppliers are better off restricting their output when demand is less responsive to price.

13



Based on these insights, a first way to formalize market power is by letting supply be
responsive to demand fundamentals δ,

∂Sic

∂δ
6= 0 (25)

where the subscript ic denotes variables in an imperfectly competitive market.11 Further to
linking the anti-competitive conduct and volatility in electricity pools, oligopolistic behavior
can imply an inelastic supply, which exacerbates volatility. Coupled with the typically low
responsiveness of electricity demand, this makes the market particularly noisy. The intuition
is that a multi-plant supplier may be completely indifferent about having marginal units
dispatched, as there is no penalty to the supplier of setting offers for marginal units at very
high levels (Ausubel and Cramton 1996, Mount, Ning and Oh 2000). Incentives for this to
happen are however weaker when demand is relatively low, as multi-plant generators are most
likely to obtain sales from only few plants, and thus enjoy less leeway. The supply curve under
imperfect competition is therefore expected to lay below the perfectly competitive one, and
the gap between the two is supposed to increase with the price level. Formally,

Sic(p) < Sc(p)
∂2Sic

∂p2
< 0

∂2Sic

∂p2
<

∂2Sc

∂p2

These market power conditions are useful for a thorough assessment of the link between
market power and volatility.

In assessing the volatility implications of market power, the distinction between uniform
and asymmetric shocks proves extremely valuable. Even more so if one wishes to use volatility-
price patterns as a mean to identify instances of anti-competitive behaviors. The main question
here is whether - and to what extent - given patterns can be univocally associated with market
power.

Identification is possible only to the extent that volatility-price patterns can be mapped
into market regimes: e.g. if perfect competition is associated with a decreasing volatility-
price pattern, and market power with an increasing pattern. As it has been shown, under
certain conditions different types of shocks map into different volatility patterns: Proposition 2
suggests that uniform shocks are responsible for negative volatility-price dependence, whereas
positive dependence hints at the influence of asymmetric shocks. More precisely, uniform
shocks alone can never give rise to increasing patterns, and can only imply decreasing ones.12

Therefore, in a hypothetical market with only uniform shocks, volatility-price patterns would
not allow to identify market power. Identification requires that at least part of the overall
market variance be accounted for by asymmetric shocks. Identification is ruled out if all shocks
affect valuations uniformly, because the resulting volatility-price pattern would be decreasing
under any market regime. This leads to the following

Proposition 3. Identification of market power exercise by means of volatility-price pat-
terns is not possible if all shocks are uniform.

Proof. See Appendix.

11Conversely, if all producers are price-takers, they do not use demand information to make their choices,
and therefore

∂Sc

∂δ
= 0

12At least at the conditions outlined in Proposition 2.

14



The above proposition illustrates only a necessary condition, in that asymmetric shocks
may as well give rise to downward-sloping volatility-price relationships (see Proposition 2).
Yet, it is worth looking more closely into the necessary and sufficient conditions for identifi-
cation.

Toward this aim, note that market power can yield impacts on both the level and com-
position of volatility. Thanks to market power, electricity producers manage to sell at higher
price than under perfect competition. But by Proposition 2, the higher prices play down
the variance contribution due to uniform shocks, and scale up the influence of asymmetric
shocks. Market power modifies the structure of volatility, making the market more vulnerable
to movements involving e.g. the price-elasticity of demand or the supply stack profile.

Further effects are at work. As indicated by market power conditions, the strategies of
multi-plant generators - who can at times ask extremely large prices on their latest units -
reduce the elasticity of supply vis-a-vis the competitive regime, more so when price is high.
This makes it more likely for anti-competitive practices to map into an increasing volatility-
price pattern: at low price levels, different market regimes would perform the same, but at
higher levels, the strategies of suppliers endowed with market power would imply very inelastic
supply curves, which jointly with inelastic demand would enhance volatility. Finally, imperfect
competition involves some interdependency between market curves. Here, the guess is that
positive volatility-price dependence is the case if, at high prices, producer choice is more
sensitive to demand shocks. All of these considerations lead to

Proposition 4. Volatility-price patterns allow to identify market power if, for all demand
fundamentals,

Φδ,cΦδ,ic < 0 (26)

and for all supply fundamentals,

Φσ,cΦσ,ic < 0 (27)

where

Φδ,c =

∂2Dc

∂δ∂p

∂Dc

∂δ

−
1

pc

−

∂2Sc

∂p2 − ∂2Dc

∂p2

∂Sc

∂p
− ∂Dc

∂p

Φδ,ic =

∂2Dic

∂δ∂p
− ∂2Sic

∂δ∂p

∂Dic

∂δ
− ∂Sic

∂δ

−
1

pic

−

∂2Sic

∂p2 − ∂2Dic

∂p2

∂Sic

∂p
− ∂Dic

∂p

Φσ,c =

∂2Sc

∂σ∂p

∂Sc

∂σ

−
1

pc

−

∂2Sc

∂p2 − ∂2Dc

∂p2

∂Sc

∂p
− ∂Dc

∂p

Φσ,ic =

∂2Sic

∂σ∂p

∂Sic

∂σ

−
1

pic

−

∂2Sic

∂p2 − ∂2Dic

∂p2

∂Sic

∂p
− ∂Dic

∂p

Proof. See Appendix.

The conjecture inspired by the empirical evidence is true if, along with the conditions
established by Proposition 4, we have Φσ,c < 0, Φδ,c < 0, as well as Φσ,ic > 0, Φδ,ic > 0. If so,
one can conclude that NordPool, Powernext and the UK market (off-peak) have been fairly
competitive, whereas the outcomes of the CalPX, APX and UK market (on-peak) have been
affected by anti-competitive behaviors.
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7 Concluding remarks

This paper has dealt with the determinants and the market power content of volatility-price de-
pendence patterns in power exchanges, as detected by a number of empirical papers (Karakat-
sani and Bunn 2004, Bottazzi, Sapio and Secchi 2005, Simonsen 2005). A structural approach
has been followed, based on direct modelling of demand and supply curves. The shape and
location of market curves change in response to random shocks to individual valuations of
the electricity commodity. The price fluctuates in such a way as to preserve market clearing,
giving rise to volatility.

Common shocks affecting valuations uniformly determine shifts in demand and/or supply,
which magnitudes are independent of the lagged price level. Because their proportional impact
on low valuations is higher, volatility is negatively associated with price. Conversely, asym-
metric shocks modify the slope of the market curves - thus, under certain conditions, their
impact can as well be magnified by high prices, and generate positive correlation between
volatility and the price level.

The observed volatility-price patterns can be used to identify market power under certain
conditions. Volatility patterns are useful to detect anti-competitive behaviors to the extent
that one can univocally map them into market regimes - e.g. increasing patterns with market
power, decreasing patterns under perfect competition. Because uniform shocks imply neg-
ative volatility-price correlation regardless of the market regime, a necessary condition for
identification is that at least some shocks hit valuations asymmetrically. If this has been the
case, one can conclude that NordPool, Powernext and the UK market (off-peak) have been
fairly competitive, whereas the CalPX, APX and UK market (on-peak) have been affected by
anti-competitive behaviors. Further work needs to be done in order to validate these claims
empirically.

The analysis performed in this paper suggests two main avenues for future research. First,
the results on the relevance of asymmetric shocks can provide a novel viewpoint on the issue
of fuel diversification. The advantages of energy source diversification as a mean to mitigate
volatility and increase the security of supply has been discussed at length in Stirling (1994),
Costello (2005), Li (2005), Roques et al. (2006), and Hanser and Graves (2007) among others.
Bunn and Oliveira (2007) have analyzed the emergence of diversification and specialization
patterns within an agent-based platform. In the proposed framework, diversification can be
understood if one considers the prices of different fuels as supply fundamentals. Let us set
aside the benefits associated to negative correlation between fuel price innovations, which are
ruled out by the orthogonality assumptions of this paper. If multiple fundamentals represent
different fuel prices, asymmetric shocks can be seen as shocks affecting only one or some of the
fuels. If the fuel mix is diversified enough, then most of the shocks hitting supply fundamentals
are likely to be asymmetric. But as from Proposition 3, asymmetric shocks provide a necessary
condition for identification of market power. Hence, diversification enables detection of anti-
competitive behaviors. Less diversified markets are less likely to be hit by asymmetric shocks.
Markets relying on, say, just one power source, are very prone to the impact of common
uniform shocks. The NordPool is an example of this, as it relies on hydropower for most
of the time. All hydropower plants are going to be affected by shocks to water resources
in approximately the same fashion. The bulk of volatility is attributable to uniform shocks
which, by Proposition 2, give rise to decreasing volatility-price patterns, regardless of the
market regime. The NordPool market might as well be very inefficient, yet volatility-price
patterns would not allow detection of this.

A second remark, related to the issue of fuel price volatility, hints at a potentially fruitful
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area of research. The value of the fuel price volatility is sensitive to the balance between (i)
the width of the time window used to compute the power price volatility, (ii) the type of fuel
contracts included in the generating companies portfolios. With a significant share of long-
term fixed rate contracts, the volatility of fuel prices may be very low, unless the time window
is wide enough, as to allow changes in the fuel portfolios composition. This issue resembles the
problem of macroeconomic price rigidity, as represented by staggering models (see Blanchard
and Fischer 1989). Understanding how fuel portfolios are updated over time is another key
step towards a thorough assessment of volatility in power exchanges.

8 Appendix

Proof of Proposition 1.

The statement in (i) is immediate. The necessary and sufficient condition in (ii) is proved
by taking the derivative of V [ṗ/p] - defined in Eq. 10 - with respect to p:

∂V [ṗ/p]

∂p
=

∂ǫ2
pδ

∂p
vδ +

∂ǫ2
pσ

∂p
vσ (28)

Suppose we want to check V [ṗ/p] < 0. All we need is to use the above equality and perform
a few simple algebraic steps to isolate ∂ǫ2

pσ/∂p. Eq. 11 results.

Proof of Lemma 1.

Given the equilibrium demand and supply of power, D∗ = D∗(δ, σ) and S∗ = S∗(δ, σ),
consider their partial derivatives with respect to e.g. the supply fundamental σ. By the chain
rule, these read

∂S∗(δ, σ)

∂σ
=

∂S(p, σ)

∂p

∂p∗(δ, σ)

∂σ
+

∂S(p, σ)

∂σ
(29)

∂D∗(δ, σ)

∂σ
=

∂D(p, δ)

∂p

∂p∗(δ, σ)

∂σ
+

∂D(p, δ)

∂σ
(30)

Market-clearing requires D∗ = S∗. Hence, demand and supply at equilibrium must have
the same derivative with respect to σ: ∂S∗(δ,σ)

∂σ
= ∂D∗(δ,σ)

∂σ
. Imposing this equality in the above

system implies:

∂S

∂p

∂p∗

∂σ
+

∂S

∂σ
=

∂D

∂p

∂p∗

∂σ
+

∂D

∂σ
(31)

This can be solved for ∂p∗/∂σ, yielding Eq. 21.

Proof of Lemma 2.

By definition, ǫpx ≡ ∂p∗

∂x
x
p
. Up to a constant x, the relationship between ǫpx and the price

level can be understood by studying the sign of the derivative of ∂p∗/∂x
p

with respect to p. In

doing so, it is useful to take account of Eq. 21, which states how ∂p∗/∂x varies with demand
and supply slopes. Algebra shows that

∂ǫ2
px

∂p
= 2ǫpx

x

p2

[

∂2p∗

∂x∂p
p∗ −

∂p∗

∂x

]

(32)

Using the definition of ǫpx we get
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∂ǫ2
px

∂p
= −2

ǫ2
px

p
+ 2ǫpx

x

p

∂2p∗

∂x∂p
(33)

The latter cross derivative can be computed by using Eq. 21. The result is the expression
in Eq. 23, which we call Γx. Finally, divide both sides of Eq. 34 by ǫ2

px/p to obtain Eq. 22.

Proof of Proposition 2.

Note first that, by setting ∂2S
∂p2 −

∂2D
∂p2 < −1

p

(

∂S
∂p

− ∂D
∂p

)

, the last two addenda of Phix give a

negative sum. Part (i) of the Proposition then holds because cross-derivatives ∂2D/∂x∂p and
∂2S/∂x∂p are both zero for uniform fundamentals; hence, Φx < 0. An an implication, price
dependence can only be negative.

Let us now deal with part (ii). Because of the premise, the condition for a positive price
dependence holds to the extent that the last two addenda of Φx are not too large. If ∂2D

∂x∂p
∂D
∂x

>

0, ∂2S
∂x∂p

∂S
∂x

> 0, and ∂D
∂x

∂S
∂x

< 0, then the left-hand side of Φx is always positive. Holding the
denominator fixed, the value at the left-hand side is greater, the larger are the cross-derivatives
in absolute value. But cross-derivatives are not null only for asymmetric shocks.

Proof of Corollary 1.

Whenever market curves are linear or affine in price, second derivatives with respect to p
are null, i.e. ∂2D

∂p2 = ∂2S
∂p2 = 0. Plugging the definitions of uniform and relative fundamentals in

Eq. 23, it is easy to see that Γx = 0. As a result,

∂ǫ2
px

∂p

p

ǫ2
px

= −2

Therefore, ǫ2
px ∼ 1/p2. This holds for both demand and supply fundamentals.

Proof of Proposition 3. Suppose that δ and σ are hit by uniform shocks. By Proposition
2, a decreasing pattern of volatility results. This holds whether market power conditions hold
or not. Hence, if all shocks are uniform, volatility-price patterns are qualitatively invariant
across market regimes, and cannot be used to identify market power.

Proof of Proposition 4. Eq. 26 holds if Γδ,c and Γδ,ic have different signs, and similarly
for Eq. 27. But by Eq. 24, this implies that perfect and imperfect competition yield different
volatility-price patterns. Hence, identification is possible. The expressions for Γδ,c, Γδ,ic, Γσ,c

and Γσ,ic are obtained through substitution of market power conditions and the condition in
footnote 11 into Eq. 24. In doing so, consider that, if ∂S/∂δ = 0, then ∂2S/∂δ∂p = 0 too.
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Figure 1: Linear fit of the relationship between log of the conditional standard deviation of
normalized log-returns, log σt−1(rt), and lagged log-price level log(Pt−1). Clockwise: NordPool
(3 p.m.), Powernext (10 a.m.), APX (8 p.m.). Similar patterns are observed for other hours
within each market. Source: Sapio (2008).

10
2

10
0

Day−ahead electricity price (APX)

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 d

ai
ly

 p
ric

e 
gr

ow
th

 r
at

e

observed
power law fit

23


