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Abstract

This paper contributes to characterizing the probability density of the price returns
in some European day-ahead electricity markets (NordPool, APX, Powernext) by fitting
some flexible and general families of distributions, such as the α-stable, Normal Inverse
Gaussian (NIG), Exponential Power (EP), and Asymmetric Exponential Power (AEP),
and comparing their goodness of fit. The α-stable and the NIG systematically outperform
the EP and AEP models, but the tail behaviours and the skewness are sensitive to the
definition of returns and to the deseasonalization methods. In particular, the logarithmic
transform and volatility rescaling tend to dampen the extreme returns.

JEL Classifications: C16, L94.
Keywords: Electricity prices, α-stable, Normal Inverse Gaussian, Exponential Power,

Asymmetric Exponential Power, goodness-of-fit.

1 Introduction

The “problem of price variation”, as Mandelbrot (1963) dubbed it, has been among the most
debated issues in financial economics for the last many decades. Providing a correct description
of the empirical distribution of returns is essential for the theory and practice of trading and
investments. Indeed, portfolio selection theory based upon variance-based measures of risk
only works under the assumption that returns have finite central moments. Furthermore,
Value-at-Risk calculations, the pricing formulas for contingent claims, the accuracy of price
forecasting and the appropriateness of the econometric methods all depend on the distribution
of returns.

The relevance of these issues is by no means confined to stock market analysis. In markets
for non-storable commodities, such as electricity, trading mechanisms must continuously en-
sure market-clearing, because imbalances between demand and supply would cause blackouts.
The prices quoted in wholesale power exchanges undergo sudden and short-lived excursions,
caused by strategic behaviours and accidental plant failures, while production and consump-
tion smoothing are not feasible. A well-known empirical fact is that the heavy tails observed
in electricity returns distributions cannot be accounted for by the Gaussian law. Forecasting
and risk management are therefore even more crucial than in stock markets, and a “solution”
to the problem of price variation in the context of power exchanges is even more needed.
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It is the aim of this paper to understand the distributional nature of the day-ahead elec-
tricity price returns. More specifically, we ask whether electricity returns display heavy tails
and skewness, and whether the central moments diverge; we also investigate on the time scal-
ing of risk and on possible intra-daily differences in distributional shapes. Answers to these
research questions are sought by comparing the goodness-of-fit performances of the α-stable,
the Normal Inverse Gaussian (NIG), the Exponential Power (EP), and the Asymmetric Expo-
nential Power (AEP) distribution laws. The data are drawn from some major European power
exchanges, such as the Scandinavian NordPool, the Dutch APX, and the French Powernext.
We focus on 1-day returns computed on prices of individual hours, which allow to have a grasp
of the intra-day risk patterns.

The main findings of the paper are the following. First, and expectedly, electricity returns
display heavy tails. This fact is robust across markets and hourly auctions, and holds for
various definitions of returns (log-returns, percentage returns, price changes) and regardless
of the deseasonalization methodology. The tails are fatter in the APX market and in day-
time auctions, and tend to be dampened by the logarithmic transform. Second, the NIG
and the α-stable laws systematically outperform the EP and AEP distributions according to
goodness-of-fit criteria, although no clear ranking can be established between the two “win-
ners”. Because only the α-stable and the NIG distributions are closed under convolution,
fat tails are expected to characterize also returns computed over longer horizons. The esti-
mated characteristic exponent of the α-stable distribution is always between 1 and 2, meaning
that the expected value of the electricity returns converges, but the second moment does not.
However, this is true only to the extent that the α-stable outperforms the NIG. Third, the
skewness is an essential feature of the returns distributions. Some interesting cross-market
variance emerges when Cholesky/scaling log-returns are considered (negative skewness in the
Powernext, positive in the APX). Yet, using other definitions of returns and deseasonalization
methods yields mixed results.

A number of previous works are closely related to the present paper. The α-stable model
was shown to outperform the Hyperbolic and NIG distributions by Rachev, Trück and Weron
(2004, cited in Weron 2009) on EEX daily price differences, and by Weron (2005) on EEX and
NordPool data. In Mugele, Rachev and Trück (2005), NordPool and EEX daily price differ-
ences was best described by stable laws, too, while the performance of the stable distribution
on PolPX data was less successful. Further evidence of power-law tails was found by Bellini
(2002), Byström (2005) and Chan and Gray (2006), who fitted generalized extreme value dis-
tributions by means of peaks-over-threshold and block maxima methods, and by Deng and
Jiang (2005) who followed a quantile function approach to model the distribution of CalPX
and PJM returns. The Generalized Hyperbolic distribution, which includes the NIG as a
special case, was estimated on NordPool data by Eberlein and Stahl (2003). Recent work by
Weron (2009) reports estimates of the α-stable, Hyperbolic and NIG models on data from sev-
eral markets (EEX, Omel, PJM, NEPOOL) and using various measures of price returns. The
results vary across countries and are affected by how the returns are defined (see also the book
by Weron 2006). The probability density function of daily log-returns was modelled as a sym-
metric EP distribution by Bottazzi, Sapio and Secchi (2005) and Bottazzi and Sapio (2007),
whose estimates hinted at Laplacian or even heavier tails. Robinson and Baniak (2002) also
fitted a Laplace distribution, whereas Bosco, Parisio and Pelagatti (2007) used EP-distributed
shocks in a PARMA-GARCH model. Deng, Jiang and Xia (2002) fitted a Cauchy-Laplace
mixture to PJM and CalPX price differences. The present study covers three markets, an-
alyzes relatively large samples, and considers three definitions of price returns (log-returns,
percentage returns, price differences). In this respect, the paper seeks to overcome the main
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limitations of the previous works, as highlighted for instance by Weron (2009, p. 460).
The paper is organized as follows. Section 2 describes the datasets and the deseasonal-

ization methods, and provides summary statistics. The distributional models fitted in the
paper are described in Section 3, whereas Section 4 illustrates the baseline estimation results
concerning log-returns. In Section 5 the robustness of the results is assessed with respect to
other definitions of returns and deseasonalization methods. Section 6 concludes.

2 Data and preliminary analysis

For the purposes of this study, data on day-ahead electricity prices have been collected concern-
ing three major European power exchanges: NordPool (Denmark, Finland, Norway, Sweden),
2191 days from 1 January 1997 to 31 December 2002; APX (the Netherlands), 1457 days from
6 January 2001 to 31 December 2004; and Powernext (France), 1826 days from 1 February
2002 to 31 January 2007.1 In these markets, each day 24 auctions are run simultaneously in
order to determine prices and quantities for each hour of the following day. The day-ahead
prices are determined by uniform price auctions, so that all power is sold and purchased at
the market-clearing price. The time series of day-ahead prices are depicted in Fig. 1 for the
4 p.m. auctions, when demand is typically near to its daily peak, and in Fig. 2 for a night
delivery session (4 a.m.), when average prices and demand are relatively low.

[Fig. 1 and 2 here]

In finance, the price returns are usually defined as logarithmic price differences or log-
returns xht = log pht − log ph,t−1, where pht is the price at day t for the hour-h auction.2 Table
1 provides summary statistics of the log-returns for selected hours, along with the outcomes
of Shapiro-Wilk normality tests and autocorrelation coefficients. This table shows that, while
drifts in power prices are rather weak, the standard deviations are highest at the beginning
of the working day (8 a.m.) and decay afterwards. The skewness is positive and stronger
during the day, and the excess kurtosis is always positive and large, albeit without any clear
intra-day pattern. Hence the probability to observe large positive or negative fluctuations is
greater than in a Gaussian process. The Shapiro-Wilk normality tests strongly reject the null
of a Gaussian distribution (SW = 1) for all markets and all hourly auctions: the test statistics
are always significantly below 1 (p-values, not reported here, are all below 0.0001).

[Table 1 here]

The serial correlations over a daily horizon are always negative, more so in the night-time
auctions; the autocorrelations at lag 7 days are strong, up to 0.5-0.6 in some day-time auctions.
The weekly pattern of economic activities is an obvious determinant of these patterns. Further
time dependencies appear at lower frequencies, due to the seasonal patterns of economic
activity and weather conditions. In addition to linear dependencies, the width of the power
price fluctuations may vary across hours, because bidding strategies may change under different
relative scarcity (Karakatsani and Bunn 2004, Simonsen 2005, Bottazzi, Sapio and Secchi
2005). All of this justifies the use of filters in order to remove the linear and higher-order

1Data sources, respectively: NordPool FTP Server; www.apx.nl; www.powernext.fr.
2Later in the paper (Section 5) we shall discuss some drawbacks with using log-returns and assess the

robustness of the results with respect to other definitions of returns.
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autocorrelations, in such a way that what remains is presumably the outcome of random
shocks to market fundamentals.

The data are filtered in two steps. First, we remove all the linear autocorrelations by
means of the semi-parametric Cholesky factor algorithm introduced by Diebold, Ohanian,
and Berkovitz (1997). The algorithm works as follows:

1. Estimate the covariance matrix Σ of the vector xht, as the Toeplitz matrix built upon
the autocovariance vector γ;3

2. Calculate C as the Cholesky factor of Σ, i.e. C: CC ′ = Σ;

3. Extract the linearly uncorrelated, standardized residuals x̃ht as follows:

x̃ht = C−1xht (1)

Let us call x̃ the Cholesky-filtered log-returns. Second, we model the standard deviation of
the filtered returns as a power function of the lagged price level (which is a proxy for market
scarcity) or, in logs,

log V [x̃ht|ph,t−1] = χ + χ′dht + ρ log ph,t−1 + ρ′(log ph,t−1)dht + ǫht (2)

and rescale the filtered returns in order to obtain homoskedastic samples:4

x∗
ht =

x̃ht

eχ̂+χ̂′dht+ρ̂ log ph,t−1+ρ̂′(log ph,t−1)dht
(3)

Finally, the hourly averages are subtracted. These returns will be referred to as Cholesky-
filtered and rescaled log-returns. In the above equations, V [.] is the variance operator; χ, χ′,
ρ and ρ′ are constant coefficients (their estimated values and indicated with a hat), x̃ht is the
Cholesky-filtered series of log-returns for the hour-h auction at day t; ph,t−1 is the price for the
hour-h auction at day t−1; ǫht is an i.i.d. error term. The dummy variable dht allows both the
slope and the intercept of the scaling regression to vary as the price reaches particularly high
levels. This accounts for the possibility that the price dynamics be characterized by switching
regimes (see Weron 2009 and De Jong 2006 and references therein). In order to estimate
the power-law scaling coefficients, the data of each time series are grouped into equipopulate
bins. Next, the sample standard deviations of the log-returns in each bin are computed, and
the logarithm of the sample standard deviations is OLS-regressed on a constant and on the
logarithm of the mean price level within the corresponding bins.5

The estimates of the variance-price scaling relationship for NordPool and Powernext sug-
gest that the standard deviations of the filtered returns are negatively correlated with the

3A Toeplitz matrix is a matrix which has constant values along all negative-sloping diagonals.
4A scaling relationship between log-return variance and volume levels has also been considered, but it is

seldom significant.
5Estimation of the scaling coefficients has been performed for each number of bins between 8 and 40. One

finds that R2 values are decreasing in the number of bins, and that the point estimates of ρ̂ tend to slightly
decrease in absolute value. A decision was made to focus on scaling based on 40 bins (NordPool), 28 bins
(APX), and 34 bins (Powernext), corresponding to between 52 and 55 observations per bin. Indeed, Monte
Carlo simulations performed by the author show that the profile of scaling exponent estimates, with respect
to the number of bins, is characterized by a flat region around the mentioned values. A larger number of bins
implies more degrees of freedom in the regression, but the volatility estimates within each bin are more noisy,
because they are based on a smaller number of observations, resulting in lower R2 values. As to the use of the
mean prices, choosing the median prices does not affect the results significantly.
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lagged price levels; but the dummy coefficients are large and positive, implying that the
variance-price relationship is increasing at high price levels. The APX scaling exponents,
instead, are quite variable across hours. Even after filtering and rescaling, the log-returns
still display skewness and excess kurtosis; Ljung-Box tests performed using 28 lags (4 weeks)
cannot reject the null of zero serial correlation, while normality tests still reject the null of a
Gaussian distribution.6

This filtering procedure departs from what Weron (2009) calls the “industry standard”,
wherein the electricity price is envisaged as the sum or the product of a (deterministic)
trend/cycle/seasonal component and a stochastic component. Goal of the deseasonalization
techniques used by De Jong (2006) and Weron (2009) is to isolate the stochastic component,
which is then used to compute the price returns. De Jong (2006) regresses the log-prices on
daily dummies, an annual sinusoidal, and an exponentially-weighted moving average, while
Weron (2009) applies a wavelet smoothing technique to deal with the annual cycle, plus a
moving-average filter to remove the average weekly pattern. A problem with these approaches
is that they may not yield the desirable i.i.d. samples. The approach followed in this paper is
a way to solve this problem: the outcome of the Cholesky filter is a serially uncorrelated time
series by construction, while the variance-price power-law scaling takes care of the remaining
heteroskedasticity.

3 Distributions of electricity returns

In characterizing the probability density of the electricity price returns, it is desirable to select
classes of probability distributions which are general and flexible enough as to yield different
implications on the decay of the tails, on skewness, on the convergence of the central moments
and on the time scaling of risk. In this work one focuses on the α-stable, Normal Inverse
Gaussian, Exponential Power and Asymmetric Exponential Power distribution families. These
have been frequently analyzed in the relevant literature, as mentioned in the Introduction.

A first class of probability distributions is relevant if one views the electricity returns as
resulting from the sum of n i.i.d. shocks uj, not restricted to have finite moments, with j =
1, ..., n. The Generalized Central Limit Theorem states that the distribution of 1√

n

∑n
j=1 ujt

converges to an α-stable distribution as n → ∞ (see Samorodnitsky and Taqqu 1994, Borak,
Härdle and Weron 2005). A random variable is α-stable if and only if its characteristic function
reads

φ(v) = e−σα|v|α{1+iβ(sign v) tan πv
2

[(σ|v|)1−α−1]}+iµv (4)

if α 6= 1; or

φ(v) = e−σ|v|{1+iβ(sign v) 2
π

log(σ|v|)}+iµv (5)

if α = 1. An α-stable distribution is defined by four parameters: a characteristic exponent
or stability index α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter σ > 0, and
a location parameter µ ∈ ℜ. The stable distribution corresponds to a Normal when α = 2,
whereas α < 2 implies that the variance is infinite and the tails asymptotically decay as power-
laws. When α = 1, the Cauchy distribution results, but if α < 1 even the first central moment
diverges.

6The summary statistics for the Cholesky-filtered and rescaled variables and detailed information on the
variance-price scaling estimates are available upon request.

5



A second model assumes that the electricity returns are variance-mean mixtures of Gaus-
sian random variables. If the mixing distribution is a generalized inverse Gaussian law with
λ = −1/2, the Normal Inverse Gaussian (NIG) law obtains. The probability density function
reads (Barndorff-Nielsen 1997)

fNIG(x; α, β, σ, µ) =
ασ

π
eσ
√

α2−β2+β(x−µ)K1(α
√

σ2 + (x − µ)2)√
σ2 + (x − µ)2

(6)

The parameters are α (steepness), β (skewness), σ > 0 (scale), and µ ∈ ℜ (location). The
constant K1 is the modified Bessel function of the third kind with index 1, also known as
the MacDonald function. The NIG exhibits semi-heavy tails, i.e. heavier than Gaussian, but
lighter than power-law. The Cauchy distribution is the special case fNIG(x; 0, 0, 1, 0). The
tails of the NIG distribution taper off according to the following asymptotic formula:

fNIG(x) ≈ |x|−3/2e(∓α+β)x (7)

for x → ±∞. Notice that both the α-stable and the NIG distribution are closed to
convolution. This feature is especially useful in the time scaling of risk, e.g. in deriving
long-term risk from daily risk (Weron 2004).

A third class of distributions obtains if one assumes x ∼ i.i.d. N(0, hψ), where h ∼ i.i.d.
Exponential. As shown by Fu et al. (2005), if ψ ≥ 0 this model yields an Exponential Power
distribution with shape parameter b > 0 (inversely related to ψ), scale parameter a, and
position parameter µ:

fEP (x; a, b, µ) =
1

2ab1/bΓ(1 + 1
b
)
e−

1
b
|x−µ

a
|b (8)

In Eq. 8, Γ(.) is the gamma function.7 The EP distribution reduces to a Laplace if b = 1
and to a Normal if b = 2. As b gets smaller, the density becomes heavier-tailed and more
sharply peaked.8

The EP family only includes symmetric probability distributions. However, it may be
desirable to allow for some more flexibility in modelling the skewness, in order to yield a more
punctual comparison with the α-stable and NIG laws. The EP family has been generalized in
this direction by Bottazzi and Secchi (2007), who have introduced the Asymmetric Exponential
Power (AEP) family:

fAEP (x; al, ar, bl, br, µ) =
1

alA0(bl) + arA0(br)
e
−

(
1
bl
|x−µ

al
|blθ(µ−x)+ 1

br
|x−µ

ar
|br θ(x−µ)

)

(9)

where θ(y) (for a generic variable y) is the Heaviside theta function and

Ak(y) = y
k+1

y
−1Γ

(
k + 1

y

)

The AEP density is characterized by two positive shape parameters (bl, br), two positive
scale parameters (al, ar), and one position parameter (µ). The magnitudes of the shape

7This distribution was first used in economics by Bottazzi and Secchi (2003), and is also known as Subbotin
distribution (Subbotin 1923).

8West (1987) represented the Exponential Power distribution as a scale mixture of Normals with α-stable
mixing distribution whose stability index is equal to b/2, but his result is limited to b ≥ 1. See also Andrews
and Mellows (1974) and Choy and Walker (2003).
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parameters tune the behavior of the upper and of the lower tail, respectively. The AEP
reduces to the EP distribution when al = ar and bl = br. Unlike the α-stable and NIG
distributions, the EP and AEP distributions are not closed under convolution. Hence, the
distribution of returns computed over longer time horizons tends to converge to the Gaussian
law.

The parameters of the stable distribution are estimated here by means of the characteristic
function regression method (Koutrouvelis 1980, Kogon and Williams 1998). This method was
shown by Weron (2004) and Scalas and Kim (2007) to be more accurate than alternative
methods. We use Maximum Likelihood to estimate the parameters of the NIG, EP, and AEP
distributions. The MFE Toolbox (Weron 2006) is exploited for the estimation of stable and
NIG laws, whereas the EP and AEP distributions have been fitted by making use of the
Subbotools package available at http://cafim.sssup.it/∼giulio/software/subbotools/ (see also
Bottazzi 2004, Bottazzi and Secchi 2007).

The goodness of fit of the estimated distribution models is assessed by means of the
Kolmogorov-Smirnov and Cramer-von Mises statistics (D’Agostino and Stephens 1986). The
Kolmogorov-Smirnov D statistic is defined as the maximum absolute deviation between the
theoretical and empirical CDFs:

D = max

(∣∣∣∣
i

N
− zi

∣∣∣∣
)

(10)

where zi is the i-th ordinate of a theoretical cumulative distribution function under testing,
and N the sample size. The Cramer-von Mises W 2 test statistics is based on the quadratic
deviations between theoretical and empirical CDFs:

W 2 =
1

12N
+

N∑

i=1

[
zi −

2i − 1

2N

]2

(11)

The asymptotic 5% limiting value of D is 1.36/
√

N , that is 0.0291 (NordPool), 0.0356
(APX), 0.0318 (Powernext). These are the Monte Carlo asymptotic values, under the as-
sumption that sample sizes are large enough as to rule out the need for distribution-specific
small sample corrections. The 5% limiting value for W 2 is 0.443 - an exact result valid for any
sample size greater or equal than 5 (Stephens 1974).

4 Fitting the empirical probability densities

The estimation results for the α-stable, NIG, EP and AEP distributions are reported in Ta-
bles 2, 3 and 4 for selected hourly auctions in the NordPool, APX, and Powernext respectively,
along with goodness-of-fit statistics.

[Tables 2, 3, 4 here]

The estimated stability index α for the stable distribution is always below the Normal
value (i.e. 2). NordPool and Powernext point estimates of α lie within the range 1.70-1.85;
APX estimates are slighly lower, more so in the 4 a.m. and 8 a.m. auctions: therefore, the
tails of APX log-returns decay more slowly. The skewness parameter β in the APX is positive
in all hours, whereas β < 0 in all NordPool and Powernext hourly auctions. These patterns
are confirmed - at least qualitatively - by the estimated NIG parameters: the log-returns in
all markets display heavy tails; the steepness parameter is lower in the APX market; the
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distribution of Powernext log-returns is characterized by a negative skew in all hours. This
time the parameter β in the NordPool assumes negative values only in some hours (4 a.m.,
midnight), and is below zero in some APX auctions (4 a.m., 8 a.m.).

As to the EP distribution, the point estimates of the shape parameter are systematically
below the Normal value - a sign of heavy tails. The shape coefficients are often around the
Laplace value (namely 1), with some deviations (most frequently above 1 in the Powernext
and below 1 in the APX auctions). The AEP results show that the left tails are heavier in
the NordPool and APX night auctions, and lighter during the day (bl < br by night, the
opposite in the other hours). Consistent with the α-stable and NIG estimates of the skewness
parameter, the Powernext left tails are longer in all auctions. Note that the point estimates
of ar and al are very similar to each other in all markets; as an implication, the skewness in
log-returns is mainly due to tail asymmetries, not so much to asymmetries in scale.

The reported goodness-of-fit criteria bring evidence in support of the α-stable and NIG
models, which outperform the EP and AEP distributions. Both the α-stable and NIG laws
provide excellent fits, but neither clearly prevails on the other, as both have some success in
a certain number of hourly auctions. In fact, in some hours the NIG fits better according to
one goodness-of-fit criterion, while the α-stable fits better according to the other criterion.
Notice furtherly that the (symmetric) EP distribution virtually always provides the worst fit
- presumably because of its inability to capture the skewness. Finally, although the AEP is
outperformed by the stable and NIG laws, the goodness-of-fit statistics for the AEP distribu-
tion are often below the 5% critical values. The fitting performances of the α-stable, NIG, EP
and AEP distributions in a selected hourly auction (4 p.m.) can be appreciated in Figure 3.

[Fig. 3 here]

5 Robustness

Unlike stock prices and exchange rates, the electricity prices process cannot be approximated
by a geometric random walk. Indeed, there is no widespread support in favour of either
multiplicative or additive representations of electricity price processes; at the same time, it is
quite clear that the price dynamics is driven by multiple seasonal factors and is possibly subject
to regime shifts. As major implications, there is no unambiguous way to define price returns,
neither can one determine beforehand what method is most appropriate to deseasonalize the
data. Getting the tails and skewness “right” - a major issue in risk management - does not
seem easy, as the estimated distributional parameters may change depending on the definition
of returns and on the filtering methodology. These issues are addressed in this section, whereby
the robustness of results is assessed along two lines: (i) change the definition of returns while
keeping the same deseasonalization method as before (Cholesky filter plus volatility-price
rescaling); (ii) keep working on log-returns while changing the deseasonalization method.

There are convincing reasons to expect that the shape of the returns distribution may be
sensitive to the very definition of returns. Log-returns are usually considered as approximations
of the percentage returns, defined as pt−pt−1

pt−1
. The difference between a log-return xt and a

percentage return is in the order of 1
2
x2

t + 1
6
x3

t + ... (Eberlein and Keller 1995). While this
is negligible in financial markets, the approximation may be quite poor in power exchanges,
due to the extremely large magnitudes of electricity price fluctuations. A second problem is
that the logarithmic transformation dampens the extreme returns and makes the distribution
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of returns more symmetric, thereby affecting the estimated shape and skewness parameters.
Empirically, this effect has been verified by Weron (2009), who finds that the distribution
of price changes pt − pt−1 displays heavier tails than the distribution of log-returns. For the
above reasons, the robustness of the foregoing results needs to be checked by using alternative
definitions of price returns.

Table 5 reports the estimation results when the α-stable, NIG, EP and AEP models are
fitted on the empirical probability densities of percentage returns (upper layers) and price
changes (bottom layers), Cholesky-filtered and rescaled as in Section 2.9 A first result is that
in most hours, the distributions of price changes and percentage returns have heavier tails than
the distributions of logarithmic returns: indeed, the point estimates of the shape parameters
are lower. There are some exceptions concerning APX and Powernext: in those markets, the
percentage returns are less fat-tailed than the log-returns from 4 a.m. to 4 p.m., and the tails
of the price changes decay faster during the night. Second, the patterns of skewness observed
for log-returns are not robust when one consider percentage returns and price changes. For
instance, the NordPool and Powernext price changes distributions are closer to symmetric, but
there is a negative skew in the APX (APX log-returns on the contrary displayed a positive
skew). Less clear are the results for percentage returns, with alternating signs, although
the magnitudes of the skewness parameters tend to be mild. Different distributions give
contrasting results: the Powernext AEP left shape parameter bl is now often slightly larger
than the right shape parameter br, hinting at a positive skew; but α-stable skewness parameters
for the same market are often negative. These findings are only partly in line with the
evidence in Weron (2009), and show that analyzing returns of individual hours can shed light
on interesting intra-day patterns. Third and last, the comparative performance of the α-
stable law improves for the percentage returns and for the NordPool price changes (i.e. it
is the best-fitting distribution in a greater number of hourly auctions), while the NIG keeps
prevailing as a description of APX and Powernext price changes. The AEP law is now the
best-fitting distribution in two instances (APX 4 a.m. percentage returns, Powernext 4 a.m.
price changes).

[Table 5 here]

The results presented in Section 4 may also be sensitive to the filtering methodology. On
the one hand, if power-law volatility-price scaling is an effective way of controlling for het-
eroskedasticity, the time series of log-returns filtered using only the Cholesky algorithm should
be the superposition of underlying homoskedastic (and possibly non-heavy tailed) series. It
should therefore display longer tails. One can therefore assess the impact of heteroskedasticity
on the distributional shapes by fitting the empirical density functions of the log-returns after
applying only the Cholesky filter (i.e. x̃), without taking care of volatility-price scaling. On
the other hand, the Cholesky filter is built upon the sample autocovariance function; hence it
may suffer from the same limitations as Fourier-based filters if the time series is non-stationary.
The outcome of applying a filter that is less suited to deal with non-stationarities would prob-
ably be a mixture of random variables, leading to spurious estimates of the asymmetry and
tail parameters. Wavelet filters should be immune to these problems. Following Weron (2006,
2009), hereby one approximates the long-term seasonal component of the time series of elec-
tricity prices by means of an S8 approximation, based on a Daubechies-20 wavelet filter; then
the long-term seasonal component is subtracted from the time series and the weekly pattern is
removed by using a moving-average filter. The minimum of the resulting time series is aligned

9Information on the scale and location parameters, which is less essential, is omitted in order to save space.
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with the minimum of the original price series, and then the log-returns are computed, ready
for the α-stable, NIG, EP, and AEP fit.

The estimates in Table 6 refer to Cholesky-filtered and wavelet-filtered log-returns (top
and bottom layers, respectively). These estimates show that, as compared to the distributions
of Cholesky-filtered and rescaled log-returns, the tails are at least as fat. One noteworthy
exception is represented by the NIG distribution, whose shape parameter estimates are un-
usually high. The skewness estimates in the case of Cholesky-filtered log-returns are basically
confirmed for APX (positive) and Powernext (negative), although magnitudes are milder;
NordPool log-returns are now approximately symmetric. As to wavelet-filtered log-returns,
the skewness is now positive in the NordPool (it was often negative for Cholesky-filtered and
rescaled log-returns), mildly negative in APX (it was positive), and the negative sign in the
Powernext is confirmed in most hours, but magnitudes are smaller. Finally, the α-stable law
now displays an improved fitting performance and comes to dominate the other distributions
in a greater number of hours. The AEP provides the best fit twice (4 a.m. and 8 p.m.) in the
Powernext market.

[Table 6 here]

6 Conclusion

This paper contributes to characterizing the probability density of the price returns in some
European day-ahead electricity markets (NordPool, APX, Powernext) by fitting some flexible
and general families of distributions, such as the α-stable, Normal Inverse Gaussian (NIG),
Exponential Power (EP), and Asymmetric Exponential Power (AEP), and comparing their
goodness of fit. One finds that the probability to observe extremely large (positive or nega-
tive) returns is larger than in Gaussian phenomena, confirming a very robust finding in the
literature. The goodness-of-fit tests suggest that the α-stable and the NIG systematically out-
perform the EP and AEP models, although no clear ranking can be established between the
two “winners”. The evidence of heavy tails is robust to changing the definition of returns (from
log-returns to percentage returns and price changes) and the deseasonalization methodology.
Yet, the point estimates differ somehow across cases; in particular, the logarithmic transform
and volatility rescaling tend to dampen the extreme returns. Both the skewness and the tail
behaviour vary across markets, and one observes also some interesting intra-daily patterns,
which could not be detected by previous works, which focused on average daily returns.

The evidence of heavy tails is in accordance with the intuition behind the regime-switching
and jump-diffusion models. If the returns can be represented as scale-location mixtures - as
the good performance of the NIG distribution seems to suggest - the market is characterized by
low amounts of volatility most of the time, but instances of extreme volatility are not negligibly
rare. This is very much consistent with the idea that power exchanges undergo transitions
between quiet and turbulent price regimes. The better fitting performance of the α-stable
and NIG laws, as compared to the EP and AEP models, suggests that there is a time scaling
between daily and longer-term market risk: both the α-stable and the NIG distributions
are closed under convolution, therefore their shapes are preserved under time aggregation.
Moreover, to the extent that the α-stable distribution outperforms the NIG, the results signal
the non-convergence of the second moment. This is bad news vis-à-vis the use of price volatility
as a measure of price risk in power exchanges. At the same time, the results suggests that the
skewness and the kurtosis are at least as important for risk management as volatility, in line
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with the theoretical results obtained by Bessembinder and Lemmon (2002) about the pricing
of power forwards. Still, in interpreting the results one has to acknowledge the relatively
small numerosity of the data in the tails of electricity returns distributions, as compared to
the wealth of high-frequency financial data. This poses some estimation and goodness-of-fit
problems, as pointed out by Weron, Bierbrauer and Trück (2004). Such problems are going to
persist unless we wait long enough as to have many years of data available. Thus, estimation
on data from power exchanges established more recently is not expected to yield better results
- at least not in the near future.

The results obtained in this paper can be seen as the starting point for further work. One
could extend the policy-oriented analysis performed by Robinson and Baniak (2002) on the
impact of Contracts for Differences (CfDs) and test the effects of further policy measures, such
as the introduction of the EU ETS scheme for carbon emissions and the liberalization of retail
trading.
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Figure 1: Plots of NordPool, APX and Powernext day-ahead prices for the 4 p.m. auctions.
Legend: NOK = Norwegian Krone; Eur = Euro; KWh = KiloWatt per hour.
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Figure 2: Plots of NordPool, APX and Powernext day-ahead prices, for the 4 a.m. auctions.
Legend: NOK = Norwegian Krone; Eur = Euro; KWh = KiloWatt per hour.
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Table 1: Summary statistics of log-returns in the NordPool, APX, and Powernext markets,
along with Shapiro-Wilk statistics and autocorrelation coefficients.

Auctions mean std.dev. skewness kurtosis SW acf(1) acf(7)

NordPool

4 am -0.0000 0.1380 0.4668 28.2410 0.7167 -0.2715 0.0371
8 am -0.0000 0.2107 1.0293 19.9273 0.7829 -0.1508 0.5278
12 (noon) -0.0000 0.1384 1.0630 20.5106 0.8204 -0.1233 0.4812
4 pm -0.0000 0.1193 1.2205 14.4644 0.8291 -0.0384 0.5035
8 pm 0.0000 0.0936 0.8641 43.0378 0.7597 -0.1489 0.1823
12 (midnight) 0.0000 0.0623 -0.3141 13.1957 0.8584 -0.0684 0.1075
APX

4 am -0.0009 1.2534 0.2439 23.7528 0.5273 -0.4427 0.0204
8 am -0.0002 1.6831 0.3925 15.1495 0.6517 -0.3893 0.3665
12 (noon) 0.0003 0.6921 0.8037 6.5865 0.9355 -0.2268 0.5297
4 pm -0.0004 0.6345 0.8864 9.8323 0.8842 -0.1865 0.4836
8 pm -0.0003 0.3410 -0.1048 9.8369 0.8879 -0.3801 0.1472
12 (midnight) -0.0002 0.4831 0.6416 169.4452 0.4380 -0.4664 0.0193
Powernext

4 am -0.0000 0.5119 0.1385 83.7746 0.6818 -0.3742 0.3586
8 am -0.0000 0.6526 0.7423 6.8751 0.9071 -0.2713 0.6393
12 (noon) -0.0000 0.4424 1.0837 11.1308 0.8926 -0.2023 0.4539
4 pm 0.0000 0.4484 1.0351 9.3050 0.9049 -0.2118 0.5202
8 pm -0.0000 0.2924 0.6311 6.7971 0.9283 -0.1523 0.3808
12 (midnight) 0.0000 0.2103 0.4558 13.4018 0.8779 -0.2977 0.1724
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Table 2: Parameter estimates and goodness-of-fit statistics for α-stable, NIG, EP, and AEP
distributions fitted to the filtered and rescaled log-returns: NordPool.

NordPool Parameters Test values

Auctions Distrib. tail skewness scale location D W 2

4 AM α-stable 1.7750 -0.1536 0.5910 0.0263 0.0133 0.1908
NIG 1.0299 -0.1707 1.0252 0.1723 0.0185 0.1461

EP 1.1238 - 0.7803 0.0000 0.0380 0.6938
AEP 1.0261; 1.4123 - 0.8033; 0.7961 0.0000 0.0300 0.3132

8 AM α-stable 1.6997 -0.0989 0.6101 -0.0177 0.0135 0.1066
NIG 0.7107 0.0030 0.9164 -0.0039 0.0144 0.0655

EP 0.9979 - 0.7992 0.0000 0.0211 0.2575
AEP 1.0434; 0.9763 - 0.8014; 0.8047 0.0000 0.0249 0.2751

12 (noon) α-stable 1.7494 -0.0027 0.6447 -0.0162 0.0112 0.0991
NIG 0.8139 0.0410 1.0472 -0.0528 0.0118 0.0479

EP 1.0845 - 0.8471 0.0000 0.0263 0.2472
AEP 1.1774; 1.0393 - 0.8512; 0.8562 0.0000 0.0220 0.2098

4 PM α-stable 1.7553 -0.1158 0.6350 -0.0213 0.0133 0.1711
NIG 0.8327 0.0284 1.0324 -0.0352 0.0116 0.0470

EP 1.0872 - 0.8324 0.0000 0.0256 0.2483
AEP 1.1647; 1.0458 - 0.8350; 0.8391 0.0000 0.0250 0.2214

8 PM α-stable 1.7608 -0.1242 0.6446 -0.0285 0.0110 0.1276
NIG 0.8325 0.0168 1.0559 -0.0213 0.0141 0.0583

EP 1.0831 - 0.8411 0.0000 0.0235 0.2328
AEP 1.1424; 1.0513 - 0.8432; 0.8467 0.0000 0.0234 0.2424

12 (midnight) α-stable 1.7946 -0.3804 0.6329 -0.0135 0.0202 0.2138
NIG 1.0763 -0.1499 1.1719 0.1648 0.0120 0.0264

EP 1.2292 - 0.8454 0.0000 0.0266 0.3865
AEP 1.1209; 1.3770 - 0.8501; 0.8458 0.0000 0.0118 0.0487

Tail: α (stable and NIG), b (EP), bl and br (AEP). Skewness: β (stable and NIG). Scale: σ (stable and
NIG), a (EP), al and ar (AEP). Location: µ.

Asymptotic 5% limiting values: 0.0291 (D), 0.443 (W 2).
Bold-face figures indicate the minimum goodness-of-fit test values.
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Table 3: Parameter estimates and goodness-of-fit statistics for α-stable, NIG, EP, and AEP
distributions fitted to the filtered and rescaled log-returns: APX.

APX Parameters Test values

Auctions Distrib. tail skewness scale location D W 2

4 AM α-stable 1.5158 0.3067 0.5181 0.2085 0.0219 0.0355

NIG 0.4264 -0.0869 0.6303 0.1312 0.0348 0.3584
EP 0.7562 - 0.6841 0.0000 0.0659 1.9361
AEP 0.6904; 1.0266 - 0.7324; 0.7045 0.0000 0.0377 0.4536

8 AM α-stable 1.3876 0.3903 0.5054 0.3332 0.0341 0.0750

NIG 0.3093 -0.0649 0.5851 0.1255 0.0355 0.3809
EP 0.6893 - 0.6893 0.0000 0.0735 2.4395
AEP 0.6231; 0.9073 - 0.7363; 0.7028 0.0000 0.0406 0.3575

12 (noon) α-stable 1.7749 0.6614 0.6317 0.0215 0.0215 0.2227
NIG 1.1050 0.2664 1.1675 -0.2900 0.0132 0.0434

EP 1.2244 - 0.8559 0.0000 0.0480 0.6441
AEP 1.5558; 1.0607 - 0.8654; 0.8717 0.0000 0.0149 0.0565

4 PM α-stable 1.6632 0.1908 0.5824 -0.0119 0.0202 0.1229
NIG 0.7513 0.1063 0.8877 -0.1269 0.0186 0.0812

EP 1.0219 - 0.7840 0.0000 0.0429 0.4586
AEP 1.1819; 0.9421 - 0.7880; 0.7993 0.0000 0.0213 0.1735

8 PM α-stable 1.6520 0.1309 0.5986 -0.0158 0.0161 0.4738
NIG 0.7178 0.0784 0.9181 -0.1010 0.0204 0.0898

EP 1.0484 - 0.8218 0.0000 0.0412 0.3888
AEP 1.1942; 0.9730 - 0.8256; 0.8353 0.0000 0.0269 0.2098

12 (midnight) α-stable 1.6831 0.1040 0.5425 0.0156 0.0258 0.0346

NIG 0.5396 0.0012 0.6859 -0.0015 0.0216 0.1137
EP 0.8146 - 0.6737 0.0000 0.0277 0.3375
AEP 0.7958; 0.8584 - 0.6795; 0.6768 0.0000 0.0333 0.3597

Tail: α (stable and NIG), b (EP), bl and br (AEP). Skewness: β (stable and NIG). Scale: σ (stable and
NIG), a (EP), al and ar (AEP). Location: µ.

Asymptotic 5% limiting values: 0.0356 (D), 0.443 (W 2).
Bold-face figures indicate the minimum goodness-of-fit test values.
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Table 4: Parameter estimates and goodness-of-fit statistics for α-stable, NIG, EP, and AEP
distributions fitted to the filtered and rescaled log-returns: Powernext.

Powernext Parameters Test values

Auctions Distrib. tail skewness scale location D W 2

4 AM α-stable 1.8312 -0.4342 0.6038 0.0082 0.0120 0.0510

NIG 1.2566 -0.2787 1.1539 0.2624 0.0181 0.0828
EP 1.1797 - 0.7905 0.0000 0.0480 0.7975
AEP 1.0566; 1.6008 - 0.8201; 0.8150 0.0000 0.0288 0.2274

8 AM α-stable 1.7688 -0.6255 0.5946 -0.0235 0.0137 0.0577
NIG 1.0771 -0.2594 1.0354 0.2569 0.0108 0.0224

EP 1.1690 - 0.7963 0.0000 0.0490 0.9730
AEP 1.0135; 1.4289 - 0.8072; 0.7973 0.0000 0.0229 0.1169

12 (noon) α-stable 1.7186 -0.2653 0.5860 -0.0295 0.0123 0.2397
NIG 0.8389 -0.0525 0.9327 0.0585 0.0128 0.0568

EP 1.0801 - 0.7820 0.0000 0.0300 0.2743
AEP 1.0479; 1.1127 - 0.7836; 0.7808 0.0000 0.0238 0.2124

4 PM α-stable 1.7744 -0.5740 0.6182 -0.0558 0.0140 0.3900
NIG 1.0057 -0.1229 1.0977 0.1351 0.0117 0.0513

EP 1.2018 - 0.8338 0.0000 0.0354 0.4203
AEP 1.1266; 1.2595 - 0.8331; 0.8281 0.0000 0.0261 0.2295

8 PM α-stable 1.7473 -0.2874 0.6255 -0.0241 0.0141 0.1306
NIG 0.8779 -0.0660 1.0430 0.0786 0.0098 0.0255

EP 1.1305 - 0.8325 0.0000 0.0263 0.2063
AEP 1.0786; 1.1721 - 0.8319; 0.8280 0.0000 0.0185 0.1200

12 (midnight) α-stable 1.8102 -0.6648 0.6420 -0.0294 0.0122 0.1364
NIG 1.1885 -0.2262 1.2658 0.2454 0.0138 0.0673

EP 1.3072 - 0.8767 0.0000 0.0348 0.5336
AEP 1.1684;1.5158 - 0.8817; 0.8790 0.0000 0.0175 0.1478

Tail: α (stable and NIG), b (EP), bl and br (AEP). Skewness: β (stable and NIG). Scale: σ (stable and
NIG), a (EP), al and ar (AEP). Location: µ.

Asymptotic 5% limiting values: 0.0318 (D), 0.443 (W 2).
Bold-face figures indicate the minimum goodness-of-fit test values.
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Figure 3: Density fit of filtered and rescaled log-returns: NordPool, APX, and Powernext 4
p.m. auctions.
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Table 5: Parameter estimates and goodness-of-fit statistics for α-stable, NIG, EP, and AEP distributions. Top layers: Cholesky-filtered
and rescaled percentage returns. Bottom layers: Cholesky-filtered and rescaled price changes.

Legend. Tail: α (stable and NIG), b (EP), bl and br (AEP). Skewness: β (stable and NIG).
Asymptotic 5% limiting values: 0.0291 (D, NordPool), 0.0356 (D, APX), 0.0318 (D, Powernext), 0.443 (W 2).
Bold-face figures indicate the minimum goodness-of-fit test values.

NordPool APX Powernext

Auctions Distrib. tail skewness D W2 tail skewness D W2 tail skewness D W2

Percentage returns

4 AM α-stable 1.7601 0.0357 0.0082 0.0207 1.3853 -0.7461 0.0477 0.5850 1.6046 -0.5874 0.0229 0.1364

NIG 0.9289 0.0098 0.0119 0.0526 0.1848 0.0043 0.0473 1.0026 0.5143 0.0694 0.0306 0.2866
EP 1.1555 - 0.0184 0.1873 0.5968 - 0.0535 1.2675 0.7526 - 0.0454 0.9482
AEP 1.1667; 1.1465 - 0.0178 0.1859 0.8469; 1.7175 - 0.0469 0.6978 0.7423; 0.7555 - 0.0486 0.9994

8 AM α-stable 1.6227 -0.0139 0.0176 0.1590 1.2095 -0.1256 0.0221 0.1497 1.6464 0.1672 0.0209 0.1280

NIG 0.5102 0.0523 0.0166 0.0713 0.0425 0.0122 0.0388 0.6097 0.5762 0.0147 0.0199 0.2110
EP 0.8235 - 0.0411 0.7424 0.4581 0.0000 0.1233 6.8636 0.8996 - 0.0349 0.5283
AEP 0.9461; 0.7715 - 0.0296 0.2735 0.7217; 1.0243 - 0.0431 0.8278 0.9089; 0.8938 - 0.0326 0.5096

12 (noon) α-stable 1.7699 0.1106 0.0147 0.0624 1.1537 0.2139 0.0171 0.0672 1.4329 -0.1575 0.0139 0.0766

NIG 0.7739 0.1199 0.0191 0.1656 0.1066 0.0229 0.0159 0.0535 0.4352 -0.0256 0.0218 0.1382
EP 0.9735 - 0.0408 0.9430 0.5422 - 0.0894 2.5538 0.7390 - 0.0329 0.4407
AEP 1.2500; 0.9019 - 0.0283 0.4420 0.5328; 0.5818 - 0.0384 0.5274 0.7288; 0.7464 - 0.0314 0.4142

4 PM α-stable 1.7506 0.1628 0.0139 0.0886 1.2728 0.1556 0.0162 0.0568 1.5934 -0.1482 0.0127 0.0651

NIG 0.7985 0.1359 0.0143 0.0403 0.1701 0.0462 0.0235 0.1966 0.4663 0.0021 0.0199 0.1148
EP 1.0205 - 0.0430 0.9258 0.5650 - 0.0996 3.7912 0.7762 - 0.0286 0.4574
AEP 1.2837; 0.9251 - 0.0228 0.2031 0.6743; 0.5689 - 0.0436 0.7330 0.8105; 0.7597 - 0.0330 0.4611

8 PM α-stable 1.7344 0.0949 0.0120 0.0909 1.6523 0.3390 0.0185 0.0585 1.8009 0.2397 0.0113 0.0235

NIG 0.7287 0.0928 0.0137 0.0728 0.7538 0.2542 0.0274 0.1576 0.9521 0.1711 0.0165 0.0958
EP 1.0007 - 0.0376 0.5930 0.9065 - 0.0781 2.4277 1.0947 - 0.0385 0.6816
AEP 1.1944; 0.9284 - 0.0232 0.2478 1.6815; 0.8225 - 0.0299 0.2811 1.3845; 0.9950 - 0.0255 0.2554

12 (midnight) α-stable 1.8025 -0.2344 0.0157 0.1124 1.7001 -1.0000 0.1330 6.3918 1.8899 -0.2964 0.0149 0.0334
NIG 1.0913 -0.0772 0.0128 0.0392 0.4942 0.1024 0.0221 0.1155 1.4407 -0.0210 0.0113 0.0285

EP 1.2521 - 0.0245 0.1600 0.4621 - 0.4084 99.4721 1.4470 - 0.0155 0.0711
AEP 1.1997; 1.3100 - 0.0197 0.0674 0.6949; 3.3029 - 0.1279 3.5804 1.4595; 1.4376 - 0.0168 0.0793

Price changes

4 AM α-stable 1.6971 -0.2596 0.0183 0.1204 1.7924 -0.3495 0.0162 0.0487 1.8861 0.7159 0.0172 0.1173
NIG 0.7944 -0.0678 0.0132 0.0872 1.0989 -0.1570 0.0117 0.0263 1.6595 0.2079 0.0152 0.0807
EP 0.6237 - 0.0322 0.4607 1.2815 - 0.0266 0.2532 1.4724 - 0.0163 0.1359
AEP 0.9799; 1.0960 - 0.0221 0.3037 1.0236; 1.1981 - 0.0153 0.0616 1.6274; 1.3686 - 0.0190 0.0680

8 AM α-stable 1.6136 -0.0794 0.0124 0.0397 1.7186 -0.2948 0.0374 0.1449 1.7706 -0.2979 0.0314 0.1547
NIG 0.4924 0.0186 0.0208 0.2354 0.7468 -0.0124 0.0224 0.1915 0.9708 -0.0093 0.0110 0.0302

EP 0.7959 - 0.0375 0.8018 0.9950 - 0.0352 0.4555 1.1434 - 0.0180 0.1221
AEP 0.8523; 0.7687 - 0.0379 0.6920 0.1031; 0.3799 - 0.0417 0.4929 1.1850; 1.1193 - 0.0209 0.1504

12 (noon) α-stable 1.7239 0.1265 0.0167 0.0891 1.3951 -0.0885 0.0368 0.1598 1.5186 -0.0255 0.0324 0.0892

NIG 0.6638 0.0758 0.0191 0.1708 0.3059 0.0743 0.0239 0.1747 0.4351 0.0440 0.0231 0.1789
EP 0.8814 - 0.0469 0.9318 0.6739 - 0.0781 2.6601 0.7208 - 0.0494 1.0317
AEP 1.0399; 0.8474 - 0.0352 0.5409 0.4287; 0.1061 - 0.0289 0.2943 0.8093; 0.6770 - 0.0319 0.4685

4 PM α-stable 1.7237 0.1361 0.0278 0.1118 1.3386 -0.1266 0.0307 0.2424 1.5252 -0.1906 0.0453 0.8678
NIG 0.7389 0.1173 0.0169 0.1295 0.2013 0.0478 0.0300 0.1919 0.3569 0.0079 0.0311 0.2986

EP 0.2201 - 0.0464 1.0360 0.5801 - 0.0953 3.3317 0.7068 - 0.0392 0.7774
AEP 1.1818; 0.8735 - 0.0320 0.3599 0.4019; 0.1754 - 0.0336 0.4289 0.7435; 0.6884 - 0.0366 0.6522

8 PM α-stable 1.7509 0.0752 0.0320 0.1361 1.1560 -0.2662 0.0176 0.0514 1.7136 -0.0556 0.0143 0.0701

NIG 0.6660 0.0400 0.0189 0.1407 0.1504 0.0283 0.0199 0.1369 0.7078 0.0730 0.0201 0.1237
EP 0.4473 - 0.0326 0.4684 0.5909 - 0.0789 2.2140 0.9454 - 0.0420 0.6012
AEP 0.9859; 0.8856 - 0.0234 0.3973 0.9745; 0.8882 - 0.0308 0.2658 1.0777; 0.8835 - 0.0272 0.3693

12 (midnight) α-stable 1.7473 -0.1336 0.0299 0.1708 1.6631 0.2094 0.0398 0.1232 1.8196 -0.1083 0.0310 0.1257
NIG 0.9149 -0.0403 0.0087 0.0261 0.8023 0.2030 0.0187 0.1034 1.1197 0.0230 0.0114 0.0388

EP 0.4005 - 0.0192 0.1206 0.9733 - 0.0596 1.2475 1.2703 - 0.0172 0.0776
AEP 1.1200; 1.1702 - 0.0161 0.0817 0.0764; 0.2028 - 0.0240 0.2088 1.3464; 1.2336 - 0.0181 0.1131
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Table 6: Parameter estimates and goodness-of-fit statistics for α-stable, NIG, EP, and AEP distributions. Top layers: Cholesky-filtered
log-returns. Bottom layers: wavelet-filtered log-returns.

Legend. Tail: α (stable and NIG), b (EP), bl and br (AEP). Skewness: β (stable and NIG).
Asymptotic 5% limiting values: 0.0291 (D, NordPool), 0.0356 (D, APX), 0.0318 (D, Powernext), 0.443 (W 2).
Bold-face figures indicate the minimum goodness-of-fit test values.

NordPool APX Powernext

Auctions Distrib. tail skewness D W2 tail skewness D W2 tail skewness D W2

Cholesky-filtered

4 AM α-stable 1.5964 0.0079 0.0167 0.0860 1.5781 0.2587 0.0284 0.2567 1.8050 -0.4188 0.0125 0.0435

NIG 0.7127 -0.0578 0.0230 0.2309 0.7232 -0.1685 0.0396 0.3625 1.1979 -0.2509 0.0164 0.0904
EP 0.9215 - 0.0355 0.7323 0.8370 - 0.0666 1.9110 1.1230 - 0.0491 0.9247
AEP 0.8728; 0.9904 - 0.0304 0.5458 0.7553; 1.2110 - 0.0445 0.5167 1.0020; 1.4278 - 0.0259 0.2578

8 AM α-stable 1.6432 0.0686 0.0147 0.0549 1.5114 0.3584 0.0355 0.4784 1.7001 -0.4300 0.0119 0.0496

NIG 0.7614 0.0052 0.0133 0.0575 0.5966 -0.1339 0.0348 0.3671 0.9606 -0.2285 0.0136 0.0538
EP 0.9515 - 0.0213 0.2579 0.7781 - 0.0697 2.1414 1.0416 - 0.0483 1.1732
AEP 0.9602; 0.9422 - 0.0232 0.2574 0.6994; 1.1055 - 0.0399 0.4188 0.9146; 1.3346 - 0.0190 0.1437

12 (noon) α-stable 1.7258 0.0659 0.0103 0.0351 1.7843 0.6160 0.0194 0.0802 1.6686 -0.1333 0.0101 0.0229

NIG 0.9168 0.0559 0.0129 0.0577 1.2039 0.2783 0.0137 0.0418 0.8066 -0.0267 0.0120 0.0532
EP 1.0639 - 0.0268 0.2820 1.2328 - 0.0466 0.5844 1.0165 - 0.0257 0.2312
AEP 1.1297; 1.0181 - 0.0187 0.2149 1.5485; 1.0719 - 0.0150 0.0544 1.0065; 1.0216 - 0.0242 0.2242

4 PM α-stable 1.6814 0.0106 0.0107 0.0363 1.6672 0.1706 0.0191 0.0519 1.6853 -0.3301 0.0111 0.0240

NIG 0.8287 0.0436 0.0153 0.1184 0.8550 0.1176 0.0184 0.0775 0.8761 -0.1011 0.0126 0.0542
EP 1.0130 - 0.0272 0.4278 1.0258 - 0.0411 0.4397 1.0752 - 0.0352 0.4411
AEP 1.0499; 0.9746 - 0.0221 0.3581 1.1896; 0.9489 - 0.0216 0.1692 1.0056; 1.1325 - 0.0238 0.2382

8 PM α-stable 1.6941 0.0087 0.0091 0.0186 1.6988 0.1062 0.0148 0.0604 1.6705 -0.0576 0.0118 0.0530
NIG 0.8317 0.0280 0.0150 0.1060 0.9226 0.0907 0.0193 0.0950 0.8416 -0.0813 0.0147 0.0516

EP 0.9868 - 0.0260 0.3963 1.1021 - 0.0393 0.3406 1.0505 - 0.0285 0.3461
AEP 1.0166; 0.9593 - 0.0251 0.3643 1.2435; 1.0287 - 0.0256 0.2134 0.9805; 1.1437 - 0.0233 0.1708

12 (midnight) α-stable 1.6232 -0.0442 0.0099 0.0285 1.7510 0.2557 0.0232 0.0718 1.7033 -0.3023 0.0126 0.0531

NIG 0.7315 -0.0469 0.0133 0.0627 0.9172 0.0250 0.0227 0.1257 0.9383 -0.1440 0.0160 0.0831
EP 0.9572 - 0.0296 0.3633 0.8640 - 0.0305 0.3945 1.1021 - 0.0408 0.5833
AEP 0.9181; 1.0044 - 0.0208 0.2555 0.8475; 0.9016 - 0.0357 0.4419 1.0050; 1.2632 - 0.0206 0.2059

Wavelet-filtered

4 AM α-stable 1.3899 0.1277 0.0193 0.0740 1.6652 -0.1434 0.0124 0.0224 1.6328 -0.0079 0.0253 0.1164
NIG 9.2782 -0.0463 0.0201 0.0904 3.3436 -0.1840 0.0272 0.1785 4.9146 -0.0844 0.0152 0.0249

EP 0.7769 - 0.0312 0.2811 0.6982 - 0.0498 0.5507 1.0240 - 0.0191 0.0339
AEP 0.7640; 0.7859 - 0.0305 0.2781 0.6850; 0.7121 - 0.0442 0.5128 1.0026; 1.0458 - 0.0147 0.0304

8 AM α-stable 1.3670 0.0655 0.0230 0.0638 1.6838 -0.1257 0.0253 0.1012 1.7980 -0.1765 0.0237 0.0575

NIG 5.7047 0.3095 0.0203 0.0873 3.4372 -0.2307 0.0375 0.4312 7.8396 -0.4915 0.0274 0.1315
EP 0.7312 - 0.0347 0.3582 0.7567 - 0.0576 0.9541 1.2164 - 0.0352 0.2467
AEP 0.7485; 0.7111 - 0.0300 0.3124 0.7379; 0.7779 - 0.0511 0.9002 1.1703; 1.2707 - 0.0308 0.2260

12 (noon) α-stable 1.5447 0.2860 0.0200 0.0515 1.0698 -0.1326 0.0241 0.1144 1.5319 0.0961 0.0238 0.0880

NIG 11.6727 0.8902 0.0199 0.0584 1.6736 -0.0037 0.0168 0.0372 3.9648 -0.1671 0.0319 0.2900
EP 0.9010 - 0.0393 0.2715 0.5230 - 0.0298 0.2460 0.7398 - 0.0467 0.6475
AEP 0.9381; 0.8586 - 0.0295 0.1976 0.5221; 0.5238 - 0.0291 0.2458 0.7200; 0.7638 - 0.0420 0.6102

4 PM α-stable 1.5365 0.1359 0.0167 0.0329 1.0541 -0.0543 0.0268 0.1109 1.5584 -0.2774 0.0208 0.0863

NIG 12.9554 1.5886 0.0201 0.0705 0.5572 0.0024 0.0215 0.1004 5.3607 -0.0180 0.0374 0.2960
EP 0.8617 - 0.0474 0.4613 0.4238 - 0.0462 0.6175 0.7932 - 0.0462 0.6001
AEP 0.9379; 0.7957 - 0.0273 0.2256 0.4355; 0.4120 - 0.0473 0.5795 0.7867; 0.7990 - 0.0460 0.5902

8 PM α-stable 1.6042 0.2205 0.0177 0.0345 1.2354 0.0548 0.0244 0.1109 1.7631 -0.3230 0.0207 0.0440

NIG 16.8065 -0.0877 0.0341 0.1956 2.7449 -0.0124 0.0331 0.1757 12.0221 -0.0761 0.0295 0.2032
EP 0.8731 - 0.0455 0.3815 0.6965 - 0.0459 0.3761 1.1684 - 0.0347 0.2634
AEP 0.9081; 0.8376 - 0.0359 0.3130 0.6622; 0.7336 - 0.0295 0.2206 1.0527; 1.3768 - 0.0184 0.0562

12 (midnight) α-stable 1.5117 0.2004 0.0196 0.0673 1.4497 0.1648 0.0274 0.0868 1.7528 -0.3078 0.0247 0.0734
NIG 15.4975 0.4670 0.0261 0.1362 2.3668 -0.0098 0.0321 0.2113 21.0111 -2.3941 0.0180 0.0359

EP 0.8135 - 0.0342 0.3425 0.6598 - 0.0468 0.5054 1.1671 - 0.0330 0.2026
AEP 0.8190; 0.8061 - 0.0341 0.3371 0.6696; 0.6480 - 0.0410 0.4851 1.0810; 1.2551 - 0.0184 0.0649
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